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Introduction 

In 1940 TURIN raised the following question: if the number of nodes, 
n, of a graph’ is prescribed and if I is an integer cs n, what is the number 
of edges which the graph has to contain in order to ensure that it necessa- 
rily contains a complete Z-graph? TURAN gave a precise answer to this ques- 
tion by determining the smallest number depending on n and I, with the 
property that a graph with n nodes and with more edges than this number 
necessarily contains a complete I-graph ([9], [lo]). More generally, the 
question can be posed, as was done by TLJRAN: given a graph with a 
prescribed number of nodes, what is the minimum number of edges which 
ensures that the graph necessarily contains a “sufficiently large” subgraph 
of a certain prescribed type? An alternative formulation of this question is as 
follows: the number of nodes being fixed, we seek the maximum value of /*, 
;LL being such that there exists a graph with ,U edges which does not contain 
a subgraph of the type in question with more than a certain given number 
of nodes. In our paper we are concerned with this problem for the case in 
which the types of graphs considered are paths, circuits and independent 
edges. (These terms are defined in $j 1.) 

Our results are not exhaustive, because, in general, we only give an 
estimate of the extremal values, only in isolated cases - for certain special 
values of the number of the nodes - do we succeed in determining the 
extreme values and the “extreme” graphs completely. Here are some of our 
results capable of simple formulation: 

Every graph with n nodes and more than (n-1)1/2 edges (I 2 2) con- 
tains a circuit with more than I edges. The value (n-l)/,;2 is exact if and 
only if n=q(f-l)+l, then there exists a graph having n nodes and 

1 The graphs considered in this paper are all finite, every edge has two distinct end- 
nodes, and any two nodes are joined by at most one edge. 

1. c. letters always denote non-negative integers, n always denotes an integer 2 1. 
A compiefe I-graph is a graph with I nodes. every pair of distinct nodes joined by an edge. 
A graph is said to contain its subgraphs. (See 5 1 of this paper and 161, pp. l-3.) 
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(n-l)E/2 edges which contains no circuit with more than 1 edges. (Theorem 
P-7)) 

For all n 1 (k+ 1)3/2, ks 1, every graph with n nodes and more than 
nk-k(k + 1)/2 edges confains a pa&h or a circuit wifh more fhan 2k edges. 
The value nk-k(k f 1)/2 is exact. (Theorem (3. 6).) 

For our proofs we need a group of theorems different from the above, 
which are of interest in their own right. In these it is not the number of 
edges, but the fact that ever.y node has a sufficiently high degree {the degree 
of a node is the number of edges incident with the node), which implies 
the existence of a “sufficiently large” subgraph of a prescribed type. This 
class of problems was first considered by ZARANKIEWICZ [l l] and DIRAC [3]. 
From among these older results we require two theorems due to DIRAC ([3], 
Theorems 3 and 4), for which we give new simple proofs in § 1. (A simple 
proof of Theorem 3 can be found in [8].) We also prove some new theorems 
of the type just now discussed. 

In § 1 we present the necessary preliminary notions and some lemmas, 
and we prove the theorems pertaining to the ZARANKIEWICZ-DIRAC field of 
problems. In 5 2 we carry out the estimations connected with problems of 
the TLJRAN type. In 5 3 we determine two extremal values exactly for a 
sufficiently large number of nodes. In § 4 we determine the maximum num- 
ber of edges in a graph of n nodes and at most k independent edges. We dis- 
tinguish our more important results from the less interesting assertions leading 
to them by the appellation “Theorem”. 

§1 
(1. 1) Let M===={A, . . . . Pilj be a finite non-empty set and let the set - - 

of all unordered pairs of distinct elements Pie,, PjP, (i#j) of h4 be 
denoted by N. (If n = 1, then N is the empty set.) The elements of M are 
called nodes, the elements of N are called edges, and the edge PiPj is said 
to be incident with the nodes P, and Pj. Let Nl be an arbitrary subset of 
N, M and Nl are said to define a graph I‘= (M, N,). The elements of M 
and N1, respectively, are the nodes and edges of 2: If PiPj f N1, then P; 
and Pj are said to be joined (in r), or we say that the edge Piei exists (‘in r), 

The graph r= (M, N) is called complete, more exactly a complete 
n-graph. The graph r=== (M, N-N,) is the complement of the graph 
r= (M, Nl). 

Let N’ denote the set of pairs of elements of the finite set M’ and let 
NI!G N’. The graph r’= (M’, N;) is called a subgraph of the graph 
r=(M,N*) if M’SM and NiGN1. We also say that I’ confains r’ and 



OK MAXIMAL PATHS AND CIRCUITS OF GRAPHS 339 

that r’ is in S. If r” is a subgraph of r, then the graph [r’] = (M’, N’ n NI) 
is called the subgraph (of T) spanned by s’ or by M’ in ZT If P is a node 
of the graph r, then T-P denotes the graph obtained by deleting P and 
all edges incident with P from r. 

