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Some remarks on set theory. VI.

By P. ERD& in Budapest and G. FODOR in Szeged.

Let E be a given non countable set of power 111 and suppose that there
exists a relation R between the elements of E. For any x C E,  let R(x) denote
the set of the elements y E E for which xRy holds. Two distinct elements
of E, x and y, are called independent, if x $ R(y) and y C$ R(x). A subset F
of E is called free if F has only one element or if F has more elements and
any two of them being independent. Let B be a system of subsets of E;
then a non empty system I c B is called a p-additive ideal, p ( nt, if the
sum of any system of power smaller than $1, of elements of I, is again a set
of I, and if XC I, YCB, YcX imply YEI.

We assume that {x} C B and {x} E I for every x C E, and one of the
following conditions holds for the sets R(x):

(A) There is a cardinal number 11 < nt such that, for every x C E,
K(x) < n,

(B) E is a metric space and d(x, R(x)) > 0, where d(x,  R(x)) denotes
the distance of the point x from the set R(x).

We deal in this paper first with the following question :

(i) If A is a system of sets of  B-I, does there exist a free subset E’
of E such that for every Xc A, Xn E’c B-I?

This question has been studied previously in the following special
cases :

a) nt is regular, condition (A) holds, B is the set of all subsets of E,
I is the set of all subsets of E, of power less than nt, and A = 1 {then p = nt).
(See  PI.)

b) E= [O,l],  with the ordinary metric, condition (B) holds, B is the
set of all subsets of E, I is the set of all subsets of measure zero in the
Lebesgue sense, and A = 1.

(The answer to this question is affirmative, see [Xl.)
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c) The same hypotheses as in b), with the only difference that B is
the set of all subsets of [O,l] measurable in the Lebesgue sense.

(The answer to this question is generally in the negative. The answer
is affirmative if g(x) = d(x, R(x)) is a measurable function in the Lebesgue
sense, see [3],  [4].)

d) E= [O,l]  with the  ordinary metric d,  B is a Boolean o-algebra of
subsets of [O,l] containing all subintervals of [O,l],  and I is the set of the
sets X of B such that :t (X) =0, where ,u  is a measure on B.‘)

(If (i is not identically zero and if there exists a function fmeasurable
with respect to B and such that 0 <:  f(x) 5 g(x) = Q’(x,  R(x)) for all x c [O,l],
then there exists a free set F in B such that !l(F)  > 0 (i. e. F$I). This
theorem is due to P. HALMOS.‘))

In section 1 first we prove making use of a method of ULAM [6] the fol-
lowing theorem (Theorem 1): If E is a set of power Kv with $4, greater
than S,,  and less than the first aleph inaccessible in the weak sense, I is
a proper RJ,+l-additive  ideal of subsets of E such that (x) c I for every
xc E, and F$I, then F may be decomposed into the sum of a sequence
of the type tr)~, of mutually disjoint subsets Ft of E, such that F:$I.

We use this theorem in the proof of theorem 3.
In sections I and II a number of results is given with respect to question

(i). For instance we shall prove that the answer to the problem is affirmative
in the following cases:

1) If 111 > N, is less than the first aleph inaccessible in the weak sense,
B is the set of _ all subsets of E, I is a #,A additive ideal (N,+1  z m),
A = H,,, and f?(x) < S,, for every x c E.

2) If E is a metric space which contains a dense subset, the power of
which is less than the first aleph inaccessible in the weak sense, B is the
set of all Bore1  sets of E, I is the o-ideal of all sets of ;r-measure  zero of
B, where EL is a measure on B, A = 1, the condition (B) is satisfied, and also
the following condition (C) holds:

(C) there is a real number i > 0 such that the set (x : g(x) s i} con-
tains in B a subset of positive measure, where g(x) = d(x,  R(x)).

If, for every x c E, the set Z?(x) is the complement of a sphere of E
whose center is at x, then the condition (C) is not only sufficient, but also
necessary for the existence of a free subset of E in B.

Finally, in the section III, we deal with the following question :
(ii) Lef K be n elms  of subsets of E. When does there exist a relation

1) We use the tertninology  of P. R.  HALhzos  [ll].

2) See his review of the paper [3]  in Math. Reviews, 12 (1951),  p. 398.
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R for which the condition (A) holds and there is no free subset XC K with
respect to R?

For instance we shall prove that if K==nt and every element of K is
of power nt, then there exists a relation R, with R(x) z 1 for every x f E,
for which there is no free set in K.

This result shows that the answer to the problem (i) is always negative
if B-I =nt and every element of B-I is of power tn.

Notation and definitions. Throughout this paper, the symbols F and
,?  denote the cardinal number of the set F and of the ordinal number p,
respectively. For any x C E, let R-‘(x) = {y : x E R(y)). For any subset F of E let

For any cardinal number r we denote by Y;~ the initial number of r,
by t.*  the smallest cardinal number for which 1:  is the sum of r* cardinal
numbers each of which is smaller than r, by ci the cardinal number im-
mediately following r. We say that r is regular if t.*= r and singular if
r* < 1’.  r= W, > No  is called inaccessible in the weak sense, if y is a limit
number and r is regular,

I.

