Some remarks on set theory. VI.

By P. ERDÖS in Budapest and G. FODOR in Szeged,

Let *E* be a given non countable set of power \mathfrak{m} and suppose that there exists a relation *R* between the elements of *E*. For any $x \in E$, let R(x) denote the set of the elements $y \in E$ for which xRy holds. Two distinct elements of *E*, *x* and *y*, are called *independent*, if $x \notin R(y)$ and $y \notin R(x)$. A subset *F* of *E* is called free if *F* has only one element or if *F* has more elements and any two of them being independent. Let B be a system of subsets of *E*; then a non empty system I c B is called a p-additive ideal, $\mathfrak{m} \leq \mathfrak{m}$, if the sum of any system of power smaller than $\mathfrak{p}_{\downarrow}$ of elements of I, is again a set of I, and if $X \in I$, $Y \in B$, $Y \subset X$ imply $Y \in I$.

We assume that $\{x\} \in B$ and $\{x\} \in I$ for every $x \in E$, and one of the following conditions holds for the sets R(x):

- (A) There is a cardinal number $\mathfrak{n} \triangleleft \mathfrak{m}$ such that, for every $x \in E$, $K(x) \triangleleft \mathfrak{n}$,
- (B) E is a metric space and $d(x, R(x)) \ge 0$, where d(x, R(x)) denotes the distance of the point x from the set R(x).

We deal in this paper first with the following question :

(i) If **A** is a system **of** sets of B-I, does there exist a free subset E' of E such that for every $X \in \mathbf{A}$, $X \cap E' \in \mathbf{B}$ -I?

This question has been studied previously in the following special cases :

a) mu is regular, condition (A) holds, B is the set of all subsets of E_{μ} I is the set of all subsets of E, of power less than nt, and A = 1 {then $\mathfrak{p} = \mathfrak{nt}$. (See [1].)

b) E=[0,1], with the ordinary metric, condition (B) holds, B is the set of all subsets of E, I is the set of all subsets of measure zero in the Lebesgue sense, and $\overline{\mathbf{A}} = 1$.

(The answer to this question is affirmative, see [2].)

c) The same hypotheses as in b), with the only difference that B is the set of all subsets of [0,1] measurable in the Lebesgue sense.

(The answer to this question is generally in the negative. The answer is affirmative if g(x) = d(x|, R(x)) is a measurable function in the Lebesgue sense, see [3], [4].)

d) E = [0,1] with the ordinary metric d_1 B is a Boolean o-algebra of subsets of [0,1] containing all subintervals of [0,1], and I is the set of the sets X of B such that $y_1(X) = 0$, where y_1 is a measure on B.')

(If μ is not identically zero and if there exists a function fmeasurable with respect to B and such that $0 \triangleleft f(x) \leq g(x) = d(x, R(x))$ for all $x \notin [0,1]$, then there exists a free set F in B such that $\mu(F) > 0$ (i.e. $F \notin I$). This theorem is due to P. HALMOS.²)

In section 1 first we prove making use of a method of ULAM [6] the following theorem (Theorem 1): If E is a set of power \aleph_{λ} with \aleph_{λ} greater than \aleph_{λ} and less than the first aleph inaccessible in the weak sense, I is a proper $\aleph_{\lambda+1}$ -additive ideal of subsets of E such that $\{x\} \in I$ for every $x \in E_{\lambda}$ and $F \notin I$, then F may be decomposed into the sum of a sequence of the type $\omega_{\lambda+1,\lambda}$ of mutually disjoint subsets F_{ξ} of E, such that $F_{\xi} \notin I_{\lambda}$

We use this theorem in the proof of theorem 3.

In sections I and II a number of results is given with respect to question (i). For instance we shall prove that the answer to the problem is affirmative in the following cases:

1) If $\mathfrak{m} \geq \aleph_{\cdot}$ is less than the first aleph inaccessible in the weak sense, B is the set of , all subsets of E, I is a $\aleph_{\gamma+1}$ additive ideal ($\aleph_{\gamma+1} \leq \mathfrak{m}$), A $\Longrightarrow \aleph_{0}$ and f?(x) $\leq \aleph_{0}$ for every $x \in E$.

2) If *E* is a metric space which contains a dense subset, the power of which is less than the first aleph inaccessible in the weak sense, B is the set of all Borel sets of *E*, I is the o-ideal of all sets of μ -measure zero of B, where μ is a measure on B, A = 1, the condition (B) is satisfied, and also the following condition (C) holds:

(C) there is a real number l > 0 such that the set $\{x \mid g(x) \ge i\}$ contains in B a subset of positive measure, where g(x) = d(x, R(x)).

If, for every $x \in E$, the set Z?(x) is the complement of a sphere of E whose center is at x, then the condition (C) is not only sufficient, but also necessary for the existence of a free subset of E in B.

Finally, in the section III, we deal with the following question :

(ii) Lef K be a class of subsets of E. When does there exist a relation

¹⁾ We use the terminology of P. R. HALMOS [11].

²⁾ See his review of the paper [3] in Math. Reviews, 12 (1951), p. 398.

R for which the condition (A) holds and there is no free subset $X \in \mathbf{K}$ with respect to *R*?

For instance we shall prove that if $\overline{\mathbf{K}} = \mathbf{m}$ and every element of K is of power \mathbf{m} , then there exists a relation R, with $R(\mathbf{x}) \leq 1$ for every $\mathbf{x} \in E$, for which there is no free set in K.

This result shows that the answer to the problem (i) is always negative if $\overline{\mathbf{B} \cdot \mathbf{I}} = \mathfrak{m}$ and every element of $\mathbf{B} \cdot \mathbf{I}$ is of power tn.

Notation and definitions. Throughout this paper, the symbols \overline{F} and $\overline{\beta}$ denote the cardinal number of the set F and of the ordinal number β_i respectively. For any $x \in E$, let $R^{-1}(x) = \{y : x \in R(y)\}$. For any subset F of E let

$$R[F] = \bigcup_{x \in F} R(x)$$
 and $R^{-1}[F] = \bigcup_{x \in F} R^{-1}(x).$

For any cardinal number \mathfrak{u} we denote by $\varphi_{\mathfrak{r}}$ the initial number of $\mathfrak{r}_{\mathfrak{f}}$ by \mathfrak{r}^* the smallest cardinal number for which \mathfrak{u} is the sum of \mathfrak{r}^* cardinal numbers each of which is smaller than $\mathfrak{r}_{\mathfrak{f}}$ by \mathfrak{r}^+ the cardinal number immediately following \mathfrak{r} . We say that \mathfrak{u} is regular if $\mathfrak{r}^* = \mathfrak{r}$ and singular if $\mathfrak{r}^* = \mathfrak{r}_{\mathfrak{f}} \rtimes \mathfrak{N}_{\mathfrak{f}} \rtimes \mathfrak{N}_0$ is called inaccessible in the weak sense, if \mathfrak{g} is a limit number and \mathfrak{u} is regular,

I.

We assume in this section that the sets R(x) satisfy condition (A) and **B** is the set of all subsets of E_{\perp} We shall use the following

L e m ma. Let T be a set **of** power $\aleph_{\alpha+1}$ (where α is a given ordinal number ≥ 0). There exists a system $|A_{\tau_1 \tau_1 \cdots \tau_n \tau_n}^{\xi_1 \xi_1 \cdots \xi_n}|$ of subsets of T such that

1) $T = \bigcup_{\eta' \sim \omega_{\alpha+1}} A_{\eta}^{\xi}$ for every $\xi < \omega_{\alpha,\eta}$

2) $A_{\eta}^{\xi} \cap A_{\zeta}^{\xi} = 0$ for $\xi < \omega_{a}$ and $\eta < \zeta < \omega_{a+1}$,

3) the power of the set $T - \bigcup_{\xi \in \omega_{\alpha}} A_{\eta}^{\xi}$ is $\exists \mathbb{N}_{\alpha}$ for every $\eta \triangleleft \omega_{\alpha+1}$, (See S. ULAM [6] p. 143.)