(1.2) If a (l-l) correspondence can be established between the nodes 
of the graphs I; and r, so that nodes joined in one graph correspond to 
nodes which are joined in the other and, conversely, then the two graphs 
are regarded as identical, and this is expressed in symbols by rI = rC. 

The number of nodes and edges in the graph r is denoted by ;r(l’) 
and Y(T), respectively. 

The number of edges incident with the node P in the graph r is called 
the degree of P in F’. If there is no room for misunderstanding, then we 
speak of the degree of P for short, and denote it by p(P). If Q(P)= 0, then 
we call P an isolated node of r, if Q(P)= 1, we call P a termitial node of r. 

A graph L is called a loop, more accurately a P-loop, if a series” 
Pl, . - -1 P,,, P,,+l (~12 1) can be constructed from the nodes of L so that every 
node of L appears in the series, P= PI, the nodes PI,. . ., P7, are all dis- 
tinct, P,,,.,# P,,, and if n > 1, then P,,,I # P,,-I , and the set of edges of L 
consists Of Pi Pi+1 (i = 1, . . . , n). It is easy to see that we can form in at 
most two ways from the nodes of a P-loop a sequence of the required pro- 
perties and that P,.+tl is uniquely determined. P is the initial node of the 
loop and P,,+l the final node. The loop is also said to start from P and to 
lecd to P,,+l. We call the P-loop dire&d if one of the above-mentioned 
sequences is made to correspond to it, 

If P,,+1 is different from Pi, . . ., P,,, then the loop is called a path, 
more accurately a PIP,,+l-path, if P,,+l=PI, then it is called a circuit. 
Paths and circuits will be designated by the common term arc. If P+?+I= Pi 
(1 ~j~n-2), then the nodes Pj, ei+l,. ,,, P,+l and the edges Pi 
(i=j, . . . . n) together form a circuit which is called the circuif of the loop L. 
The number of edges of L is called the length of L. Paths, circuits and arcs 
of length 1 are called I-puths, l-guns and f-arcs, respectively. The equation 

L=(P1, .‘.) P,, , P,1+1= Pj) (1 95 n-2) 

states that the graph L. is a PI-loop with is composed of the nodes PI, . . . , P,, 
and the edges PjPj+l (i = 1, . . ., n). The equation 

w = (PI, . . . , P,,,l) 

2 If i and g are natural numbers and j<g or j >g, lhen P), . . . , P, denotes the set 
of nodes P, where i runs through the natural numbers from j to g. If j=g, then P,, . . . , P, 
means P, by itself. 
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states that W is a A~,,+x-path composed of the nodes PI, . . . , P,,,l and the 
edges PiPi+ (i= 1, . . . . n). 

A set of edges of r is called independent if no two of them have a 
node in common. We shall say that the maximum number of independent 
edges is k, if there exists a set of k such edges and there does not exist 
a set of k+ 1 such edges. 

(1.3) The graph r is connected if it consists of a single node or if 
corresponding to any two distinct nodes P and Q I’ contains a P Q-path. 
The “maximal” connected subgraphs of r are called its components. The 
subgraph r of the graph T is maximal with respect to some property if 1 
contains no subgraph with this property of which r is a proper subgraph. 
If I” is a component of 1: then r--s’ denotes the graph obtained from r 
by deleting r. 

The nodes P1, . . ..e. (jz 1) are said to separate the two (distinct) 
nodes A and B in the connected graph r if Pi # A, Pi # B (i = 1, . , ., j) 
and every A B-path in 1” contains at least one of the nodes PI, . . ., Pi. 
The nodes P1, . . ., ei divide the connected graph r if r contains two nodes 
which they separate. 

The graph T is n-fold connected (n z 2) if it is connected and if no 
set of fewer than n nodes divides it. A complete I-graph is said to be n-fold 
connected for all n. 

The maximal twofold connected subgraphs of the connected graph r 
are called the members of r. Every edge of r is an edge of some member 
and every member, except for the graph consisting of a single node, contains 
more than one node. If r is connected but not twofold connected, then it 
has more than one member, and it may be verified ([6], pp. 224-231) that 
two of its members have at most one node in common and that such a node 
divides r.” Furthermore, it may easily be verified that r has at least two 
members containing only one cut-node each. Such members are called fer- 
minal members of r. If r’ is a terminal member of r, then r-r’ denotes 
the graph obtained from r by deleting all edges of I” and all nodes of 
P except its cut-node. 

(1.4) If in the graph r every node except the single node A has 
degree 2 k (ks 2) and rr(r) 5 2k, then, if Q(A) 2 2, r is twofold connected 
and if Q(A) = 1, then T-A is twofold connected and r is connected. 