We assume in this section that the sets R(x) satisfy condition (A) and
B is the set of all subsets of E,  We shall use the following

L e m ma. Let T be a set of power &I (where CC  is a given ordinal
.number  10). There exists a system ;A~\f;“~-,  of subsets of T such thata

1) T- U Ai  for every 5~ our
~)‘..wafl

2) AEnAf=O  for 5-c~~  and .~<~:<:oJ~+I,
3) the power of the set

,S. ULAM [6] p.  143.)
T-c,Jw  A!;  is z N, for every q < ojafl,  (See

rc
We prove now the following
T h e o r e m 1. Let E be a set of power Ky with K,  greater than K, and

less than the first aleph inaccessible in the weak sense, and let I be a proper
K1+I-additive  ideal of subsets of E such that {x} C I for every x f E.  If B C E
and B @ I, then there exists a sequence { B~}~,,,l+,  of type w~.+I  , of subsets of
E, such that

(i) BE  cf  I for every 5 < COL.-~  ,
(ii) BE  n BI:  =0 for 5 < 5 < (oj.71,
(iii) B =(%,  &Bt-

A 17
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P r o of”). We use transfinite induction. First we prove that our_theorem
is true for y=i+l. Let E=K h+l  and 23$ I. It is obvious that B=&.
By the lemma (a =A  and T= B) there is a system [Ai/F::rl  of subsets

of B for which l), 2) and 3) hold. Since Be I and, by 3) ‘B-c,t  Ai  E I
-A

for every 11 < UJA+I, there exists for every ,j < WF.+~  an ordinal number @r,)  < 0~1.
such that Af;V’@  I. It follows that there is an ordinal number co < 0). and
a sequence { ~j~0}17<oM1  of type W~+I  , of the ordinal numbers !, < OA+~,  such
that E(+)= 5, and A$  $‘I  for every v < CUM. Let A = {T;  : q < oh+1 and
1; + Q,  if 1’ < (cl>.+l}  and

Obviously the set {By}y<Oi.T, satisfies the conditions (i), (ii) and (iii).
Let now 3 be a given ordinal number, ,8  > R. f 1, such that Ns is less

than the first aleph inaccessible in the weak sense, and suppose that the
theorem is true for every Q < ,$. Let E= Np and BeI (BEE).

If B < ‘&,  then the theorem is true by the induction hypothesis. (Let Z1 E I,
if and only if /I = B n 1, where I c I. Obviously I1 is an K,.-I-additivk  ideal
in B.)

If E=&,  then there are two possibilities :
a) $ is an ordinal number of the first kind, i. e, ,8= r( + 1,
b) p is an ordinal number of the second kind.

Case a). By the lemma (8= rc + 1 and T- B) there is a system

! IA
E E:w,
y;  ,iN,oa+l  of subsets of B for which l), 2) and 3) hold.

We have two subcases  :
a,) if B= i&JU  CL  is an arbitrary decomposition of B into the sum of NE

subsets, then there ys an ordinal number Go  < IY)~ such that CsO$  I,
a?)  B has a decomposition B = U Cs  into the sum of K, subsets such

that, for every 5 < we, Cc  c I. 6-v oa

Subcase  a,). For every 71 < rot6+l there is an ordinal number E(q)  < cuct
such that A!f7’@  I. It follows that there is an ordinal number E, < oa  and
a sequence {T~,}~~~~+~  of type c~J,+~,  of ordinal numbers e < uJatl, such that
g(Tj,)  = 5, and A$v@ I for every 1’ < rf>utl.  Let A = {q : q < Oaf1  and rj + ?ly

3) We make use of a method of ULAM  IS].
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if 2’ < 03~+l},  and

Sabcase  a,). Let B= U Cc  be a decomposition of B into the sum of

% subsets such that CL,‘;h,=  0 for 51 < &,  < o)a and Cg  c I for every
5 < 0~~.  Consider the set D = {C[}C~.~,. We define an Khil-additive  ideal I
in D as follows: Let F c I’ -if and only if Fc D and U C c I. Since

6 = Ma < & and D$ I’, there is, by the induction hypothe%r  a decompo-
sition

D = U F,,
‘,  C/q-1

of D into the sum of &.l  subsets such that F,;,  n F,;,-==  0 if ql=/=  122  and
F?,  $ I’ for every t, < (oAtl‘  Let

B,, = g C.
WF,;

Obviously B,, n B,, = 0 if q,  =j= Q,  BP,@1 for every q < wp+l,  and
B== IJ  B,,.

l;c,Wj.-,
Case b). Since KB  is less than the first aleph inaccessible in the weak

sense, B has a decomposition B = lJ CE  into the sum of NV < &I  subsets
EC0

such that & < ??t < #g and Ct, n Cc,:  0 if 5, + &.
if there is an ordinal number E0 < UJ,~ for which C:,,$  I, then there is,

by the induction hypothesis, a decomposition
Cc,=  U Dii <w&+1

of Cc,  such that D6,  n DC,=0  for &j= G2  and Ds$I  for every 5 < Ohtl. Let

Bi =
i

D,,  u (c,iJ G> for G = 0,
kk&Y

DC for 0 i i” < c~;+l.
Obviously the set {B~}~.+xtl satisfies the conditions (i), (ii), and (iii).