We prove now the following

The orem 1. Let E be a set of power \mathbf{N}_{1} with \mathbf{N}_{2} greater than \mathbf{N}_{1} and less than the first **aleph** inaccessible in the weak sense, and let **I** be a proper $\mathbf{N}_{\lambda+1}$ -additive ideal of subsets of E such that $\{x\} \in \mathbf{I}$ for every $x \in E$. If $B \subseteq E$ and $B \notin \mathbf{I}$, then there exists a sequence $\{B_{\xi}\}_{\xi < \omega_{\lambda+1}}$ of type $\omega_{\lambda+1}$, of subsets of E, such that

(i) $B_{\xi} \bigoplus \mathbf{I}$ for every $\mathfrak{E} \triangleleft \omega_{\lambda-1}$, (ii) $B_{\xi} \cap B_{\sharp} = 0$ for $\mathfrak{E} \triangleleft < \mathfrak{I} < \omega_{\lambda+1}$, (iii) $B = \bigcup_{\xi \prec \mid \omega_{\lambda+1}} B_{\xi}$.

A 17

Proof"). We use transfinite induction. First we prove that our theorem is true for $\gamma = \lambda + 1$ | Let $\vec{E} = ||\lambda_{k+1}|$ and $B \notin ||$ I. It is obvious that $\vec{B} = ||\lambda_{k+1}|$. By the lemma $(\alpha| = \lambda \text{ and } T = B)$ there is a system $\left|A_{\eta}^{\xi}\right|_{\eta < \omega_{\lambda+1}}^{\xi < \omega_{\lambda}} ||$ of subsets of *B* for which 1), 2) and 3) hold. Since $B \notin ||$ I and, by 3) $B - \bigcup_{\xi < \alpha < \omega_{\lambda}} ||A_{\eta}^{\xi}|| \in I$ for every $\eta < \omega_{k+1}$, there exists for every $\eta < \omega_{\lambda+1}$ an ordinal number $\xi(\eta) < \omega_{\lambda}$ and such that $A_{\eta}^{\xi(\eta)} \notin ||$. It follows that there is an ordinal number $\xi_0 < \omega_{\lambda}$ and a sequence $\{\eta_{\nu}\}_{\nu < \omega_{\lambda+1}}$ of type $\omega_{\lambda+1}$, of the ordinal numbers $\varrho < \omega_{\lambda+1}$, such that $\xi(\eta_{\nu}) = \xi_0$ and $A_{\eta_{\nu}}^{\xi_0} \notin ||$ for every $\nu < \omega_{\lambda+1}$. Let $A = \{\eta : \eta < \omega_{\lambda+1}\}$ and $\eta \neq \eta_{\eta}$ if $n < \omega_{\lambda+1}$ and

$$B_{\nu} = \begin{cases} A_{\eta_0}^{\xi_0} \bigcup \left(\bigcup_{\eta \in A} A_{\eta}^{\xi_0} \right) \text{ for } \nu = 0, \\ A_{\eta_{\nu}}^{\xi_0} \quad \text{ for } 0 < \nu < \omega_{\lambda+1}. \end{cases}$$

Obviously the set $\{B_{\nu}\}_{\nu < \omega_{\lambda+1}}$ satisfies the conditions (i), (ii) and (iii).

Let now β be a given ordinal number, $\beta > \lambda + 1$, such that \aleph_{β} is less than the first aleph inaccessible in the weak sense, and suppose that the theorem is true for every $\alpha \triangleleft \beta$ Let $\overline{E} = \aleph_{\beta}$ and $B \notin \mathbf{I}$ (*BEE*).

If $B \triangleleft \aleph_{\beta}$ then the theorem is true by the induction hypothesis. (Let $I_{\parallel} \in I$, if and only if $I_1 = B$ **n** I, where $I \in I$. Obviously I_{\parallel} is an $\aleph_{\lambda+1}$ -additive ideal in B.)

If $\overline{B} = \aleph_{\beta}$, then there are two possibilities :

a) β is an ordinal number of the first kind, i. e. $\beta = \alpha + 1$,

b) β is an ordinal number of the second kind.

Case a). By the lemma $(\beta = \alpha + 1 \text{ and } T = B)$ there is a system $|\mathbb{A}_{q_{\tau}}^{\xi \in \langle \omega_{\alpha} \rangle} | \alpha + 1 | \alpha + 1 \rangle | \alpha = 0$ there is a system $|\mathbb{A}_{q_{\tau}}^{\xi \in \langle \omega_{\alpha} \rangle} | \alpha + 1 \rangle | \alpha + 1 \rangle | \alpha = 0$

We have two subcases :

a,) if $B = \bigcup_{\zeta < \omega} |C_{\alpha}|$ is an arbitrary decomposition of *B* into the sum of \aleph_{α} subsets, then there is an ordinal number $\zeta_{0} < \omega_{\alpha}$ such that $C_{\zeta_{0}} \in I_{\alpha}$

a₂) *B* has a decomposition $B = \bigcup_{\zeta \in \omega_{\alpha}} C_{\zeta}$ into the sum of \aleph_{α} subsets such that, for every $\zeta \subset \omega_{\alpha}$, $C_{\zeta} \in I$.

Subcase a,). For every $\eta \triangleleft \omega_{\alpha+1}$ there is an ordinal number $\xi(\eta) \triangleleft \omega_{\alpha}$ such that $A_{\eta}^{\xi(\eta)} \notin I$. It follows that there is an ordinal number $\xi_{0}^{I} \triangleleft \omega_{\alpha}$ and a sequence $\{\eta_{\nu}\}_{\nu < \omega_{\alpha+1}}$ of type $\omega_{\alpha+1}$ of ordinal numbers $\varrho \triangleleft \omega_{\alpha+1}$ such that $\xi(\eta_{\nu}) = \xi_{0}^{I}$ and $A_{\eta_{\nu}}^{\xi_{0}} \notin I$ for every $n \triangleleft \omega_{\alpha+1}$. Let $A = \{\eta : \eta \lhd \omega_{\alpha+1}$ and $\eta \neq \eta_{\nu}$

3) We make use of a method of ULAM [6].

if $n \triangleleft \omega_{\lambda+1}$, and

$$B_{\nu} = \begin{cases} A_{\eta_0}^{\varepsilon_0} \bigcup \left(\bigcup_{\eta \in A} A_{\eta}^{\varepsilon_0} \right) \text{ for } \nu = 0, \\ A_{\eta_{\nu}}^{\varepsilon_0} \quad \text{ for } 0 < \nu < \omega_{\lambda+1}. \end{cases}$$

Subcase a,). Let $B = \bigcup_{\zeta < \omega_{\alpha}} C_{\zeta}$ be a decomposition of B into the sum of \aleph_{α} subsets such that $C_{\zeta_1} \cap C_{\zeta_2} = 0$ for $\zeta_1 < \zeta_2 < \omega_{\alpha}$ and $C_{\zeta} \in I$ for every $\zeta < \omega_{\alpha}$. Consider the set $D = \{C_{\zeta}\}_{\zeta < \omega_{\alpha}}$. We define an $\aleph_{\lambda+1}$ -additive ideal I in D as follows: Let $F \in I'$ if and only if F_C D and $\bigcup_{C \in F} C \in I$. Since $\overline{D} = \aleph_{\alpha} < \aleph_{\beta}$ and $D \notin I'$, there is, by the induction hypothesis, a decomposition D = |I| E|

$$D = \bigcup_{\eta < \omega_{\lambda+1}} F_{\eta}$$

of *D* into the sum of $\aleph_{\lambda+1}$ subsets such that $F_{r_1} \cap F_{r_2} = 0$ if $r_1 \neq \eta_2$ and $F_{r_2} \notin \Gamma$ for every $\eta \triangleleft \varpi_{\lambda+1}$. Let

$$B_{\eta} = \bigcup_{C \in F_{\eta}} C.$$

Obviously $B_{\eta_1} \cap B_{\eta_2} = 0$ if $\eta_1 \ddagger \eta_2 \mid B_{\eta} \notin \mathbb{I}$ for every $\eta \triangleleft \omega_{\lambda+1}$, and $B == \bigcup_{\eta \triangleleft \omega_{\lambda+1}} B_{\eta}$.

