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Introduction 

Every real number x (0 < x < 1) can be expanded into Engel’s series 
(called also “Engel’s series of the first kind”, see PERRON [11) 

(1) x=J-+ 
&+-+gqJ qn+- . . . 

where the integers q,, =qn(x) are defined as follows: 
We denote by T1x the transformation 

12) (O<x< 1). 

(Here and in what follows {z} denotes the least integer which is 22.) We 
define a sequence m(x) by the recursion 

(3) ro(x) = x, m+l (x) = TI m(x) (a =o, I, -) 
and put 

(4) 
It is easy to see that 

qn+i = c&z+1 (x) = 

2 s q?a 5 qnt1 

Evidently, if x is given by (l), we have 

(5) r,(x) = &+ l +--a. 
qn+1 qn+2 

If x is rational, x= 3, then Tix = $ with a’ < a. Thus we have 

for some v rv(x) = 0. Thus every rational number % has a finite represen- 
tation 

x=;+i&+--+,,,, 1 . . ., qy’ 

If x is irrational, then TV,(x) > 0 for all values of n. It is easy to see that 
for irrational values of x one has lim qTt(x) =+ 60. 

n*m 
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In the present paper we investigate the metrical properties’ of the 
sequence qTt(x). The results obtained may be characterized as follows. Let 
us consider the interval (0, 1) as the space of elementary events, and inter- 
pret the Lebesgue measure of a measurable subset of the interval (0,l) as its 

probability. Then the random variables x, = log ql, xn = log & (n =2, 3, . ,.) 

are in a certain sense almost independent, and almost identically distributed, 
and thus for 

(61 

similar results are valid as for the partial sums of a sequence of indepen- 
dent and identically distributed random variables, e. g. the central limit theo- 
rem, the laws of large numbers, the law of the iterated logarithm, etc. 

In 55 l-5 we deal with Engel’s series: in $j 1 some fundamental 
identities are deduced ; in § 2 we prove the central limit theorem for the 

logqn-- sums (6), i. e. we prove that the distribution of ~- 
jhi 

tends for n-+ 00 

to the normal distribution (Theorem 2). In 5 3 we prove the strong law 

of large numbers for the sum (6), i. e. that for almost all x lim ~~C-~ 

(Theorem 3). In 5 4 we give some inequalities which are used in 3 5 to 
prove the law of the iterated logarithm for the sums (6), i. e. that for almost. 

all x ,z V~g146;~$ = + 1 and z ,;-Fgl ‘iLin = - 1. (Theorem 4). 
L?O : no 

Theorems 2,3, and 4 are not new. Theorem 3 has been stated without proof 
in a short note by I% BOREL” in 1947 ([3] ; see also [4]. In the same year, 
in his paper [5] P. LEVY announced Theorems 2 and 4. P. LEVY sketched 
also the proof of these theorems, as well as that of Theorem 3. He pointed 
out that if x is uniformly distributed in the interval (0, 1) the random vari- 
ables &,+1 = - log [(q?, (x)-l) r,,(x)] (n = 1, 2, . , .) are exactly exponentially 
distributed with mean 1, and they are also almost (but not exactly) indepen- 

dent. As &,+1 is q7t+1(x) with probability near to 1 very near to x,?+l= log _ 
q*, (4 

for large n the same holds for these quantities too, and this is the real 
ground - as pointed out above - of the validity of Theorems 2, 3 and 4. 

1 In a recent paper [2] one of the authors considered the metrical fheory of a gene- 
ral class of representations of real numbers, but the representations by means of Engel’s and 
Sylvester’s series do not belon, g to the class of representations considered in (21. They 
belong, however, to the class of representations considered by L. BERG [16]. 

3 BOREL called Engel’s series of the first kind “dkveloppement unitaire normal”. 
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However, P. LEVY did not go into details. It seems to us that - owing to 
the fact that the variables &+I are not exactly independent, these details 
(especially in case of the law of the iterated logarithm) would be rather 
cumbersome. Therefore we thought it worth while to work out detailed proofs 
of these theorems. We have chosen a way which is different from that of 
LEVY, as we made ample use of the explicit formulae given in 5 1 for the 
probability distribution of q,,, resp. the conditional probability distribution of 
q?l+nL , when the value of q,,l is fixed. Besides these formulae we utiiised also 
the remark, made in 5 1 that the random variables qT1 form a Markov chain. 

In 5 6 we consider Sylvester’s series (called also “Engel’s series of the 
second kind”, see the first edition of [l] 

Sylvester’s series ’ of a real number x (0 <x < 1) is 

(7) x=&+&+ ..* +&+... 
where Q1,Q2,... are positive integers, defined as follows: 

We denote by T,x the transformation 

(8) 
1 

Tix-X-- 
1 

1 1 

(0 < x < 1). 

x 
We define the sequence R,,{x) by the recursion 

(9) R,1 (x) = x, R,,, l(x) = T? R,, (x) (n = 0, 1) . . .) 
and put 

(10) Qn+l = Qn-I(X) = I& [ (n-0,1,,..). 