The proof of the case, when CE  c 1 for every 5 < IO,;, is similar to that
of case a,). Theorem 1 is proved.

C o r o I 1 a r y 1. ff .I?== nt > K, is .less  fhan  the first aleph inaccessible
in the weak sense, then every finite measure ,u,‘)  defined for all subsets of E
and vanishing for all one-point sets, vanishes idenfically.  (See S. ULAM [6].)

4)  We call a measure every extended real valued, non negative, countably additive
set function p(X) defined in a ripg of subsets of E. A ring of sets is a non empty class
R of sets such that if E f R and F c R, then E U Ff R and E--FcR.



248 P. Erdijs and G. Fodor

P r o of. The set of all subsets F of E for which tc(F)  = 0 is an
&additive ideal I containing all one-point subsets of E. If !t is not identically
zero, then there exists a subset F of E such that .(1(F) + 0; i. e. I is-a proper
ideal. By Theorem 1 there exists a sequence {F~}E.  -c0,  of type c’)~,  of subsets
of E, satisfying the conditions (i), (ii), (iii). Let H,, be the set of the ordinal

numbers f < co1  for which /f (FE) > + (n = 1,2,  , . .). It follows that there is

a natural number n, such that ki,,=~  K,,. Let {i,,Ji,<,., be an enumeration
of H,,,.  By the cr-additivity  of ,U we have

which is impossible since y is finite.

C o r o 1 1 a r y 2. lf 2”” is less than the first nleph  incrccessible  in the
weak sense, then for every subsef F of the second category of the set of real
numbers E there is a sequence {F~}~~:~OI  of type w 1, of mutually disjoint sub-
sets of E of the second category, such that

,F=  U Ft.
E<Ol

Proof. The set I of all subsets of the first category of E is a n-ideal
(i. e. an &additive ideal). (See W. SIERPII+SKI  [8]  p. 176.)

Co r o I 1 a ry 3. If 2””  is less fhan the first aleph  inaccessible in the
weak sense and P*(F)  is nn outer measure”) not identically zero on the set of
all subsets of the set E of real numbers such that ,u*({x})  =0 for every
xc  E, then for every subset F of E for which [L*(F)  + 0, there is a sequence
{F&I<,,  o f  the  type  ml, of mutually disjoint subsets FE of E such that
I* =I=  0 and

F=ty 6.
‘01

P roof. The set I of all subsets F of E for wh.ich  IL*(F)  = 0 is a
n-ideal. {See W. SIERPII~SKI  [S] p. 109, Proposition C3.)

T h e o r e m 2. Let z= K, > N,  and suppose that there exists a rela-
tion R between the elements of E, such that for any xc  E, the power of the
sef R(x) = {y: xRy} is smaller than tt < nr. Let furthermore I be an n+-addi-
tive  proper ideal of E, such that {x} < I for any xc E. Then there exists Q
free subset E’ of E, such that E’$ I,

5) An outer measure is an extended real valued, non negative,. monotone and count-
ably subadditive set function $ on the -class of all subsets of E, such that q*(O)  = 0.
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P roof. By Theorem 1 of [5] E may be decomposed into the sum of
it or fewer free subsets E: (5 < y,,):

Since I is an It’-additive proper ideal it follows the statement of
Theorem 2.

T h e o r e m 3. Let E be a set of power K,,  with K,  greater than K, and
less than the first aleph inaccessible in the weak sense, and let R be a rela-
tion between the elements of E such that for any x c E the power of the set
R(x) is smaller than K,.  Let furthermore I be an &,-additive proper ideal
of -subsets of E, such that {x} f I for any xf E. If { EE}~~.~  is a sequence of
type w, of subsets of E, such that EE$I  for 5 < u, then there exists a free
subset E’ of E for which E’ n E; 61 for every 5 < w.