Case b). Since \aleph_{β} is less than the first aleph inaccessible in the weak sense, *B* has a decomposition $B = \bigcup_{\xi \in \mathcal{A}_{1}} C_{\xi}$ into the sum of $\aleph_{\beta} \triangleleft \aleph_{\beta}$ subsets such that $\aleph_{\beta} \triangleleft \overline{C_{\xi}} \triangleleft \aleph_{\beta}$ and $C_{\xi} \mid n C_{\xi_{3}} = 0$ if $\xi \mid \# \mid \xi_{2}$.

if there is an ordinal number $\xi_0 < \omega_{ij}$ for which $C_{\xi_0} \notin I$, then there is, by the induction hypothesis, a decomposition

$$C_{\xi_0} = \bigcup_{\| < \omega_{\lambda+1} \|} D_0$$

of $C_{\xi_{d}}$ such that $D_{\zeta_{1}}$ n $D_{\zeta_{2}} = 0$ for $\zeta_{1} \neq \zeta_{2}$ and $D_{\zeta} \notin \mathbf{I}$ for every $\zeta \triangleleft \omega_{\lambda+1}$. Let $B_{\zeta} = \begin{cases} D_{d} \mid u \mid \bigcup_{\substack{\xi \leftarrow \omega \\ \xi \neq \xi_{0}} \mid} C_{\xi} \end{pmatrix} \text{ for } \zeta = 0, \\ D_{\zeta} \text{ for } 0 \triangleleft \zeta \mid < \omega_{\lambda+1}, \end{cases}$

Obviously the set $\{B_{\zeta}\}_{\zeta < \omega_{\lambda+1}}$ satisfies the conditions (i), (ii), and (iii).

The proof of the case, when $C_{\xi} \in \mathbb{I}$ for every $\xi < 10,$; is similar to that of case a,). Theorem 1 is proved.

Corollary 1. If $I? == \mathfrak{m} \rtimes \aleph_d$ is less than the first aleph inaccessible in the weak sense, then every finite measure μ_{2}^{*} defined for all subsets of E and vanishing for all one-point sets, vanishes identically. (See S. ULAM [6].)

⁴⁾ We call a measure every extended real valued, non negative, countably additive set function p(X) defined in a ring of subsets of E. A ring of sets is a non empty class R of sets such that if $E \in \mathbb{R}$ and $F \in \mathbb{R}$, then $E \bigcup F \in \mathbb{R}$ and $E - F \in \mathbb{R}$.

Proof. The set of all subsets F of E for which $\mu(F) = 0$ is an &additive ideal I containing all one-point subsets of E. If μ is not identically zero, then there exists a subset F of E such that $\mu(F) \neq 0$; i. e. I is-a proper ideal. By Theorem 1 there exists a sequence $\{F_{\xi}\}_{\xi \in [\omega]}$ of type $\omega_{1,i}$ of subsets of E, satisfying the conditions (i), (ii), (iii). Let H_{i} be the set of the ordinal numbers $\xi \mid \langle \omega_{1}$ for which $\mu(F_{\xi}) > \frac{1}{n}$ (n = 1, 2, ...) It follows that there is a natural number n_{i} such that $\overline{H}_{n_{0}} = |\mathbf{X}_{0}|$ Let $\{i_{n}\}_{n < 0}$ be an enumeration of $H_{n_{0}}$. By the σ -additivity of μ we have

$$\mu(\bigcup_{n=1}^{\infty} F_{i_n}) = \sum_{n=1}^{\infty} \mu(F_{i_n}) \ge \frac{1}{n_0} + \frac{1}{n_0} + \dots + \frac{1}{n_0} + \dots = \infty,$$

which is impossible since *µ* is finite.

C or o 1 1 a r y 2. If |2"" is less than the first aleph inaccessible in the weak sense, then for every subsef F of the second category of the set of real numbers E there is a sequence $\{F_{\xi}\}_{\xi < \omega_{\parallel}}$ of type ω_{11} of mutually disjoint subsets of E of the second category, such that

$$F = \bigcup_{\xi < \omega_1} F_{\xi}.$$

Proof. The set I of all subsets of the first category of E is a n-ideal (i. e. an &additive ideal). (See W. SIERPIŃSKI [8] p. 176.)

Corollary 3. If $2^{[n]}$ is less than the first aleph inaccessible in the weak sense and $\mu^*(F)$ is an outer measure") not identically zero on the set of all subsets of the set E of real numbers such that $\mu^*(\{x\}) = 0$ for every $x \in E$, then for every subset F of E for which $\mu^*(F) \neq 0$, there is a sequence $\{F_{\xi}\}_{\xi < \omega_1}$ of the type ω_1 , of mutually disjoint subsets F_{ξ} of E such that $\mu^*(F_{\xi}) \neq 0$ and

$$F = \bigcup_{\xi < \omega_1} F_{\xi}.$$

P roof. The set I of all subsets F of E for which $\mu^*(F) = 0$ is a n-ideal. {See W. SIERPIŃSKI [8] p. 109, Proposition C_{34} .)

The orem 2. Let $\overline{E} = |\mathbf{x}_{\gamma} > \mathbf{x}_{0}|$ and suppose that there exists a relation R between the elements of E, such that for any $\mathbf{x} \in E$, the power of the sef $R(\mathbf{x}) = \{y: \mathbf{x}R\mathbf{y}\}$ is smaller than $\mathbf{u} \triangleleft$ nr. Let furthermore \mathbf{I} be an \mathbf{u}^{+} -additive proper ideal of E, such that $\{x\} \in \mathbf{I}$ for any $\mathbf{x} \in E$. Then there exists a free subset E' of E, such that $E' \notin \mathbf{I}$,

⁵) An outer measure is an extended real valued, *non* negative, monotone and countably subadditive set function η^* on the -class of all subsets of E, such that $\eta^*(0) = 0$.

P roof. By Theorem 1 of [5] E may be decomposed into the sum of \mathbb{I} or fewer free subsets E_{\sharp} ($\xi < \varphi_n$):

$$E = \bigcup_{\xi < \varphi_n} E_{\xi}.$$

Since I is an It'-additive proper ideal it follows the statement of Theorem 2.

The ore m3. Let *E* be a set of power \aleph_{γ} with \aleph_{γ} greater than \aleph_{d} and less than the first aleph inaccessible in the weak sense, and let *R* be a relation between the elements of *E* such that for any $x \in E$ the power of the set R(x) is smaller than \aleph_{d} . Let furthermore I be an &-additive proper ideal of -subsets of *E*, such that $\{x\} \in I$ for any $x \in E$. If $\{E_{\xi}\}_{\xi < \omega}$ is a sequence of type ω , of subsets of *E*, such that $E_{\xi} \in I$ for $\xi < \omega$, then there exists a free subset *E* of *E* for which *E* in $E_{\xi} \in I$ for every $\xi < \omega_{1}$