It is easy to see that Q1 2 2 and Q,l+l z Q,l(Q1l-l)+ 1 (n- 1, 2, . . ). 

Clearly, if x is rational, x=a then T,x=a with a’ca; 
b’ b’ 

thus 

R,,(x)= 0 for some 1’ and therefore every rational number % has a finite 

representation 
1 $== + &+ . . . + $ . For irrational values of x we 

I’ 
have lim Qal (x) = + 00 and 

n-to) 

R,,(x)=++++-- (I7 7 0, 1, . . .). 
llfl ,lf3 

QPL Putting X1 = log Q1, X, = log Qiml (n = 2,‘3,. . .) we shall see that 

the random variables X,, are in a certain sense almost independent and 

3 SYLVESTER [6] called the expansion (7) a “sorites”. See also [7] for further bibliography. 
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almost identically distributed. Thus we obtain (Theorem 5.) that the centr;ll 
limit theorem holds for 

log Qn As regards Qll we shall prove (Theorem 6) that the limit lim R 
R-f03 2 

exists for almost all x, but its value may depend on x. 
These results concerning QB are according to our knowledge new. 
In 9 7, some number-theoretic questions concerning Engel’s and Syl- 

vester’s series are discussed, and some unsolved problems are mentioned. 

Q 1. Fundamental identities for Engel’s series 

In what follows we shall interpret the Lebesgue measure of the set of 
those real numbers x (0 < x < 1) for which some relation concerning the 
sequence qn= q%(x) holds, as the probability of the relation in question, and 
shall denote it by P(. . -), where in the bracket the relation in question will 
be indicated. The conditional probability of A with respect to the condition 
B will be denoted by P(d 123). 

As clearly q,t =4*&(x)= k (k = 2,3, . . .) if and only if x is lying in 
some interval 

where 2 5 q1 5 qa s.. ‘5 q+-l 5 k, and these intervals do not overlap, we 
have 

(1. 1) &(k)=P(qn=k)= ’ c 
1 

W---l) aa~~n~z...~~,,-~~rc qiq2.. . q+1’ 
Similarly we obtain that the conditional probability of the joint occurrence 
of q,+r+l = kl, q,+,.+2 = b , . . . , q,+,.+$ = k, under the condition that the values 
of 41,4!2, . . ., qn are given, is 

0.2) P (qwv+i = ki; 15 i 5 Slqr, -u -7 qlL)= 

qn-1 
G 

1 
= k, b I. . . k&---l) n,sg,+,z...sn,+,c~, qs+lqntn. . . qntr 

if 2~qql~q~~:...~q~~~k,4k,~...~kk,. (For r=O the empty sum is 
to be replaced by 1.) 

As the conditional probability (1.2) does not depend on the values of 
41992, * * *, q,+l (only on the value of qn) and it does not depend on the 
number n either, the sequence qlE, considered as a sequence of random vari- 
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ables on the probability space furnished by the interval (0, 1) the probability 
measure being the Lebesgue measure, is a homogeneous Markov chain. The 
transition probabilities of this Markov chain can be obtained for r = 0, s= 1 
from (1.2) and are given by 

(l-3) q, = P(qn+l = klq,, =j) = k[k-;l) (ksjz:). 

It follows that the probabilities p,(k) can be obtained by the following 
recursion formulae : 

1 

U-4) 
p1(k)= k(k-1) (k= 2, 3, . . .), 

(k, n = 2, 3, . . .). 

From (1. 1) we obtain 

(1.5) i%NW-‘= k(k&J& ’ . 
*=I 

Substituting x = 1 into (Il. 5) it follows that 

(1.6) 
m  

c~,~(k) is clearly the mean value of the number of occurrences of the digit 
n=l 

k in the sequence ql, q2, . . ., qR, . . . . It is easy to determine also the 
probability ek that the number k occurs at least once in the sequence 
Ql, 92, . . ., 4 It,. . . . We have 

(In (1. 7) we considered the first occurrence of k in the sequence q+?, there- 
fore we supposed 4+1 5 k-l instead of qR--l s k.) 

We may calculate similarly the probability ek(r) that the digit k occurs 
exactly r times (r= 0, 1,. . .) in the sequence q,t. We obtain 

THEOREM 1. The probability that the digit k occurs exactly r times in 
the sequence q>%(x) is given by 

(1.8) 
k-l 

ek(r> =x 
k’ 

(r = 0, 1, . . . ; k = 2, 3, . . .). 
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Using (1.5) we may obtain an explicit formula for pli(k). Taking into 
account that 

we obtain 

(1. 10) 

As 

(1. 11) 

it follows from (1. 10) that 
m 

(1.12) PJl(k) = @ll) ! o s 
U’L-1e-OIL(1_e-ll)k-2dll. 