Proof. First we define by finite induction a sequence {FL)E,:,~  of
subsets of E such that EtaI for 5 < ~2, FE,  n FE,  = 0 if 5, + &,  and for every
g < cr) there is a ~(6) < 1; such that F7,(:,  c E:. Let E, = U Eo,  be a decom-

.v--. Cd,
position of 6, satisfying Theorem 1. Since Eo,  n Ec,~  = 0 for I*  + y, for every
5 < w there is at most one 7’ = v(E)  < o, such that E~-Ei,.SSi~l  <I. It follows
that there is an ordinal number Y’ < 10, for which E~-Ew$I,  for every
5 < to. Put Fc  = Eo,,.  . Let $ < 10 be a given ordinal number p > 0, and sup-
pose that all sets Ft , where 0 5 5 < 8, have been already defined such that
F:$I fo r 5<,d  and Fc,nFt,-O.  Put E~--IJFL=NE  (Cz$).  Let U=

tct
= (g:  $5 5 < or) and Nc$I}. If 0~0, then we do not define FP.  In this
case we put !(=,8. If U= 1, i.e. U==(k),  then let F&C  and l,:==p+  1. If:=
U> 1, then we denote by e the first element of U. Let N@ = lJ N,,  be a

vc:w,
decomposition of N, satisfying Theorem 1, Since NQy  n N,, = 0 for ,v$= IL,
there is a 2’ < cpl,  such ‘that NC- N&I  for every 5C U. Put FP = NQ2,.

It follows from Theorem 2 that FE  has for every 5~ 11 a free subset
GE  such that G:gI.  We shall now prove that there is a sequence {H~}~C~7
of subsets of E such that Ht c GE, &%I  (j < 11) and Ht n (R[&] u R-‘[H&=0
for t + 5. The set E’=  lJ Ht obviously satisfies Theorem 2.

Ec3;
We define 4, as follows. Let G,,  = U Go,  be a decomposifion  of G,

a ml
satisfying Theorem 1. There is an ordinal number CC’  < 01~ such that
Gc  -R“(Go,,)@  I. In the opposite case there would exist for every cc  a
natural number E= QCC)  such that G-sca,-R-l[Goa]f  I. This would imply the
existence of a natural number Y and a sequence {akjfilo such that Y = ~(ccA.)
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for every k < cf), i. e. GE’ -R’  [Gtln,]  E I for every k < (r). Then there would
exist an element r E GE,,  for which zc R-l[Gi,ak],  i. e. R(z)  n G,:IUIc + 0 for every

n
k < (0, which is a contradiction, because R(z) < K,.

Put G;  = G:--R-l[Go,,]  (g = 1, 2, . . .), Let Gi  = U G&  be a decom-

‘*“”position of Gi  satisfying Theorem 1. Further let

ucc =Iv, +Girc 5, :
It is obvious that I;&,  n .!A<,  =0 for (I, + CC~.

There is a natural number 1~’ for which G?I,~-R~l[U,~~]~I.  For if
Gw-R’~‘[U,~]CI  for every 1’ < CV, then there would exist an element zc Go,,
such that zc R-‘[U,]  (I!  = 0, 1,  2, . . .)  i. e. R(z) ~1  U,,  + 0 (V = 0, 1,2,  . . .),
which is impossible, because R(z) < K,. Put H,,-  G ,,--R-‘[U+].  It is
obvious that

Nl = Gi.,v,-  R [HJ - R-’ [I?,]  $ I @=1,2,...).

We define H1 starting from N1 in the same way as H,, is defined
starting from the set G,. Obviously we can continue this process for every
1’ < q.  Thus we obtain the sequence {H,,},..-,; satisfying our requirement.
The theorem is proved.

C o r o l l a r y  4 . If 2”” is less than the first aleph inaccessible in the
weak sense, E is the set of the real numbers and R is a relation between the
elements  of E such that for any x f E the power of the set R(x) is smaller
fhan  K,,  , fhen  there exists a free subset E’ of E, which is everywhere of fhe
second category.

Pro of. Let I be the set of the subsets of E of the first category, and
{Ef}t.+, a sequence of type 10, of all intervals of E with rational endpoints,
and apply Theorem 3,

Co r o 1 I a r y 5. Under the same hypotheses as in Corollary 4 fhere
exists a free subset E’ of E such that

,I(*@ n [n, b]) += 0

for every interval [a, b] of E, I’* denoting Lebesgue outer measure.

Proof. Let I be the set of all subsets of measure zero of E and
{EE}~.  Sw  a sequence of type ~9, of all intervals of E with rational endpoints,
and apply Theorem 3.
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II.

We assume in this section that E is a metric space and condition
(B) holds.

First we prove the following

T h e o r e m 4. Let E be fhe  set of all real numbers and R a relation
between the elements of E such that,  for any XC  E, the power of the set R(x)
is smaller than K,.  Then there exists a free subset  E’ of E such that E’  is
everywhere of the second category.