PROOF. Suppose first that e(A) ~2. Then it follows from our assump- 
tions that every component of r and every terminal member of r (if any) 
contains at least 3 nodes, and at least two of these have degree 2 k. If r 

3 Such a node is called a cut-node of the graph. 
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is not twofold connected, then it has two components or two terminal mem- 
bers. At least one of these ccnponents or terminal members has not more 
than k nodes. The nodes in it with at most one exception have degree <k, 
which is a contradiction. 

If g(A) = 1, then let the edge incident with A be denoted by AA’. 
If kz 3, then the degree of A’ in T-A is clearly at least 2. If k=2, then 
only z(r)=4 is possible, in which case the degree of A’ in T---A is 2. 
In both cases the theorem with e(A)22 can be applied to r--A. r is 
obviously connected. 

(1.5) A circuit of the graph r which contains all nodes of r is called 
a Hamiltonian line of r, H-Line for short. A path of r which contains all 
nodes of 1‘ is called an open H-line of Z7 Two distinct nodes P and Q of 
P are said to be H-independent in r if r contains no open H-line starting 
in P and ending in Q. 

Our later reasoning is based on the following lemma: 

LEMMA (1. 6) ff the circuit C=(P,, . . . . PTl, P,,+I= PI) is an H-line of 
the graph T andif P, and Pj (i, j#n + 1) are H-independent nodes of I’, then 

p (PM) + e (Pj+l) 5 Jx(C) = n ; 

q(P) denotes the degree of the rlode P in r. 

PROOF. It may be assumed that i= 1 and I < j5 n. Because two 
neighbouring nodes of C are not H-independent, 3 zjs n-l. Accordingly, 
n 2 4 and the nodes PI, P?, P,, PJTl are distinct. 

If r contains the edge PzP~, (3 zgzj), then it does not contain the -- 
edge Pi,lPY-r j For if this edge belonged to r, then the path 

W=(P~,P,,,...,Pj,l,P,-l,...,A,P,,...,P,) 

would be an open H-line of r starting in P1 and ending in PJ. 
It follows that Pzqi.+l does not exist in r, since P2P3 does. 
If the edge P,P, (jf 2 s 15 n) exists in r, then the edge P,+lP,+, 

cannot exist in r. For if this edge existed, then the path 

would be an open H-line of r starting in Pj and ending in P+I= PL. 
Accordingly, with every node, other than PI, joined to P2 in r there 

can be associated a node not joined to P,+I in such a way that these asso- 
ciated nodes are all distinct. It follows that the number of nodes not joined 
to Pj+l is at least e(P$--1, SO that g(Pj,l)S((n--I)-(e(P?)-1)= n-p(&). 
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NOTE. It follows from Lemma (1. 6) and its proof that, under the hypo- -- -__ 
theses of the lemma, p(Pi-l)+g(~i_I)z~ and the edges Pi+lI’j+l and P,-I~,.-l 
do not exist in r (R,= P,J. 

Let the loop L==(Pl, . . . . P,,, P,,+l - PYll) (1 5 m 5 12 -2) be a subgraph 
of the graph IY A node ej belonging to the circuit C== (P,,l , . , . , P,, PrIL1 =P,,,) 
of the loop L and different from the terminal node Pz,l of L is called H-node 
of fhe loop L (with respect to r) if r contains a PjP,,L-path containing all 
the nodes of C and no other nodes, or, otherwise expressed, if the graph [C] 
spanned by C in r contains an open H-line starting in F’j and ending in P,,,. 

(1.7) Let L=(Pl, . . . . P,, , P,?+I h= I?,,) (1 5 m 5 n -2) be a loop of 
the graph S and iet the circuit of L be denoted by C. If every H-node 
of L (with respect to r) has degree & k (k 5 2) in [C] and if -T(C) 5 2k--1, 
then every node of C different from P7,? is an H-node of L. 

PROOF. P,,,+l and P,, are clearly H-nodes. Our theorem is established 
if we prove the following assertion: If P,+I (m <j< n) is an H-node, then so 
is Pj. To see that this is so, let it be assumed that &1 (m<j<n) is an 
H-node and Pj is not. Then P,,, and ej are H-independent in [Cl, and, since 
C is an H-line of the graph [C], it follows from Lemma (1.6) that o’(P,,,+~) + 
+ ~‘(F’j+l) 5z(C), where $(P;) denotes the degree of the node P, in [Cl. 
But it was assumed that Q’(pj+,)m k and ~‘(P,,$+,)s k. We have a contra- 
diction ! 