Putting 

(1. 13) WLW =gx$) 
and 

(1. 14) & w=,g Pn (09 
we obtain from (1. 12) 

co 
’ (1.15) ~4+= &)! o I’ 

p-1 e-h (~-p”)[k-qu 

and 

(1.16) Wk)= &)! o .I’ 
~‘1-1e-‘“[1-((1-e-“)I”l~l]du. 

Similar formulae can be found for the conditional probabilities 

&(k’j)= P(qm+,,=klqm=j)= 
(1.17) j-l F 

1 
= k(k-1) .;~zl~?2~;llT(3-,57r 41,. . . L-1 

@(kIj) does not depend on m according to the homogeneity of the Markov 
chain qJ. 

We obtain 
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As 

(1. 19) 

we obtain 

(1.20) 

It follows by (1. 11) that 

(1.21) U”-le-jlr (*--e-“)k-j~u 

(we have evidently pll(kl 2) ===pll(k) ; therefore putting j= 2 (1.20) resp. (1. 21) 
reduce to (1. 10) resp. (1. 12)). 

Here and in what follows we shall denote by M(5) the mean value of 
1 

j, i. e. we put M(5) = [C(x)& for <=== S(x). We shall further denote by 
ti 

M(clB) the conditional mean value of the random variable 5 with respect to 
the condition B. We shall now prove 

LEMMA 1. M(log qn) = n--y + o(l) where *J is Euler’s consfanf.” 

1 
PROOF. Let us consider Sn = 1 + G + .. . + ~ . 

qn- 2 
We have by (1. 12) 

(1.22) M(L)= &)! 
0 

As q.,, tends with probability 1 to + bo, and as well known, 

it follows that 

(1.23) 

logN=l$;+~..+N+- y+o(*)7 

P (lim (log-q,, - &) = -;f) = 1. 
s-f co 

(1.22) and (1.23) together prove Lemma 1. 

4 It is clear from (1. 12) that M(q,J= + co. 
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Q 2. The central limit theorem for Engel’s series 

In this § we shall need the following 

LEMMA 2. 2 e 5 (gr (n = 1,2, . . .). 
1. 

PROOF. Taking into account that by virtue of (1.4) 

for 12 2, 

we obtain that 

As @$s+ , our Lemma follows. Now we can 

THEOREM 2 (P. L&Y). Fur any real y we have 

prove 

log qa--n By other words - 
yn- 

is in the limit normally distributed for n + 00. 

PROOF. Let us put 

(2-l) x,=logq,, x,=log.k 
41th1 

(n = 2,3, . . .) 

and 

(2. -2) yn=logq,=x,Sxa+.~~$x,, 

further 

(2, 3) 

To prove Theorem 2 it suffices to show (see e. g. [S]) that 

(2.4) 
for any real t. Let us put 

(2.5) 

First we shall show that 

P-6) I~,L(f)-~(t)SF,~--1(t)j ~(3+2~t)j;)“-~ (n=2,3,...). 
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This can be obtained as follows. We have 

and thus by (I. 3) 

(2-f% 

As 
I; 
7 

(2.9) -$logf. ;;ky;) -q(t)1 5 &+& J ~eitlogLpwl $ 
k-l 
T 

k-l 
and as for - k 

1 
fxsl and kzlfl we have 

it follows that 

e 
dog; -,,llogr ItI 214 -==z - 5 ___ 

=k-l-/+1’ 

(2.10) t,ll”g+ ( f - - - l )  -y(f> s 3+$‘[. 
h=E k(k- 1) 

Thus, taking into account that 

(2. 11) 5%~l(f) = &-l(l)e~tlop”, i 

it follows from (2. 8) and (2. 10) that 

(2. 12) I~,i(f)--(f)~,,,-l(f)/ z (3+2/Qig “;‘I;‘:’ . 

Applying Lemma 2 we obtain (2. 6). Let us apply (2. 6) for n--r instead 
of n and multiply it by y(f). It follows 

(2.13) 12y*(f)SPll~r(f)-~+l(f)gp,-,-l(f)l s (3+2~fJ)(-g~-~-1. 

Adding (2. 13) for r=O, 1, . . ., n-m-l we obtain 

(2.14) I~lz(f)---“(f)~,,,(f)j s (12+8p/) [+j: 

Now we have clearly for any fixed value of m 

(2. 15) 

and 

(2.16) 
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and therefore 

(2. 17) 

As we may choose the value of m arbitrarily large, we obtain (2.4). Thus 
Theorem 1 is proved. 