Pro o f. Let (a, b) be an arbitrary interval of E and A’“’ ” the set of
all subsets of (a, b) the complements of which are of the first category and
F,. Let further {C~,,}y~c  be a wellordering of the set

u A’“: “I(n. a)zE
of the type y’<.  (where c = 2’7  and I?, the interval corresponding to the set
c Y-

We consider the set H of all the series H==  (acjc-  Yc of elements with
the properties :

b) if aE + 0, then a,.+  0 for 7~ < 5;
c) if at +O and r?,.=/=  0, then at + ay for 5 < 1’;
d) the set of the elements of the series is a free set.
For any Hf H, let I? denote the set of the elements of H.
We say that an element H<H is maximal with respect to the relation

R if T;,  is the smallest ordinal number < ypc such that a,,=  0 and there is no
element k c C,.,-- R[fi] such that k and the elements +O  of H are indepen-
dent or if a, $; 0 for every v < tprpc.  We define the index of H in the first
case as I’~ and in the second case as yc.  Let H’ be the set of the maximal
elements of H.

We say that two series HI and I& are mutually exclusive if fiI n I?,=  0.
Let {K,}jV ,; be a sequence of type ri < wI, of mutually exclusive ele-

ments of H’ with indices 8,, < yc.  Then by the definition of H’, EV< c; con-

sequently RIH,.]  < c for every 1’ < ?j. Since rj< CD,,  by a well-known theorem
of J. K~NIG  we have _~L__- - -

U (f&U  R [Kl)  < c,1’ .‘Y
i. e.

Cy- U (tj,. U R [I%])  < c
“-7
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for every 7 c-4~~. It follows that there is an element H,;  of H’ such that
fiji,; +O and H,7  n /?%,  =0 for every 11~  ?j.

’ For every Q i yic there is only a finite number of mutually exclusive
(1) 1 elements of H’ with the same index Q.

Let {HP,},,,  o be a sequence of type w, of mutually exclusive elements
of H’. Suppose that the series H, (n = 1, 2, . . .) have the same index 6. Then
the set C,,-,v,fisL-  lJR[&,] is non empty and for every element z of this set
-
R(z) 2 S, hold:, because R(z) n I??;, =!=  0 (n = 1,2,.  . .), which is a contra-
diction.

Supposing that every element of H’ has an index smaller than SF,.,  we
can choose by (1) a sequence {HV}j,<w, of mutually exclusive elements of
H’ of type o, such that the indices ,%,  of the series H,,  are distinct. Corres-
ponding to every interval IY we choose in IY a subinterval 1-J with rationalZ
endpoints. Since {&],<,,,  > & and {Z;}v-  a,z No, there is an I& and a subse-
quence {&,jz}l;< 01 of type w, of Z= {&.),_~OU,,  such that I;%,,.  = I& for every
k < o. Obviously the complement of the set L,,,,==  nC@,,,  is of the first cate-I;  <w
gory with respect to Z$,,, Consequently the power of L,, is c, thus

L,, -u~%~~  u R Wq.1)  = c
It follows that there is an’% element z c L,,7Uw(~*,~UR[~~,)) such that

R(z) n ii?,,=/=  0 (k=  1,2, . ..) i. e. R(z) 2 K,, which is impossible, because
R(z) < &,.  Thus there is a free subset E’ of E such that E’ fl C, + 0 for every
y < yc.  It is clear that E’ is of the second category. The theorem is proved.

The ore m 5. Let E be the set of all real numbers and R a relation
between the elements of E such that for any x C E the power of the set R(x) is
smaller than MO. Then there exists a free subset E’ of E such that the Lebes-
gue outer measure p*(E’) of E’  in every interval (a, b) is b-a.

Proof . Let (a, b) be an arbitrary interval of E and EW  b, the set of

all subsets of (a, b) of positive measure > + (b-a) and Gas Let further

{D,},--Vp,  be a wellordering of the set

( 0, &&TB(“I  b,
of type yc,  and Z-/  the interval (a, b) corresponding to II,.  We can prove
completely analogously to the proof of the theorem 4 the existence of a free
set E’ such that
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if we select in every interval lY = (a, 6) an interval ZG = (a’, V) with rational

endpoints such that V-Q’  > s (6--a). Obviously the outer measure of E
in every interval (a, 6) is b--zr.

It is easy to see by the method of the proofs of theorems 4 and 5 that
the following theorem is valid too.

T h e o r e m 6 . Let E be the set of all real numbers and R a relation
between the elements of E such that for any x c E the power of the set R(x)
is smaller fhan Ho.  Then there exists a free subset E’  of E such that E’ is
everywhere of the second category and the Lebesgue outer measure ,u(E’)
of E in every interval (a, b) is b-a.

Theorem 7. Let E be an interval of the set of all real numbers
and suppose that there exists a relation R between the elements of E. Let fur-
ther B be a n-algebra of subsets of E containing all subintervals of E und !(
a nof identically zero measure on B. If g(x) = d (x, R(x)) > 0 for every
x c E and lf

(C) there exists a real number i > 0 such that the set {x: g(x) ) i} con-
tains in B a subset of positive Y-measure,

then there exists in B a free subset of E of positive El-measure.
If, for every x c E,  the set R(x) is the complement of an interval of E

whose center is at x, then the condition (C) is nof only sufficient, but also
necessary for the existence of a free subset, of positive ,rc-measure,  of E in B.