Proof. First we define by finite induction a sequence $\{F_{\xi}\}_{\xi < \eta}$ of subsets of E such that $F_{\xi} \notin \mathbb{I}$ for $\xi < \eta$, $F_{\xi_1} \in \mathbb{I}$, $F_{\xi_2} = 0$ if $\xi_1 \neq \xi_2$ and for every $\xi < \omega$ there is a $v(\xi) < \eta$ such that $F_{v(\xi)} \subset E_{\xi}$. Let $E_0 = \bigcup_{\nu < 0\eta} E_{0\eta}$ be a decomposition of E_0 satisfying Theorem 1. Since $E_{0\mu} \mid \mathbf{n} = 0$ for $n \neq \mu$, for every $\xi < \omega_1$ there is at most one $v = v(\xi) < \omega_1$ such that $E_{\xi} - E_{0\nu(\xi)} < 1$. It follows that there is an ordinal number $v' < \omega_1$ for which $E_{\xi} - E_{0\nu'} \notin \mathbb{I}$, for every $\xi < \omega_1$ Put $F_0 = E_{0\nu'}$. Let $\beta < \omega$ be a given ordinal number $\beta > 0$, and suppose that all sets F_{ξ} , where $0 \leq \xi < \beta_1$ have been already defined such that $F_{\xi} \notin \mathbb{I}$ for $\xi < \beta$ and $F_{\xi_1} \cap F_{\xi_2} = 0$. Put $E_{\xi} - \bigcup_{\ell < \xi} F_{\xi} = N_{\xi}$ ($\xi \geq \beta$). Let U = $= \{\xi \mid \beta \leq \xi < \omega_1$ and $N_{\xi} \notin \mathbb{I}\}$. If U = 0, then we do not define $F_{\beta} \mid \mathbb{I}$ in this case we put $u = \beta$. If U = 1, i.e. $U = \{k\}$, then let $F_{\beta} = N_k$ and $\eta = \beta + 1$. If U > 1, then we denote by q the first element of U. Let $N_q = \bigcup_{v < \omega_1} N_{qv}$ be a decomposition of N_q satisfying Theorem 1. Since $N_{qv} \cap N_{qv} = 0$ for $v \neq \mu_1$

It follows from Theorem 2 that F_{ξ} has for every $\xi \triangleleft \eta$ a free subset G_{ξ} such that $G_{\xi} \notin I$ We shall now prove that there is a sequence $\{H_{\xi}\}_{\xi \triangleleft \eta}$ of subsets of E such that $H_{\xi} \square G_{\xi}$, $H_{\xi} \notin I$ ($\xi \triangleleft \eta$) and $H_{\xi} \sqcap (R[H_{\xi}] \sqcup R^{-1}[H_{\xi}]) = 0$ for $\xi \dashv \zeta$. The set $E' = \bigcup_{\xi \triangleleft \eta} H_{\xi}$ obviously satisfies Theorem 2.

We define $H_{\mathfrak{g}}$ as follows. Let $G_{\mathfrak{g}} = \bigcup_{a} G_{\mathfrak{g}_{a}} G_{\mathfrak{g}_{a}}$ be a decomposition of $G_{\mathfrak{g}}$ satisfying Theorem 1. There is an ordinal number $a' \triangleleft \omega_{\mathfrak{g}}$ such that $G_{\xi} - R^{-1}(G_{\mathfrak{g}_{a}}) \notin \mathbb{I}$. In the opposite case there would exist for every \mathfrak{a} a natural number $\xi = \xi(\mathfrak{a})$ such that $G_{\xi(\mathfrak{a})} - R^{-1}[G_{\mathfrak{g}_{a}}] \notin \mathbb{I}$. This would imply the existence of a natural number ξ' and a sequence $\{\alpha_k\}_{k < \omega}$ such that $\xi' = \xi(\alpha_k)$ for every $k \triangleleft \omega$, i. e. $G_{\xi'} - R^{-1}[G_{0\alpha_k}] \in I$ for every $k \triangleleft \omega$. Then there would exist an element $z \in G_{\xi'}$, for which $z \in R^{-1}[G_{0\alpha_k}]$, i. e. $R(z) \cap G_{0\alpha_k} \neq 0$ for every $k \triangleleft \omega$, which is a contradiction, because $\overline{R(z)} \triangleleft \bigotimes_{0} |$

Put $G'_{\xi} = G_{\xi} - R^{-1}[G_{0\alpha'}]$ ($\xi = 1, 2, ...$). Let $G'_{\xi} = \bigcup_{\alpha \in \Theta_1} G'_{\xi\alpha}$ be a decomposition of G'_{ξ} satisfying Theorem 1. Further let

$$U_{\alpha} := \bigcup_{0 < \xi \mid , \eta} G'_{\xi \alpha}.$$

It is obvious that $U_{\alpha_1} \cap U_{\alpha_2} = 0$ for $\alpha_1 \ddagger \alpha_2$.

There is a natural number r' for which $G_{0\alpha'} - R^{-1}[U_{r'}] \notin \mathbf{I}$. For if $G_{0\alpha'} - R^{-1}[U_{r'}] \notin \mathbf{I}$ for every $n < \omega$, then there would exist an element $z \notin G_{0\alpha'}$ such that $z \notin R^{-1}[U_{r'}]$ (r' = 0, 1, 2, ...) i. e. $R(z) \cap U_r \neq 0$ (r' = 0, 1, 2, ...) which is impossible, because $R(z) \triangleleft \aleph_0$. Put $H_0 = G_{\alpha'} - R^{-1}[U_{r'}]$. It is obvious that

$$N_{\xi} = G'_{\xi r'} - R[H_0] - R^{-1}[H_0] \bigoplus I \qquad (\xi = 1, 2, \ldots).$$

We define H_1 starting from N_1 in the same way as H_0 is defined starting from the set G₁. Obviously we can continue this process for every $\nu < \eta_1$ Thus we obtain the sequence $\{H_r\}_{r < \eta}$ satisfying our requirement. The theorem is proved.

Corollary 4. If 2"" is less than the first aleph inaccessible in the weak sense, E is the set of the real numbers and R is a relation between the elements of E such that for any $\mathbb{M} \in E$ the power of the set R(x) is smaller than \mathbb{N}_d , then there exists a free subset E' of E, which is everywhere of the second category.

Proof. Let I be the set of the subsets of E of the first category, and $\{E_{\xi}\}_{\xi \ll \omega}$ a sequence of type ω_{j} of all intervals of E with rational endpoints, and apply Theorem 31

Con o 1 I ary 5. Under the same hypotheses as in Corollary 4 fhere exists a free subset E' of E such that

$$\mu^*(E' \cap [n, b]) \rightleftharpoons 0$$

for every interval [a, b] of E, u* denoting Lebesgue outer measure.

Proof. Let I be the set of all subsets of measure zero of E and $\{E_{\xi}\}_{\xi \to \omega}$ a sequence of type ω_{i} of all intervals of E with rational endpoints, and apply Theorem 3.

We assume in this section that E is a metric space and condition (B) holds.

First we prove the following

The orem 4. Let E be the set of all real numbers and R a relation between the elements of *E* such that for any $x \in E$ the power of the set R(x)is smaller than \mathbf{x}_{i} . Then there exists a free subset E_{i} of E such that E_{i} is everywhere of the second category.

Pro o f. Let (a, b) be an arbitrary interval of E and A'", b) the set of all subsets of (a, b) the complements of which are of the first category and F_{q} . Let further $\{C_{\gamma}\}_{\gamma < q}$ be a wellordering of the set

of the type φ_c (where $c = 2^{\infty}$) and I_{γ} the interval corresponding to the set Cγ.

We consider the set H of all the series $H = \{a_{\xi}\}_{\xi \in \varphi_{d}}$ of elements with the properties :

a) $a_{\xi} \in C_{\xi}$ or $a_{\xi} = 0$; $\xi < \varphi_{c}$;

b) if $a_4 \neq 0$, then $a_{\nu} \neq 0$ for $\nu < \xi$;

c) if $a_{\xi} \neq 0$ and $a_r \neq 0$, then $a_{\xi} \neq a_{\eta}$ for $\xi \triangleleft r$;

d) the set of the elements of the series is a free set.

For any $H \in H$, let \hat{H} denote the set of the elements of H

We say that an element $H \in \mathbf{H}$ is maximal with respect to the relation R if v_d is the smallest ordinal number $\triangleleft \varphi_d$ such that $a_{v_0} = 0$ and there is no element $k \in C_{r_0} - R[\tilde{H}]$ such that k and the elements ± 0 of H are independent or if $a_{\nu} \neq 0$ for every $\nu \triangleleft \varphi_{c}$. We define the *index* of H in the first case as v_d and in the second case as φ_{c} . Let H' be the set of the maximal elements of H.