It can be seen from the proof that the random variables x,, behave app- 
roximately as if they were independent and distributed according to the 
exponential distribution with mean 1. The latter assertion can be expressed 

also by saying that * 
411 

is for n --+ 00 in the limit uniformly distributed in 

the interval (0, 1). This result can be deduced also directly from the remark 
of P. Lrivv mentioned in the introduction, that the random variable 
Me---l) u,, x is exactly uniformly distributed in the interval (0, 1). c > 

5 3. The strong law of large numbers for Engel’s series 

In this 5 we give a short proof of the following Theorem 3, which has 
b’een announced without proof by p. BOREL [3]. Though Theorem 3 is con- 
tained in Theorem 4 (the law of the iterated logarithm), we thought it worth 
while to give a direct proof of Theorem 3 because the proof of Theorem 4 
is rather complicated. 

‘,, 
THEOREM 3. (I? BOREL). For afmasf all x lim J$ =e. 

,ri c: 

PROOF. Let us choose an arbitrary s: > 0. We start from the formula 
(1. 15). We have evidently for 7- > 0 

cc 

(3. 1) 

Thus if k==e’E(l+c’, z= log log k and R z nI(.s) we obtain 
0 

,1-l 

’ 
and v.F’ is decreasing and < 1 for T’> 1, it follows 

m 
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Thus we obtain 

LEMMA 3. There exists for any e > 0 u number q,(E) for which 
0 < q, (8) < 1 nnd 

(3.2) WpL(e’~(l+E)) s (q,(E;))ll for n 1 n,(E). 

Clearly for q,(F) we may take any number satisfying 

max[+, (1 ++)e-“~‘)ig,(y)C 1. 

Similarly we prove 

LEMMA 4. To any E (0 < E < 1) there exists a number q.,(F) such that 
0 < q?(E) < 1 and 

(3.3) S,,(e,@-z)) < q;(s) for n 2 IL(E). 

As a matter of fact we have by (1. 16) for T > 0 

(3.4) 

Choosing -T = T, as vei-” is increasing and < 1 for 0 < 13 < 1 it follows that 

&(e+@“‘) 5 2en (!l-+)e@)lel if n 2 n,(a), 

which proves (3. 3). 
It follows from Lemma 3 resp. Lemma 4 that the series 

(3.5) 

resp. the series 

(3.6) 

are convergent for any E > 0. Therefore for every E > 0 for almost all x the 
inequalities 

11 
(3.7) et-& < ):41, < el+& 

are valid, except for a finite number of values of n. This proves Theorem 3, 

2 
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5 4. Some inequalities 

In what follows c,, c2, . . . denote positive absolute constants. 

LEMMA 5. 

for ksjz2. 

PROOF. We have 

With respect to (1. 17) this proves Lemma 5. 

LEMMA 6. If k = eVL+3fi where 0 -c x < rrl/j we have 
.rc* :1:2 

4. 3) 
C,e- T 
xs wn(k> &$ 

LEMMA 7. If k = P-~~ where 0 < x < n117, we have 

(4.4) 

(4.5) 

resp. 

(4.6) 

PROOF OF LEMMAS 6 AND 7. We have from (1. 15) resp. (1. 16) 
co 

. 
u93-1e-1tdu 5 S,,(k). 

From (3. l), (3.4), (4. 5) and (4. i) the assertions 
easily taking into account that by the method of 

m 1 

F-7) 

for n -+ 00 and 0 < x < TP, further 
a, 

of Lemmas 6 and 7 follow 
Laplace we obtain 
co 
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(4.9) Wn(kjj) zc, w, + . 
i 1 

LEMMA 9. For 1 log+--nl< vi’%@ 

(4. IO) &(klj) 2 c,& (fj. 

PROOF OF LEMMAS 8 AND 9. By Lemma 5 

dx = 

m 
-. 

= (A) !- J 

Iie~-’ e-ec du 

log : 

and thus by (3. 1) the assertion of Lemma 9 follows. Similarly we obtain 

(4.12) 

from which by (3.4) the assertion of Lemma 9 follows. 
The asymptotic behaviour of pn(k) resp. p,,(k(j) has been considered 

more thoroughly by A. B~KI%SY [9]. He proved e. g. that 

(4.13) 

for n-l 5 q =C 1. For our purposes, however, the estimates given in this 
Zlogk - 

5 are sufficient. 

Q 5. The law of the iterated logarithm 

Now we are in the position to prove 

THEOREM 4. (P. L&Y). Fur almost alf x (0 < x < 1) we have 

(5.1) 

* 
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and 

(5.2) 

PROOF. We prove first that for almost all x 

For this purpose it suffices to show that the inequalities 

(5.5) 

resp. 