Pro of. Let A be a subset of {x: g(x) 2 i} satisfying the condition
(C). Let

X>,XL,.‘.,X,,  )...

be an enumeration of the set of rational numbers in E. For every element
x t E and E > 0 there exists an element x,, of this sequence such that
d(x, x,,,,)  < 8.  For every n = 1, 2, . . . let U(X,~, i) be the open interval of length
i whose center is at x,,. It is obvious that

U U(x,, , i) = E.

Let A,,=An  U(x,,,i)  (n=l,2  ,...  .‘) ) S’mce  U(x,,  i)< B and A CB,  A,, CB. Let
Az=A,,-IJAj (n=1,2,...). S’mce IC is countably additive and ,u(A)  > 0,

“l’  ,I
there exists an index n’ for which ,u(AEr)  > 0. It follows that ,u(A,,~)  > 0. The
set A,,,  is free, because if xf A,,,  and y C R(x), then d(x, y) > g(x) 2 i.

For every XC E, let U(x) be an interval whose center is at x and
R(x) = E-U(x). In this case condition ‘(C) is also necessary for the exist-
ence of a free subset of positive ,I[-measure  in B, i. e. if there is in B a
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free subset A of E such that p(A) > 0, then there exists a positive number i,
for which the set {x :g(x)z i} contains in B a set of positive p-measure,
Suppose the contrary. Then B contains a free subset of positive p-measure,
but for every i > 0 the set {x:g(x)  2 i} contains in B only such subsets F
for which p(F)=O.  Let c<  denote the diameter of the set A. Put

E,=

By the hypothesis E, contains in B only such subsets F, for which p(F) = 0.
Let FI  = E, n A and Ez= E, n (E-A}. Since A is free and R(x)= E--U(x)

for every xc E, we have g(x) ~4 for every xc A. Thus F, = A. By the de-

finition, FI  u F2 = E,,  therefore A = F, c E,. Since A< B, it follows that
p(A)= 0, which contradicts to ,cl(A)  > 0. The theorem is proved.

Remark 1. In general the condition (C) is not necessary. Consider
the interval [O,l].  Let y* and p*  denote the Lebesgue outer and inner meas-
ure, respectively. We can define the relation R such that the interval [O,l]
contains a free subset of positive Lebesgue measure and

p,({x  : g(x)-2 i}) = 0
for any i > 0, where g(x) = d(x, R(x)). We shall use the following theorem
(see [7]):

The set E of the real numbers has a subset E’ with the following
properties :

1. for every interval (a, 6) of E, p*(E’n  (a, b)) =b-a,
2. E can be decomposed into enumerable many sets E,, (n = 1,2, . . .)

without common points, which are all superposable by shifting the set E’.
It follows that [O,l]  can be decomposed into the sum of enumerable

many sets S,  (n=l,2,...) such that ,u*(S,,) = 1 (n = 1, 2, . . .).

For every xc&, let K(x) be the open interval of length + whose cen-

ter is at x. We define R as follows. Let N be the set of rational numbers and
R(x) = (E-K(x)) n N.

Obviously

g ( x ) = +  f o r  xc&.

If i>l, then ;vi={x:g(x)-zij=0.  If izl, then V;EVr  =&U&U  -..uS,+l
zl

for some natural numbers n > 0. We have !l,(VJ=O  because p,(V I ) =
;;Fi

=~J*([o,l]-v1  )=O.
zi
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It follows from the definition of R that the set I/ of the irrational num-
bers of. [O,l]  is a free set. U is measurable and /l(U)-= 1.

R e m a r k 2. If is easily seen that Theorem 7 remains true for a separ-
able metric space. The following counter-example shows that for non-separ-
able metric spaces this theorem i-s generally not true.

Consider the following example of ALEXANDROFF [9]. Let S be the plane
with the ordinary (euclidean) metric d=d(x, y). We define now a new dis-
tance as follows. Let 0 be a given point of S, x and y two arbitrary points
of S and

i d(x, y) if 0 lies on the line xy,

d’(xf  y) = i d(x, 0) + d( y, 0) if 0 does not lie on the line xy.
Thus we obtain a new metric space S’, which is not separable.

Let !d*  be the ordinary Lebesgue outer measure for the subsets of S.
We define a relation R between the elements of s’  as follows. If x = 6, then
let R(x) = 0. If x +8, then let r be a real number for which 0 < r< d(x, fi),
E(x) = {y : d’(x,  y) < r] and R(x) = S--E(x). It follows from the definition of
the distance d’ that if x, y<S’ (x+ y) and 0 does not lie on the line xy,
then either x< R(y) or y c R(x) i. e. x and y are not independent, Hence
each free subset of S’ lies on a line containing G. But for every line L, p*(L)  = 0.
Thus for every free subset E’, p*(E’)=O.