We say that two series H_1 and H_2 are mutually exclusive if $\tilde{H}_1 = \tilde{H}_2 = 0$.

Let $\{H_{r}\}_{\eta} = \eta$ be a sequence of type $\eta \triangleleft \omega_{1}$, of mutually exclusive elements of H' with indices $\delta_{\nu} < \varphi_{c}$. Then by the definition of H', $\overline{H}_{\nu} < c$; consequently $R[\tilde{H}_r] \triangleleft \mathfrak{a}$ for every $n \triangleleft \eta_1$ Since $\eta < \omega_1$, by a well-known theorem of [] KÖNIG we have

$$\overline{\bigcup_{\nu \leq m} (H_{\nu} \bigcup R[H_{\nu}])} \triangleleft \mathfrak{c}_{\nu}$$

$$\overline{C_{\gamma} - \bigcup_{\nu \in M} (\hat{H}_{\nu} \bigcup R[\tilde{H}_{\nu}])} < \mathfrak{c}_{\nu}$$

i. e.

$$\overline{C_{\gamma} - \bigcup_{r \leq \gamma} (\hat{H}_r \bigcup R[\hat{H}_r])} < c$$

for every $\gamma < \varphi_c$. It follows that there is an element H_{η} of H' such that $\tilde{H}_{\eta} \neq 0$ and $H_{\eta} n H_{\eta} = 0$ for every $\nu < \eta$.

(1) For every $\delta \triangleleft \varphi_{\mathfrak{c}}$ there is only a finite number of mutually exclusive elements of H' with the same index δ .

Let $\{H_n\}_{n < \omega}$ be a sequence of type ω , of mutually exclusive elements of H'. Suppose that the series $H_n(n = 1, 2, ...)$ have the same index 6. Then the set $C_{\gamma} - \bigcup_{n < \omega} \tilde{H}_n - \bigcup_{n < \omega} [\tilde{H}_n]$ is non empty and for every element z of this set $\overline{R(z)} \cong \aleph_0$ hold:, because $R(z) \ge \tilde{H}_n \rightleftharpoons 0$ (n = 1, 2, ...), which is a contradiction.

Supposing that every element of H' has an index smaller than $\varphi_{c,i}$ we can choose by (1) a sequence $\{H_r\}_{r<\omega_1}$ of mutually exclusive elements of H' of type ω_1 such that the indices β_r of the series H_r are distinct. Corresponding to every interval I_{γ} we choose in I_{γ} a subinterval I_{γ} with rational endpoints. Since $\{\overline{\beta_r}\}_{r<\omega_1} > \aleph_0$ and $\{I'_{\gamma}\}_{\gamma<|\varphi_c} \cong \aleph_0$, there is an I'_{γ_0} and a subsequence $\{\beta_{r_k}\}_k \triangleleft \omega$ of type ω , of $Z \rightrightarrows \{\beta_r\}_{r<\omega_1}$ such that $I'_{\beta_r} = I'_{\gamma_0}$ for every $k \triangleleft \omega$. Obviously the complement of the set $L_{\gamma_0} = \bigcap_{k<\omega_1} C_{\beta_r}$ is of the first cate-i gory with respect to I'_{γ_0} .

$$\overline{L_{\gamma_n}}_{k < \omega} = \bigcup_{k < \omega} (\tilde{H}_{r_k} u R[\tilde{H}_{\nu_k}]) = \mathfrak{c}$$

It follows that there is an element $z \in L_{\gamma_0} \longrightarrow (\tilde{H}_{r_k} \cup R[\tilde{H}_{r_k}])$ such that $R(z) \cap \tilde{H}_{r_k} \neq 0$ (k = 1, 2, ...) i. e. $R(z) \ge \aleph_0$, which is impossible, because $R(z) \triangleleft \aleph_0$. Thus there is a free subset E' of E such that $E' \cap C$, $\neq 0$ for every $\gamma \triangleleft \varphi_{C_1}$. It is clear that E' is of the second category. The theorem is proved.

The ore m 5. Let E be the set **of** all real numbers and **R** a relation between the elements of E such that for any $x \in E$ the power of the set R(x) is smaller than \aleph_0 . Then there exists a free subset E' of E such that the Lebes-I gue outer measure $\mu^*(E')$ of E' in every interval (a, b) is b-a.

Proof. Let (a, b) be an arbitrary interval of E and $\mathbf{B}^{(a|b)}$ the set of all subsets of (a, b) of positive measure $> \frac{1}{2}$ (b-a) and G_{δ} . Let further $\{D_{\gamma}\}_{\gamma \leq \varphi_{\mathbf{d}}}$ be a wellordering of the set

$$\bigcup_{(a, b)\subseteq E} \mathbf{B}^{(a, b)}$$

of type φ_c , and I_{γ} the interval (a, b) corresponding to D_{γ} . We can prove completely analogously to the proof of the theorem 4 the existence of a free set E' such that $E' \circ D \to 0$ ($u \in u$)

$$E' \cap D_{\gamma} \neq 0$$
 ($\gamma < \varphi_c$),

if we select in every interval $I_{\gamma} = (a, b)$ an interval $I'_{\gamma} = (a', b')$ with rational endpoints such that $b' - a' > \frac{3}{4}(b-a)$. Obviously the outer measure of E1 in every interval (a, b) is b-a.

It is easy to see by the method of the proofs of theorems 4 and 5 that the following theorem is valid too.

The or e m 6. Let E be the set of all real numbers and R a relation between the elements of E such that for any $x \in E$ the power of the set R(x)is smaller than \aleph_0 . Then there exists a **free** subset E' of E such that E' is everywhere of the second category and the Lebesgue outer measure $\mu(E')$ of E in every interval (a, b) is b-a.

Theorem 7. Let *E* be an interval of the set of all real numbers and suppose that there exists a relation *R* between the elements of *E*. Let further B be a n-algebra of subsets of *E* containing all subintervals of *E* und μ a nof identically zero measure on B. If |g(x)| = d(x, R(x)) > 0 for every $x \in E$ and if

(C) there exists a real number $i \ge 0$ such that the set $\{x: g(x) \ge i\}$ con-

tains in **B** a subset **of** positive Y-measure, then there exists in **B** a free subset **of** E **of** positive El-measure.

If, for every $x \in E$, the set R(x) is the complement of an interval of E whose center is at x, then the condition (C) is not only sufficient, but also necessary for the existence of a free subset, of positive μ -measure, of E in B.

Pro of. Let A be a subset of $\{x: g(x) \ge i\}$ satisfying the condition (C). Let

$$x_1, x_2, \ldots, x_n, \ldots$$

be an enumeration of the set of rational numbers in E For every element $x \in E$ and $\varepsilon > 0$ there exists an element x_{n_0} of this sequence such that $d(x, x_{n_0}) \triangleleft \varepsilon$. For every $n \Longrightarrow 1, 2, \ldots$ let $U(x_n, i)$ be the open interval of length *i* whose center is at x_n . It is obvious that

$$\bigcup_{i \in I} U(\mathbf{x}_{i}, i) \Longrightarrow E.$$

Let $A_n = A \cap U(x_n, i)$ (n = 1, 2, ...,). Since $U(x_n, i) \in B$ and $A \in B$, $A_n \in B$. Let $A_n^* = A_n - \bigcup_{j \in n} A_j$ (n = 1, 2, ...,). Since μ is countably additive and $\mu(A) \ge 0$, there exists an index n' for which $\mu(A_{n'}^*) \ge 0$. It follows that $\mu(A_n) \ge 0$. The set $A_{n'}$ is free, because if $x \in A_{n'}$ and $y \in R(x)$, then $d(x, y) \ge g(x) \ge i$.