(5.6) 

log qn -n 

\‘imog log n 
>1 +r)’ 

logq*,-- < , 0‘ 
\:‘2nlog log n 

are satisfied for almost all x for a finite number of values of n only, for 
any d > 0. The proof of this given below follows essentially that of the paper 
[lo] for the ordinary law of the iterated logarithm.5 Let us put M,, = [( 1 +E.)“] 

d 
where 0 < 8 < Y. It follows by Lemmas 6 and 7 that the series 

(5. 7) 
m ’ 

-‘pL 

log qHl,, --ml, 
>I+), 

4 v2 m,, log log m,, I 
r&p. OI zpi log q?,,,, -m 

_~ <-l--g 
$$=I 1 2m,, log log m,, 1 

are convergent if ij > 0. 
We shall prove in detail only the assertion concerning the inequality 

(5.5) as the proof for (5.6) is exactly the same. Let us denote by A,(d) the 

event .!Sqh -’ 
]i2k log log k 

> 1 +o’, Let us denote for any event A by A the event 

contrary to A ; put B$ = A,,l,l(& further 
__- -~ 

B!y’== A,,,,, (a) . . . Al,-l(d) a A,.(d) for k > m,, . 

,j As, however, we do not consider here for an arbitrary function v(n) whether the in- 
equality log ql, --n > \ n q(n) is satisfied for almost all x for a finite or an infinite number 
of values of n, but restrict ourselves to the case I’ = 2(1+ 8) log log n, we may take 

m,, ==[(I t F)“] instead of m,, -[dogil] n-,eded in the general case. 
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{Here and in what follows the product of events denotes the joint occurrence 
of the events in question,) The events Bt’ (k z m,) clearly exclude each other, 
as B!i’) means that k is the first index 2 m,, for which Al:(d) takes place. If 
the sum of events means that at least one of the events occurs, then we have 
evidently for any 1~ m,, 

If our assertion concerning (5.5) would not hold, i. e. if (5.5) would be 
satisfied for an infinity of values of n for all x belonging to a set having 
positive measure, we could find a constant c > 0 and for any positive integer 
n/r an other integer N >M such that 

P f7;y$,; AI@) ‘I 2 c > 0 
. I 

(c does not depend on M). Let us denote for m,, 5 k < m,,.,l by D,,,,: the 
event that 

1% q”Lilr2 - m,,+z z log qk - k. 

Clearly the joint occurrence of the events I$;“’ and D,,,,; implies the occurrence 
of A,,,,,g(q) if (1 + d) > (I + t,) (1 + e). 

If 0 < 6 < I and we choose 0 < e < s and 0 < II< G, then this condition 

is clearly satisfied and we obtain 
1” ,8 i 1 

(5. 9) P(A,,,,t+,(t;)js ~-lP(D,,l,BII’)- ~~~~‘P(B).“jP(D,,.,,Sj’.‘). 
?;=,,I ,( 11 

But, as qli is a Markov chain, 

(5. 10) P(D,,,I, 1 B?') z Min P (Lb, I, 1 q7c = j) 
.-~ 

IogJ - I.t(l,a)l ~7~loglogk 

and by Lemma 8 

(5.11) P (D,l. 1; ,q1; = j) s CT wmilL2-li (e”‘“‘“- “). 

Thus 
(5. 12) P @I,?, k / BY) 2 Cl1 > 0 

and therefore by (5. 9) 

It follows that for any M there can be found a number N such that 
s-1 

(5.14) 2 P(&,,.&)) z ccn > 0. 
0=x 
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But this is a contradiction because the series (5.7) is convergent. Thus our 
assertion that for almost all x (5.5) is satisfied only for a finite number of 
values of n is proved. 

The corresponding statement for (5.6) is proved similarly. The only 
difference consists in that we need here Lemma 9 instead of Lemma 8. 

Now we turn to the proof of the other part of the theorem, i. e. we 
prove that 

(5.15) log q,t-- >l--d 
v-2n1og log n 

resp. 

(5. 16) logqn.-- <--1 +a -__ 
j.1’2n log log n 

are both satisfied for any infinity of values of n, for almost all x, if R > 0, 
which implies 

(5. 17) 

resp. 

(5.18) 

for almost all x. 
We choose a q>l, 

m,, = [ql’]. We denote by 
the value of which will be fixed later, and put 
C,,(Q) the event that the inequality 

(5.19) - 1 - d < Jiw--n 

]:‘2n log log n 
<l--d 

does not hold. Let us consider the probability 

If we can prove that this probability may be made arbitrarily small for any 
M by choosing N sufficiently large, this implies that the measure of the set 
of those x for which 

(5.21) - 
log 

-32 

qnl,,- m,, 
<I-- 

m4 log logm, 
d for nzM, 

is equal to 0 for any M. 
As we already know that the set of those x for which 

log q,,,? -m,, 

)'im, log log m,, 
<-l--6 
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for nsM has the measure 0, it follows that the set for which 
log qjF7,, -m,, 

v2m,, log log m,L 
<l---d 

for n z M has also the measure 0, and this is what we want’ to prove. 
Now we have clearly, as q,L is a Markov chain, 

(5.22) 

where 
(5. 23) i.,<+l = Max 

-1-d.:: 
logj,-m,, 

P ( CwLn+l (a) j qni,, = j,,). 