For non-separable metric spaces we state the following

Theo rem 8. Let E be a metric space. Suppose that E contains a
dense subset, the power of which is less than the first aleph inaccessible in
the weak sense. Let ;* be a o-finite measure on the set B of all Bore1  subsets
which is not identically zero. If g(x) = d(x, R(x)) > 0 for every xc E and if
condition (C)  holds, then there exists in B a free subset of positive ,u-measure
of E.

If, for every xc E, the set R(x) is the complement of an sphere of E
whose center is at x, then the condition (C) is not only sufficient, but also
necessary for the existence of a free subset of positive [c-measure of E in B.

Pro of. If ,‘*  is a o-finite measure on the set of all Bore1  subsets of
E and E contains a dense subset, the power of which is less than the first
aleph inaccessible in the weak sense, then there exists a decomposition

E-NuM
of E into two mutually disjoint sets such that FL(N)  =0 and M is separable
(where N is the sum of all open subsets of {t-measure zero of E) (see [lo]).
It is clear that !f is not identically zero on M, since /1(N)  =0 and

,II  (N) + p (M) = ,U  (E) + 0.
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Let X be an arbitrary Bore1  subset of E. Since Xn M = X--N is a
Borei  subset of E,

~~((XnM)=,r*(X)--,(I(N)=,rc(X).
Let B’ be the set of all sets of the form X n M, where XCB, and let

Y(X)= p(X)  for XCB’.  Hence, if the set {x: g(x) 2 i} contains in B a set
of positive [c-measure,  then it contains in B’ a set of positive ,rl-measure  too.
Since B’GB,  the converse of this statement is also true. Thus, it is suf-
ficient to prove the theorem for M, B’ and I’,  instead of E,  B and {I. Since
A4  is a separable metric space and B’ is a a-algebra and v is not identi-
cally zero measure on B’, the theorem is true for M, B’ and 1’.  Thus the
theorem is true for E, B and !I too.

III.

We deal in this section with the problem (ii).

Theorem 9. Let  E be a set of power nrz Ha and K a class of power
III, of subsets of E of power 111. There exists a relation R between the ele-
ments of E such that for every xc E the power of the set R(x) is 5 1 and
there is no free subset X in K with respect to R.

Proof. Let

be a wellordering of K of the type y,,,. Since Bc = 111 for every 5 < SF,,,,  there
exist two sequences \‘xt>c<  ‘P,n  and {ys)t,  q”l,,  such that

1. xg C BE and yt E BE for every 5 < yc,,,,
2. x,:-+x;  and yc=/=y;  for ~<G<Y,,,,
3. xt + yc for every 5 < y,,,.
We define R as follows : let R(xt)=  {y*) for every $ < y,,, and if

x & xC  (5 < y,,,), then let R(x) = ix,,}. It is obvious that the sets BE are not free.

Co r o 11 a r y 6, Let E be the set of all real numbers. Thewe  exists a
relation R between the elements of E such that for every xc E the power of
the set R(x) is s 1 and there is no perfect free subset of E.

Corollary 7. Let E be the set of all real numbers. There exists a
relation R between the elements of E such that for every x f E the power of
the set R(x) is s 1 and there is no free Bore1 subset of E of power 2”‘;.

T h e o r e m 1 0. Let E be a set of power ut s K,> and K a set of power
nt, of mutually disjoint non empty subsets of E. There exists a relation R
between the elements of E, such that, for every xc E the power of the set
R(x) is s 1 and there is no such free  set which has non empty intersection
with every element of K.
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Proof. Let
Bo,  B, , . . . , B,,  , . . . , BS  , . . . (E  < y,n>

be a wellordering of K of the type q~!,,.  Let further
x,,  , Xl, . . . , xm, . . . ) xc,  . . . (5 < (fill)

be a wellordering of E of the type F,,~.  Obviously, we may assume that
xt$B~.  We define R as follows: let

R-’ (xE)  = B< .
Let F be a set which has non empty intersection with every element of K:

FnBg+O (C  < &.
Let XC F. There is an ordinal number ri < y,,, such that x=x3;. Since
R-‘(x) = B,, we have b,  Rx for every 6, EB, n F. It follows that x and
b,?  (x+ 6,,)‘are  not independent, because xc R(b,,).  The theorem is proved.

C o r o 11 a ry 8.‘)  If E is the set of all real numbers, then there exists
a relation R between the elements of E suclt  that, for every xc E, the power
of the set R(x) is 5 1 and there is no free subset, the complement of which
is totally imperfect.

Pro of. Let K be a set of power 2”” of non empty mutually disjoint
perfect subsets of E, T a set the complement CT of which is totally imper-
fect, and KCK. Since the set CT does not contain K, Kn T=/=O,  The
corollary is proved.