For every $x \in E$, let U(x) be an interval whose center is at x and $R(x) = E \cdot U(x)$. In this case condition '(C) is also necessary for the existence of a free subset of positive μ -measure in B, i. e. if there is in B a

free subset A of E such that $\mu(A) > 0$, then there exists a positive number *i*, for which the set $\{x : g(x) \ge i\}$ contains in B a set of positive p-measure, Suppose the contrary. Then B contains a free subset of positive p-measure, but for every i > 0 the set $\{x : g(x) \ge i\}$ contains in B only such subsets F for which $\mu(F) = 0$. Let α denote the diameter of the set A. Put

$$E_{\alpha} = \left\{ x : g(x) \geq \frac{\alpha}{2} \right\}.$$

By the hypothesis E_a contains in B only such subsets F, for which p(F) = 0. Let $F_1 = E_a \cap A$ and $F_2 = E_a \cap (E-A)$. Since A is free and R(x) = E - U(x) for every $x \in E$, we have $g(x) \ge \frac{\alpha}{2}$ for every $x \in A$. Thus $F_a = A$. By the definition, $F_a \cup F_a = E_a$, therefore $A = F_1 \Box E_a$. Since $A \in B$, it follows that p(A) = 0, which contradicts to $\mu(A) > 0$. The theorem is proved.

Remark 1. In general the condition (C) is not necessary. Consider the interval [0,1] Let μ^* and μ_* denote the Lebesgue outer and inner measure, respectively. We can define the relation R such that the interval [0,1]contains a free subset of positive Lebesgue measure and

$$\mu_{*}(\{x : g(x) - 2 \ i\}) = 0$$

for any i > 0, where g(x) = d(x, R(x)). We shall use the following theorem (see [7]):

The set E of the real numbers has a subset E' with the following properties :

1. for every interval (a, b) of E, $\mu^*(E' \cap (a, b)) = b - a$,

2. *E* can be decomposed into enumerable many sets E_n (n = 1, 2, ...,) without common points, which are all superposable by shifting the set *E*'.

It follows that [0,1] can be decomposed into the sum of enumerable many sets S_n (n=1, 2, ...) such that $\mu^*(S_n) = 1$ (n=1, 2, ...)

For every $x \in S_n$, let K(x) be the open interval of length $\frac{2}{n}$ whose center is at x. We define R as follows. Let N be the set of rational numbers and $R(x) = (E - K(x)) \cap N$.

Obviously

$$g(x) = +$$
 for $x \in S_n$.

If i > 1, then $V_i = \{x : g(x) \ge i\} = 0$, If $i \le 1$, then $V_i \subseteq V_1 = S_1 \cup S_2 \cup \cdots \cup S_{n+1}$ for some natural numbers n > 0. We have $\mu_*(V_i) = 0$ because $\mu_*(V|_{\frac{1}{n+1}}) =$ $= \mu^*([0,1] - V_{\frac{1}{n+1}}) = 0$. It follows from the definition of R that the set U of the irrational numbers of [0,1] is a free set. U is measurable and $\mu(U) = 1$.

R e m a r k 2. If is easily seen that Theorem 7 remains true for a separable metric space. The following counter-example shows that for non-separable metric spaces this theorem i-s generally not true.

Consider the following example of ALEXANDROFF [9] Let S be the plane with the ordinary (euclidean) metric d = d(x|y). We define now a new distance as follows. Let $\overline{0}$ be a given point of S, x and y two arbitrary points of S and

 $d'(x, y) = \begin{cases} d(x, y) & \text{if } \overline{0} \text{ lies on the line xy,} \\ d(x, 0) + d(y, 0) & \text{if } \overline{0} \text{ does not lie on the line xy.} \end{cases}$

Thus we obtain a new metric space S', which is not separable.

Let $\mu^* |$ be the ordinary Lebesgue outer measure for the subsets of S. We define a relation R between the elements of S' as follows. If $x = \overline{0} |$ then let R(x) = 0. If $x \pm \overline{0} |$ then let r be a real number for which $0 \triangleleft r < d(x|, \overline{0})$, $E(x) = \{y : d'(x|, y) \triangleleft r\}$ and $R(x) \Longrightarrow S$ --E(x). It follows from the definition of the distance d' that if $x, y \in S' | (x \pm y)$ and $\overline{0} |$ does not lie on the line xy, then either $x \in R(y)$ or $y \in R(x)$ i. e. x and y are not independent, Hence each free subset of S' lies on a line containing $\overline{0} |$ But for every line $L_{x} \mu^*(L) = 0$. Thus for every free subset $E', \mu^*(E') = 0$.

For non-separable metric spaces we state the following

Theo rem 8. Let *E* be a metric space. Suppose that *E* contains a dense subset, the power of which is less than the first aleph inaccessible in the weak sense. Let μ be a o-finite measure on the set **B** of all **Borel** subsets which is not identically zero. |f| g(x) = d(x, R(x)) > 0 for every $x \in E$ and if condition (**C**) holds, then there exists in **B** a free subset of positive μ -measure of *E*.

If, for every $x \in E$, the set R(x) is the complement of an sphere of E whose center is at x, then the condition (C) is not only sufficient, but also necessary for the existence of a free subset of positive [c-measure of E in **B**.

Pro of. If μ is a σ -finite measure on the set of all Borel subsets of E and E contains a dense subset, the power of which is less than the first aleph inaccessible in the weak sense, then there exists a decomposition

$$E = N \cup M$$

of E into two mutually disjoint sets such that $\mu(N) = 0$ and M is separable (where N is the sum of all open subsets of {t-measure zero of E) (see [10]). It is clear that μ is not identically zero on M, since $\mu(N) = 0$ and

 $\mu(N) + \mu(M) = \mu(E) = 0.$

Let X be an arbitrary Borell subset of El Since $X \cap M = X - N$ is a Borel subset of El

$$\mu(X \cap M) = \mu(X) - \mu(N) = \mu(X).$$

Let B' be the set of all sets of the form $X \cap M_i$ where $X \in \mathbf{B}$, and let $r(X) = |\mu(X)|$ for $X \in \mathbf{B'}|$ Hence, if the set $\{x: g(x) \ge i\}|$ contains in B a set of positive μ -measure then it contains in **B'** a set of positive μ -measure too. Since $\mathbf{B' \subseteq B}$, the converse of this statement is also true. Thus, it is sufficient to prove the theorem for M_i B' and r, instead of E_i **B** and μ_i Since M is a separable metric space and B' is a a-algebra and n is not identically zero measure on B', the theorem is true for M_i B' and r_i Thus the theorem is true for E_i B and μ_i too.

III.

We deal in this section with the problem (ii).

Theorem 9. Let *E* be a set of power $\mathfrak{m} \geq \aleph_0$ and **K** a class of power *III*, of subsets of *E* of power \mathfrak{m} . There exists a relation *R* between the elements of *E* such that for every $x \in E$ the power of the set R(x) is ≤ 1 and there is no free subset *X* in **K** with respect to *R*.

Proof. Let

$$B_0, B_1, \ldots, B_{\omega}, \ldots, B_{\xi}, \ldots \qquad (\xi < \varphi_{\mathfrak{m}})$$

be a wellordering of K of the type $\varphi_{\mathfrak{m}}$. Since $B_{\xi} = \mathfrak{m}$ for every $\xi \triangleleft \varphi_{\mathfrak{m}}$, there exist two sequences $\{x_{\xi}\}_{\xi} \mid_{\varphi_{\mathfrak{m}}}$ and $\{y_{\xi}\}_{\xi \triangleleft \varphi_{\mathfrak{m}}}$ such that

1. $x_{\sharp} \in B_{\sharp}$ and $y_{\sharp} \in B_{\sharp}$ for every $\xi \triangleleft \varphi_{\mathfrak{m}, \sharp}$

2. $x_{\xi} \neq x_{\zeta}$ and $y_{\xi} \neq y_{\zeta}$ for $\xi < \zeta < \varphi_{nt}$,

3. $x_{\xi} \neq y_{\xi}$ for every $\xi \triangleleft \varphi_{\mathfrak{m}}$.