I’;.‘m,, log log 111,1 
e: l-8 

We now try to obtain an estimate from above for R,,+r. We have clearly, 
putting 

(5.24) k,, = p1&1-8) l-.l’“nT1 log log my,,1 

(5.25) P (C’“,r+* (d) j qm,, =.A) 2 wn,(+pn,Lcrl~l Iin). 

We shall give an estimate from below for the right hand side of (5.25). 
By Lemma 8 we obtain, putting ~a,,== m,,+l-m,, 

If q is sufficiently large, then 

log k,, -m,, f (1 + d) v2m,, log log m,, < vvL + 

and in this case 

(5.27) 

As it follows by some easy calculation from Lemma 6 that the series 

is divergent, our assertion that 

follows. This proves (5. 17); clearly (5. 18) can be proved in the same way. 
Thus Theorem 4 is completely proved. 

We do not consider here the obvious generalizations of Theorem 4, 
though they may be treated in the same way (see footnote “). 
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Q 6. Sylvester’s series 

In this § we consider Sylvester’s series (Engel’s series of the second 
kind) for a real number x (0 < x < 1) 

(6. 1) x=5,+&+ . . . +kL+ . ..* 

We investigate some metrical properties of the denominators Qgl = Q,I(x). 
We have clearly 

(6.2) Q,~+I s Qa(Qo -1) + 1 
and 

(6.3) 

provided that k,r2 and k,-l~kki(ki-l)+l (i=l,2,...,n-1). TINIS if 
these inequalities are satisfied, 

p (Q,,, = k,i 1 Q1 = k, , . . . , Q.w-1 = k,,-,) = 

(‘3.4) 

Thus fhe sequence Q,,(X) is a homogeneous Markov chain, whose transition 
probabilities are given by 

(6.5) 
if j2.Z and kzj(j-l)+l. 

It follows that putting P,z(k)=P(Q,,= k) we have the recursion rela- 
tions 

(‘5 6) 

Therefore 

and as j 2 
j(j-1) + 1 22 3 for jz 2, it fOllOWS 

(6.8) 

Therefore as P,(k) = ’ 
k(k-I) ’ 

we obtain 
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LEMMA 10. 
2 P,,(k) < 2 I1 
L=Z k =( i 3 * 

Let us put now 
CllC 

(6. 9) @, (f) = M(,+log Vi) and Q,,(f) = M it log (?I ... Y,+l 

By (6.3) putting 
(n = 2,3,...). 

(6. 10) 

we have 

‘+j(t)= 2 e 
,tl,g$ 

I:~.,(~-I)+I k(k--1) W-l), 

(6.11) 

We obtain easily, similarly as in 5 2, 

(6. 12) 

thus, putting again q(t) = /‘cdx, we have by Lemma 10 
i 

(6. 13) l~~~(i)-~~(f)‘l,...I(t)l~l;.(~~“(l +jq>. 

Now we can apply the same method as in the proof of Theorem 2, and 
obtain thus 

THEOREM 5. 

for any real y, i. e. log QlL 
Ql.. .Qr,-1 

is in the limit normnlly distributed.” 

The result which we obtained is a consequence of the facts which have 
been proved implicitly above, that the random variables XI = log Q1, 

1: Theorem 5 implies that 
1: 

lQ,L 
QI-..Q,,_I 

tends in measure to e. More is true, namely 

IL 

that i 
1 

Q” 
! G...Q,,-, 

tend also almost everywhere to e. The proof will be published elsewhere, 
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x,, = log -$ (II = 2, 3, . . .> are in a certain sense almost independent and 

the distribution of X,, tends for n--+m to the exponential distribution with 
mean 1. The latter fact can be also deduced from the remark that Qll(Q,,--l)R,, 
is for every n exactly uniformly distributed in the interval (0, 1). 

As regards Qti itself, we can prove the following 

THEOREM 6. 

exists and is finite and positive for almost all x. 