Finally we prove

Theorem 11. Let E be a set of power ntsK, and K a class of
power g < In, of mutually exclusive subsets of power nt of E. If R is a relation
between the elements xc E for which the condition (A) holds, i. e. m< n < nt
for every xc E, then there exists a free subset E’ of E such that, for every
KC  K,

Kn E’=m.
Proof. Let

I-6,  K, . . . , K,,  KM,  . . . , Kc, . . . G < 94
be a wellordering of K of the type yq. We assume first that nt is regular.
We consider the set M of the matrices

i all ai2 . . . al<  . . .
&l a?? . . . a2c  . . . I

J,f=;  i ;
I

I
api a,? . . . a,,5  .  .  .. .‘ . I* * I

6)  S. MARCUS has found independently the results of our corollaries 6 and 8.



258 P. Erdijs and G.  Fodor

of elements with the properties:

1. a,$ C Ki or a,g = 0, q c y,,, and 5 c cprr,
2. if as6  +O,  then avu  +O for v = Ti  and !L < 5 or Y < li and !A  < ys,
3. if avp  + 0 and a,:,L  $: 0, then cry,  =j= a,, for 11 =j= 4,
4. the set of the elements of the matrix is a free set.
For any M<M,  let fi denote the set of the elements of M.
We say that an element M CM is maximal with respect to the relation

R if cl0 and u, are the smallest ordinal numbers < yH such that a,,, = 0 and
there is no element kC K,,,--R[A?f]  such that k and the elements +O  of the
matrix M are independent or if a,, =/=  0 for every ,“c < sp,,,  and Y < ye. We
define the index of M in the first case as Pi, and in the second case as yPe.
Let M’ be the set of the maximal elements of M.

We say that two matrices MI  and MS  are mutually exclusive if A& II fi, = 0.
Let {My}yc17  be a sequence of type 11 < sp,,,,  of mutually exclusive_elem-

ents M, of M’ with indices c$, < qps. Then by the definition of M’, A&cm,
x-

consequently k[M,]  < III  for every Y < rj, because f?(x) < II < nl.
Since tn is regular,

s-x
U (M,,  u R[M,,])  < nt

9J-<,j
i. e.

for every “ / < ylD.  It follows that there is an element M, C M’ such that MV =/= 0_ w
and M, n M, =0 for every I’ < q.

(2) 1
For every d < 40~ there are less than II mutually exclusive elements
of M’ with the same index cf.

Let {Mv}y--;y,, be a sequence of the type Y,~,  of mutually exclusive
elements M, of M’ with the same index (r. Then the set

is non empty and, for every element z of this set, R(z)  2 It because, by the
definition of M’, R(z)  II k, + 0 for Y < y n, which is a contradiction, Thus
(2) is proved.

Supposing that every element M of M’ has an index smaller than spB,
we can now define by transfinite induction a sequence {My}srcv,n  of mutually
exclusive elements of M’ of the type yrn.  Since g < In and m is regular, there
exists a subset, of power nt, of M’ with the same index < ys,  which contra-
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diets to (2). Thus there exists a matrix of index rrn. It is obvious that the
set of elements of this matrix satisfies the requirement of the theorem. Thus
the theorem is true, if m is regular.

Consider now the case when IH is singular’). We assume that the gener-
alised continuum hypothesis is true. Let

be a decomposition of nt such that

1) lIti is regular for every 5 < TV,*,

3) iltc > max (9, it, m*},

Let further
K> =t -.ej KE

’ tn*
be a decomposition of K, into mutually exclusive subsets of K,,  such that
Kvg = IQ  .

By the first part of the theorem, there exists a free subset Lt  of E for
every E < sol,+.  such that

LE n Kvt  ==  rnt
for every 7’ < yFs. Omit for 5 < li all the elements of R[LtJ  from &. Thus
we get the sets

G= L”4I) w41.Y-___
By 1) and 3), UR[LS1<  lnB, thus the power of the set L:,  is m,? and

L; n K,,,?  = nt,? for ‘every I’ < sps.  Obviously

R Kl f-l NE JCJ = 0.
Let

Z

L:E = L; u Kvc (v < Yg,  5 < Ym*).
We want to construct sets L;E  of power rnt which satisfy

(3)
But then clearly

RI&Jg  c<$ IIt* WGw  $J,  &J /%l=O~c In
i. e. the set %,g,  I;9  * L;*  is free and satisfies the requirement of the

theorem. Thus we o?rly  have to construct Lz. Consider the sets L&  and

6)  The proof is due to A. HAJNAL.
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L; = U U L& (E c y,,,*). Let N[Q denote the set of all subsets of Li
vc pDg  6<E *of the power < n. By 3) N[f.c]  < 1116. It follows that there exists a subset &

of power nt5 of L&  and an element NzVt  of N[L;]  such that Lj n R[H,.t]  =
= N,,f.  Let

u= u U Kc.
=-Fpg  E<9-,*

Obviously YS tlgnt*  < mo. Let L$ = &- U (V < qg and 5 < ytn*). These sets
obviously satisfy the condition (3). The theorem is proved.
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