We define R as follows : let $R(x_{\xi}) = \{y_{\xi}\}$ for every $\exists < \varphi_{\mathfrak{m}}\}$ and if $x \perp x_{\mathfrak{q}} (\exists \triangleleft \varphi_{\mathfrak{m}})$, then let $R(x) = \{x_0\}$. It is obvious that the sets B_{ξ} are not free.

Corollary 6, Let E be the set of all real numbers. There exists a relation R between the elements of E such that for every $x \in E$ the power of the set R(x) is ≤ 1 and there is no perfect free subset of E.

Corollary 7. Let *E* be the set of all real numbers. There exists a relation \mathbb{R} between the elements of *E* such that for every $x \in E$ the power of the set $\mathbb{R}(x)$ is ≤ 1 and there is no free Borel subset of *E* of power 2^{\aleph} .

Theorem 10. Let E be a set of power $\mathfrak{m} \geq \aleph_0$ and \mathfrak{K} a set of power \mathfrak{m}_1 of mutually disjoint non empty subsets of E. There exists a relation R between the elements of E_1 such that, for every $x \in E$ the power of the set R(x) is ≤ 1 and there is no such *free* set which has non empty intersection with every element of \mathfrak{K} .

Proof. Let

$$B_0, B_1, \ldots, B_{\omega}, \ldots, B_{\xi}, \ldots$$
 ($\xi \lhd \varphi_m$)

be a wellordering of K of the type $\varphi_{\mathfrak{m}}$. Let further

 $x_{d}, X_{l}, \ldots, x_{\omega}, \ldots, x_{\xi}, \ldots$ ($\xi \lhd \varphi_{m}$)

be a wellordering of E of the type $\varphi_{\mathfrak{m}}$. Obviously, we may assume that $x_{\xi} \notin B_{\xi}$. We define R as follows: let

$$R^{-1}(x_{\xi}) = B_{\xi}$$

Let *F* be a set which has non empty intersection with every element of K: $F \cap B_{\xi} \neq 0$ ($\xi < \varphi_{\mathfrak{m}}$).

Let $x \in F$. There is an ordinal number $\eta \triangleleft \varphi_{ni}$ such that $x = x_{\eta}$. Since R-'(x) = B_{η} , we have $b_{\eta} Rx$ for every $b_{\eta} \in B_{\eta} \cap F$. It follows that x and b_{η} (x $\neq | b_{\eta}$) are not independent, because $x \in R(b_{\eta})$. The theorem is proved.

C or o 11 a ry 8.") If *E* is the set of all real numbers, then there exists a relation *R* between the elements **Of** *E* such that, for every $x \in E$, the power of the set R(x) is ≤ 1 and there is no free subset, the complement of which is totally imperfect.

Pro of. Let K be a set of power $2^{\mathbb{N}}$ of non empty mutually disjoint perfect subsets of $E \mid T$ a set the complement CT of which is totally imperfect, and $K \in \mathbb{K}$. Since the set CT does not contain K, $K \cap T \neq 0$. The corollary is proved.

Finally we prove

Theorem 11. Let *E* be a set of power $\mathfrak{m} \geq \mathfrak{N}_{d}$ and **K** a class of power $\mathfrak{g} \triangleleft \mathfrak{m}$, of mutually exclusive subsets of power \mathfrak{m} of *E*. If *R* is a relation between the elements $x \in E$ for which the condition (A) holds, i. e. $\overline{R(x)} \triangleleft \mathfrak{n} \triangleleft \mathfrak{m}$ for every $x \in E$, then there exists a free subset *E*' of *E* such that, for every $K \notin \mathbf{K}$,

$$\overline{\mathbf{Kn} \ E'} = \mathfrak{m}.$$

Proof. Let

 $K_0, K_1, \ldots, K_{\omega}, K_{\omega+1}, \ldots, K_{\xi}, \ldots \qquad (\xi \lhd \varphi_{\mathfrak{g}})$

be a wellordering of K of the type $\varphi_{\mathfrak{g}}$. We assume first that \mathfrak{m} is regular. We consider the set M of the matrices

$$M = \begin{pmatrix} a_{11} & a_{12} \dots & a_{1\xi} \dots \\ a_{21} & a_{22} \dots & a_{2\xi} \dots \\ \vdots & \vdots & \vdots \\ a_{r_1} a_{r_2} \dots & a_{r_k} \vdots \dots \\ \vdots & \vdots & \vdots \end{pmatrix}$$

⁶) S. MARCUS has found independently the results of our corollaries 6 and 8.

of elements with the properties:

- 1. $a_{\eta\xi} \in K_{\xi}$ or $a_{\eta\xi} = 0$, $\eta \triangleleft \varphi_{\mathfrak{m}}$ and $\xi \triangleleft \varphi_{\mathfrak{m}}$
- 2. if $a_{\eta\xi} \neq 0$ then $a_{\nu\mu} \neq 0$ for $\eta = \eta$ and $\mu \triangleleft \xi$ or $\eta \triangleleft \eta$ and $\mu \triangleleft \varphi_{\eta}$,
- 3. if $a_{\nu\mu} \neq 0$ and $a_{\nu\mu} \neq 0$, then $a_{\nu\mu} \neq a_{\nu\mu}$, for $\nu \neq \gamma_{\mu}$

4. the set of the elements of the matrix is a free set.

For any $M \in \mathbf{M}$, let \tilde{M} denote the set of the elements of M.

We say that an element $M \in \mathbf{M}$ is maximal with respect to the relation R if μ_0 and ν_d are the smallest ordinal numbers $\triangleleft \varphi_d$ such that $a_{,,,} = 0$ and there is no element $k \in K_{\nu_0} - R[\tilde{M}]$ such that k and the elements ± 0 of the matrix M are independent or if $a_{,,} \pm 0$ for every $\mu_{,,} \triangleleft \varphi_{,,,}$ and $\nu \triangleleft \varphi_{,,,}$ We define the *index* of M in the first case as ν_d and in the second case as $\varphi_{,,,,}$ Let M' be the set of the maximal elements of M.

We say that two matrices M_{\parallel} and M_{2} are mutually exclusive if $\tilde{M}_{1} \amalg \tilde{M}_{2} = 0$.

Let $\{\tilde{M}_{\nu}\}_{\nu < \eta}$ be a sequence of type $\eta < \varphi_{\mathfrak{m},\mathfrak{l}}$ of mutually exclusive elements M_{ν} of M' with indices $\delta_{\nu} < \varphi_{\mathfrak{g},\mathfrak{l}}$ Then by the definition of M', $\overline{\tilde{M}}_{\nu} < \mathfrak{m},\mathfrak{m}$ consequently $\overline{k[\tilde{M}_{\nu}]} < \mathfrak{m}$ for every $n < \eta_{\mathfrak{l}}$ because f?(x) $< \mathfrak{n} < \mathfrak{m}$.

Since m is regular,

$$\frac{\overline{\bigcup}_{r \leq \eta} (\tilde{M}_{\nu} \ u \ R[\tilde{M}_{r}])}{\overline{K_{\gamma} - \bigcup_{\nu \leq \eta} (\tilde{M}_{\nu} \cup R[\tilde{M}_{\nu}])} < \mathfrak{m},$$

i. e.

for every $\gamma \triangleleft \varphi_{\mathfrak{s}}$ It follows that there is an element $M_{\eta} \triangleleft M$ such that $\widetilde{M}_{\eta} \neq 0$ and $\widetilde{M}_{\eta} \cap \widetilde{M}_{\nu} = 0$ for every $\eta \triangleleft \eta_{1}$

(2) For every $\delta \triangleleft \varphi_{\mathfrak{A}}$ there are less than \mathfrak{n} mutually exclusive elements of M' with the same index δ .