PROOF. We have 

and as 
M(lX~/)sc,:~ (k= 1, 2, . , .), 

it follows by the theorem of B. LEVI [l I], that the limit in question exists 
for almost all x. It is easy to see that the limit is always positive. As a 
matter of fact, if the sequence S,, is defined by SI = 2, &+I = S,,(S,,-l)+ 1, 
then (as has been shown already by SYLVESTER) S,, 2 2z”--7. But Qjl(x) z S,, 

and therefore = 2 + log 2 (n = 1, 2, . . .). 
2” 

5 7. Some number-theoretical questions 

Let a and b be positive integers, 0 < f < 1. It is well-known that t 

can be represented in the form 

where S, < S? <... < S,, are positive integers. Such representations of rational 
numbers have been considered already by the Egyptians, more than 3500 
years ago. Denote by f(a, b) the smallest value of n, i. e. the length of the 

shortest representation of + in the form (7. 1). If we choose S, to be the 

1 
smallest integer with - 5 A, we have 

S b 
a 1 ’ ---==-- 
b S, rps, 
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with a’ =t as,---0 < a. Thus f(a, b)l a. P. ERD~S proved [ 121 that 

(7.3) 

but very likely (7.3) can be very much improved ; perhaps f(a, b) c cl4 log log 6. 
More can not be true, as it is known [8] that f(b-1, b) > log log&-l. 

It is known ]13] that for infinitely many b-s f(3, b) ==3. STRAUSS and 
ERD~S conjectured that f(4, b) < 4 and SCHINZEL and SIERPINSKI conjectured 
that f(a, n) ~5 3 for all n > n,(a). 

Consider now various special representations of the form (7. 1). First 

of all consider Sylvester’s series of $, Denote by E,(a, b) the number of 

terms occurring in this series. From (7. 2) it follows that &(a, b) ~a and it 
is easy to see that this is best possible, since &(a, a! + 1) =a. We know 
of no good estimation of E,(a, 6) in terms of I, ; the trivia1 estimation 
&(a, b) < 6 is no doubt very far from being best possible. 

We remark that E,(a,b)=,f(a,b) e. g. &=$f+=i+++i$O’ 
i. e. f&20) = 2 but &(9,20) = 3. 

In 5 6 we proved that log Q,, ~ tends for almost all x to a limit, where 
2’, 

Q,? is the n-th denominator of the Sylvester’s series of x. It follows from the 
divergence of the harmonic series that no function F(x, n) can be given so 

that for any representation x = i+ + + 
1 1 

. ..+g+*... where S,, is a posi- 

tive integer and S,, < .?Lfl, we should have S,, sk(x, n). But it seemed pos- 
sible that for any such representation 

(7.4) 2% s Qw (x) 

infinitely often. Now we show that (7.4) is not always true. Let nk tend to 
+ 60 sufficiently fast, and put 

Let &.+ 2n.‘+ 1 
lh 

h 

= &+ ... + &- be the Sylvester’s series 
h 

of &+ 
I, 

+ 2nl;+1 . 
A simple computation shows that 1, > 2 if nk > 1 and if 

2nk+l > (SQ then kz $-& is the Sylvester’s series of x and clearly here 

Q(X) < S,, for all sufficiently large n. It seems that (7.4) fails for almost 
all x. 



28 P. ERDdS, A. RbJYI AND P. SZiiSZ 

It follows from the fact that a given x can not be approximated arbit- 
rarily well by rational numbers with denominator 5 y that there exists for 

every x a function G(x, n) so that if x=,2&, then S,, < G{x, n) infinitely 
1 , 

often. It is easy to find such a function G(x, n) for almost all x; e. g. for 
almost all x G(x, n) = (3 +E)~‘” has the mentioned property if e 3 0, but it 
seems difficult to give a good estimation for the smallest such function. 
Thus in particular we could not decide whether for almost all x there exists 

a series x= s$ (S,, positive integer, S,, < S,,,,) so that 
I, 

jim logs” + -= co. 
,r+CO 2” 

Similar algorithms like that leading to Sylvester’s series can be defined 
by replacing the harmonic series by some other series of positive terms (see 
e. g. [14]). For these algorithms similar questions can be asked. 

Now we consider Engel’s series of the first kind of rational numbers, 
that is the representation 

fl -=- 
b iI +-&+-.+q,q,.l..q * II 

Put ,!$(a, 6) = n. We have no non-trivial estimation of ,?,(a, 6). Clearly q,( 5 6 
and the same value of qi can not occur too often; in this way one can 
obtain a very poor upper bound for E,(a, 6). Here too it would be interest-- 
ing to estimate &(a, b) in terms of both a and b. El(a, b) 5 a can be proved 
as follows : 

a 1 a’ -_-=__ 
b @I 

where 
41 

q’ = aq, - b < a. 

As I-, -T = g, it is clear that E,(a, b) ~0. 
i i 
Often E,(a, b)==E,(a, b), e. g. E,(3,4)=2?~(3,4)=2 but R(21, 32)=3, 

&(21,32) = 4 and &(5,6) = 3, E,(5,6) = 2; thus in general there is no 
simple inequality between the two numbers. 