Let $\{M_{\nu}\}_{\nu < \varphi_{\mathfrak{n}}}$ be a sequence of the type $\varphi_{\mathfrak{n}}$, of mutually exclusive elements M_{ν} of M' with the same index δ . Then the set

$$K_{\delta} - \bigcup_{\nu < \varphi_{\mathfrak{n}}} (\widetilde{M}_{\nu} \cup R [\widetilde{M}_{\nu}])$$

is non empty and, for every element z of this set, $R(z) \ge n$ because, by the definition of M', $R(z) \parallel \tilde{M}_n \neq 0$ for $n < q_{|n|}$ which is a contradiction, Thus (2) is proved.

Supposing that every element M of M' has an index smaller than $\varphi_{\mathfrak{g}}$, we can now define by transfinite induction a sequence $\{M_{\mathfrak{p}}\}_{\mathfrak{p} < \varphi_{\mathfrak{m}}}$ of mutually exclusive elements of M' of the type $\varphi_{\mathfrak{m}}$. Since $\mathfrak{g} < \mathfrak{m}$ and \mathfrak{m} is regular, there exists a subset, of power \mathfrak{m} of M' with the same index $< \varphi_{\mathfrak{g}}$, which contra-

dicts to (2). Thus there exists a matrix of index $q_{\mathfrak{g}}$. It is obvious that the set of elements of this matrix satisfies the requirement of the theorem. Thus the theorem is true, if \mathfrak{m} is regular.

Consider now the case when m is singular'). We assume that the generalised continuum hypothesis is true. Let

$$\mathfrak{m} = \sum_{\xi < \varphi_{\mathfrak{M}^*}} \mathfrak{m}_{\xi}$$

be a decomposition of m such that

1) \mathfrak{m}_{\sharp} is regular for every $\xi \triangleleft \varphi_{\mathfrak{m}^*,\sharp}$ 3) $\mathfrak{m}_{\sharp} \bowtie \max \{\mathfrak{g}_{\sharp} \text{ it, } \mathfrak{m}^*\}, \qquad 2) \mathfrak{m}_{\xi} \triangleleft \mathfrak{m}_{\xi} \ \mathfrak{m}$

Let further

$$K_{
u} = \bigcup_{\xi < \varphi_{\mathfrak{m}} \notin} K_{
u\xi} \qquad (
u < \varphi_{\mathfrak{g}})$$

be a decomposition of K_{ν} into mutually exclusive subsets of K_{ν} such that $K_{\nu\xi} = \mathfrak{m}_{\xi}$.

By the first part of the theorem, there exists a free subset L_{\sharp} of E for every $\xi \triangleleft \varphi_{\mathfrak{m}}$ such that

$$L_{\delta} \mathbf{n} \ K_{r\delta} = \mathfrak{m}_{\delta}$$

for every $n \triangleleft \varphi_{g}$. Omit for $\xi < \eta$ all the elements of $R[L_{\xi}]$ from L_{η} . Thus we get the sets

$$L'_{\eta} = L_{\eta} - \bigcup_{\xi < \eta} R[L_{\xi}].$$

By 1) and 3), $\bigcup_{\xi < \eta} R[L_{\xi}] < \mathfrak{m}_{\eta}$, thus the power of the set L'_{η} is \mathfrak{m}_{η} and $\overline{L'_{\eta} \cap K_{\nu\eta}} = \mathfrak{m}_{\eta}$ for 'every $\eta < \varphi_{\mathfrak{g}}$ Obviously

$$R[L'_{\varepsilon}] \cap (\bigcup_{\eta \geqq \varepsilon} L'_{\eta}) = 0.$$

Let

$$L'_{\nu\xi} = L'_{\xi} u K_{\nu\xi} \qquad (\nu \lhd \varphi_{\mathfrak{g}}, \xi \lhd \varphi_{\mathfrak{m}^*}).$$

We want to construct sets $L'_{r\xi}$ of power \mathfrak{m}_{\sharp} which satisfy

$$(3) \qquad \qquad R[L_{\nu\xi}'] \cap (\bigcup_{\varkappa < \nu} \bigcup_{\eta < \xi} L_{\varkappa\eta}') = 0.$$

But then clearly

$$R\left[\bigcup_{\nu < \varphi_{\mathfrak{g}}} \bigcup_{\xi < \varphi_{\mathfrak{m}}^{*}} L_{\nu\xi}^{\prime\prime}\right] \cap \left[\bigcup_{n \in \varphi_{\mathfrak{g}}} \bigcup_{\xi < \varphi_{\mathfrak{m}}^{*}} L_{\nu\xi}^{\prime\prime}\right] = 0,$$

i. e. the set $\bigcup_{\nu < \varphi_{\mathfrak{g}}} \bigcup_{\xi < r_{\mathfrak{h}}^{*}} L_{\nu \xi}^{\prime\prime}$ is free and satisfies the requirement of the theorem. Thus we only have to construct $L_{\nu \xi}^{\prime\prime}$. Consider the sets $L_{\nu \xi}^{\prime}$ and

⁾ The proof is due to A. HAJNAL.

 $L_{\xi}^{*} = \bigcup_{\nu \triangleleft} \bigcup_{\varphi_{\mathfrak{g}}} L_{r\mathfrak{q}}^{\prime} \quad (\xi \triangleleft q_{\mathfrak{m}^{*}}).$ Let $N[L_{\xi}^{*}]$ denote the set of all subsets of $L_{\mathfrak{g}}^{*}$ of the power \triangleleft n. By 3) $\overline{N[L_{\xi}^{*}]}^{*} \triangleleft \mathfrak{m}_{\xi \downarrow}$ It follows that there exists a subset $H_{\nu \mathfrak{g}}$ of power $\mathfrak{m}_{\mathfrak{g}}$ of $L_{\nu \mathfrak{g}}^{\prime}$ and an element $N_{\nu \mathfrak{g}}$ of $N[L_{\xi}^{*}]$ such that $L_{\mathfrak{g}}^{*} \cap R[H_{\nu \mathfrak{g}}] = N_{\nu \xi}.$ Let

$$U = \bigcup_{\nu < \varphi_{\mathfrak{g}}} \bigcup_{\xi < \varphi_{\mathfrak{g}}} N_{\nu\xi}.$$

Obviously $\overline{U} \leq \mathfrak{ngm}^* < \mathfrak{m}_{\mathfrak{gl}}$ Let $L_{\nu\xi}'' = H_{\nu\xi} - U | (\nu < \varphi_{\mathfrak{gl}} \text{ and } \xi < q_{\mathfrak{m}^*})|$ These sets obviously satisfy the condition (3). The theorem is proved.

References.

- S. PICCARD, Sur un problème de M. Ruziewicz, de la théoriel des relations, Fundamenta Math., 29 (1937), 5-9.
- [2] G. FODOR, On a theorem in the theory of binary relations, Compositio Math., 8 (1951), 250.
- [3] G. FODOR, On two problems concerning the theory of binary relations, *Publicationes* Math. Debrecen, 1 (1949-50), 199-200.
- [4] G. FODOR, On a problem concerning the theory of binary relations, Nieuw Archief voor Wiskunde, 23 (1951), 247-248.
- [5] G. FODOR, Proof of a conjecture of P. Erdős, Acta Sci. Math., 14 (1952), 219-227.
- [6] S. ULAM, Zur Maßtheorie in der allgemeinen Mengenlehre, Fundamenfa Math., 16 (1930), 140-150.
- [7] W. SIERPIŃSKI, Sur un ensemble non mesurable, Tôhoku Math. Journal, 12 (1914), 205 - 208.
- [8] W. SIERPIŃSKI, Hypothèse du continu (Warszawa-Lwów, 1934).
- [9] ПЈС. А лексан д ров, Введение в общую теорию множествы функции (Москва, 1948).
- [10] E. MARCZEWSKI-R. SIKORSKI, Measures in non-separable metric spaces, *Colloquium Math.*, 1 (1947—1948), 133-139.
- [11] P. R. HALMOS, Measure theory (New York, 1950).

(Received September 5, 1957.)