Denote by Ll(a, 6) the smallest n for which $ has a representation 

V-5) ;=$+&**.+ ddl d I 1 2”. 11 
where d,, d?!,, . . ., d,, are integirs d,, 2 2 (n = 1, 2, . . .). Often D (a, b) < E, (a, b), 

If x is irrational and 

(7.6) x-T l 
,,=I d,d,. . .d,, ’ 
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where d,, is an integer d,, > 2 (n = 1, 2, . . .), it is easy to give a function 
N(x, n) so that for almost all x d,d, . . . d,, < f/(x, n) for all n > fro(x), but it 
seems hard to give a good estimation for a function H(n) so that for almost 
all x and n > n,, we have d,d, . . . d,, < H(n). 

It is not difficult to see that every x for which k 5x51 (ks 3 integer) 

can be written in the form (7. 6) with 2 rd,, s k+ 1, 

As a matter of fact, if t (x < & where 7’ is an integer 2~ 1’~ k, 

then let US put d,(x)=+1 if r>2 or if .~=2 and +sx<~+&~ and 

d,(x)=2 if ;+&~xsI. Then putting ~,(x)==d~(x)x-1, we have always 
1 

~SI(X)Zl ; we define d2(x)===d,(r,(x)) and r?(x)=d,(x)r,(x)-1 and so on. 

Thus we obtain the representation 

where 2 5 d,, (x) 5 k+ 1. 

A simple modification of the above argument shows that every x 
(0 <x < 1) can be written in the form 

(7.8) x=2 1 
Tv=t d,d, . . . dj, 

with ‘Lsd.,, 54 for ns2. 

As a matter of fact, if 1 1 
sx<---- 

1’ V-1 where 11 z 2 is an integer, then 

two cases are possible : either JJ 5 3, then as shown above, x has a repre- 
sentation (7.8) with 2 5 d,, 54, for n = 1, 2, . . .; on the other hand if IT $ 3 

then + < (21~-2)x--1~1 and thus x has the representation (7.8) with 

2sd,,s4 (n=2,3, . ..) and d,=2zl-2. 
If we require in (7.6) d,, = 2 or d,, =3 for n = 1, 2, . . . it is easy to 

see that the measure of the set of those numbers for which such a repre- 
sentation exists, is 0. 

Let us consider namely all numbers of the form (7.5) where &= 2 or 
3 (k=l, 2, . .). As for each x which has the representation (7.6) with 
d,, = 2 or 3 (n -1, 2, . . .) where d,, d,, . . ., d>- are fixed, is contained in an 
interval of length (26, . . .dJT)-‘, the set of all numbers x which have such 
a representation is covered by a set of intervals, the sum of length of which 

. Thus this set has the measure 0. 
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It would be interesting to determine the greatest value of Jj’ such that 
for almost all x and any representation of x in the form (7.8) putting 

- 
D, -= d,d, . . . d,, we have lim dD,% 2 @. A modification of the above argument 

It-f co 
shows that there exists such a ,8 > 2 ; more exactly we shall show that we 
may take 13 z 2”‘13 . 3l 13. This can be shown as follows. The set of those 
numbers x, which have a representation of the form (7.8) where d,, . . ., L&I 

are fixed, is 

numbers x, 
and between 
where ccl, 

contained in an interval of the length 
2 

3d 
l...d,,l’ 

Thus all those 

which have a representation of the above form such that dl -j 

the numbers u’~, . . ., dN+l not more than cNare different from 2, 
are covered by a set of intervals with total length 

Now it is easy to show (see e. g. [15], p. 405) that if 0 <p < 1, q = l-p 

and O-cecp, then 

Thus it follows that for c = & 

Thus the set of those numbers x which have a representation (7. 8) 

in which putting D, = dId2. . . d,,, we have lim t& < 31’13212’13 has measure 0. 
?I-+ m 

It follows that for almost all x lim fzz 2’2’133’13, which was to be proved. 
n-tm 

Now we construct an x (0 < x < 1) for which 

(7.9) 

where D,, ~2 is an integer, D,,/D plt~ and Dql+l 2 0: i. e. (7.9) is the Engel’s 
series and at the same time the Sylvester’s series of x and is such that for 
every k 
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From this it will be easy to deduce that if 

is any other representation of x such that the S,t are integers, S,,+I 2 S,,, then 
S, SD?, infinitely often (we showed previously that this is not true for all x). 

We construct the D,, inductively. Put D, = 2, let Da=kD1 be so large * 
that -&+ & is much less than every 

2 
d++ > & with a+ D, (,much less” 

1 

means A+ $ < $ + $ 
2 

; then choose D, = fD, so large that $ 4-k + $ 
1 2 3 

‘I 
is much less than every a+d+$>A+& with a=jyDo, or b=/=DD,. 

1 2 
This construction clearly gives an x with the required properties. 

Let 

(7.12) XZZ T-h- 
n=l IL 

be Sylvester’s series of x and (7. 11) another representation of x. Is it true 
that for almost all x (7. 10) holds for infinitely many k? (Our construction 
gives only a set of measure 0 of such numbers x for which this is true.) 
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