Let A denote a node of degree 2 1 of the graph r and let the degree 
of all nodes of r other than A be z 2, If W= (PI,. . ., P,,) (PI = A) is 
any path of 2‘ which starts from A, then, the degree of P,, being ~2, r ___ 
contains an edge P,lP,,+l incident with P,, and different from P,,P,-I. This 
edge and W together form an A-loop which is longer than W. Thus to 
every path W starting in A there exists an A-loop longer than K’, hence the 
longest A-loops of 1” are not path (i. e. they contain circuits). 

These longest A-loops of F which possess the longest circuits will be 
called mn;ximal A-loops. 

(1.8) Let A be a node of the graph r with degree s 1 and srrppos e 
that the degree of every node of r other than A is 2 k where k 2 2. 
Further, let L be a maximal A-loop and let the terminal node of L be denot- 
ed by B and its circuit by C. Then if *T(C) 5 2k-1, it follows that [C] is 
either a component or a terminal member of r and in the latter case the cut- 
node of [C] is B. In both cases every node of [C] distinct from B is connect- 
ed to B by an open H-line of [C] and ,X(C) =Z k-j- 1. 

PROOF. It follows from the assumptions made that r contains a maxi- 
mal A-loop. Let L = (P, , . . ., PYl, Pti+l=P,,,) (1 srnzn-2, A=A, Pi,=B) 
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be the maximal A-loop concerned. If pi (m <is n) is any H-node of L, 
then Pj is not joined by an edge in I’ to any node which is not in C. For 
if PjP is an edge of r and if W denotes an open H-line of [C] leading 
from Pj to P,,,, then if we add the edge PjP and the path (PI, . . . . P,,) to 
W the result is an A-loop which is as long as L and which is a path if 
P+Pi (i=l,..., rz) and which has a longer circuit than C if P= P!, 
(1 zg<m). A contradiction with the maximal nature of L is therefore avoided 
only if P= Pi/ (m Sgf n). It follows that the degree of every H-node of 
L in [CJ is 2 k, therefore if .7(C) 5 2k--1, then according to (1.7) every 
node of C other than B is an H-node of L. There follows firstly the exist- 
ence of the open H-lines asserted in the theorem and secondly that every 
node of C other than B is joined exclusively to nodes of C. The latter fact 
implies that [C] is a component or a terminal member with cut-node B. 
([Cl is obviously twofold connected because of C.) -z(C) 2 k+ 1, because 
e(PV5.)zk and P,, is joined exclusively to nodes of C. 

If the graph r of Theorem (1. 8) has at most 2k-1 nodes, then it 
follows from Theorem (1.4) that [C] = r or [C] = T-A according as o(A)12 
or o(A)=1 and that, if .z(r)=2k and p(A)&-, then :-c(C)=2k. 

The following two theorems can be deduced: 

THEOREM (1. 9) If the node A of the graph Z’ is not isolated and the 
degree of every node of I’ distinct from A is z k (k 2 2) and if x(r) 5 2 k-l, 
then A is connected by open H-lines to every node of r. 

THEOREM (1. 10) (DIRAC) /f every node of the graph 1’ has degree 2 k 
(kz 2), and if ~(1’) 5 2k, then I‘ has an H-line. 

(1. 9) obviously implies the following theorem: 

THEOREM (1.11) If every node of fhe graph T has degree 2 k (k=> 2), 
and if :z(r)~2k--1, then any two distinct nodes are connected by an open 
H-line. 

If the graph r of Theorem (1.8) is twofold connected and if z(r) 2 
~2k, then ,~(C)Z 2k. From this it follows that the node A of Theorem 
(1. 8) is the initial node of a path of length z2k--1. 

The following two theorems can be deduced: 

THEOREM (1. 12) If l’ is a twofold connected graph and every node 
with the exception of one single node A has degree z k (k z 1) and if in 
addition ,X(T) 2 2k, then T contains a path with at least 2k-1 edges which 
starts from A. 

(‘This theorem is trivial for k= 1.) 
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THEOREM (1. 13) (DIRAC) If fhe degree of every nude of fhe fwofold 
connected gruph T is 2 k (k 2 2) and if --t(r) 2 2 k, then T contains a 
circuit with at least 2k edges. 

REMARK. It follows from the above considerations that the assertions in 
Theorems (1. 10) and (1. 13) remain true if the degree of every node except 
one node A is at least k (kr2) and e(A)&2. If two nodes have degree 
<k, then these theorems are not generally true. 

THEOREM (1. 14) If r is a connected graph and the degree of every 
one of its nodes is 2 k (k 2 1) and if x(r) 12kf 1, then T confains a pafh 
wifh 2 k or more edges.” 

PROOF. If k- 1, the theorem is trivial. In what follows it will be assumed 
that kl2. 

If I’ is twofold connected, then, by (1. 13), 1” contains a circuit 
C=(P,, . ..). P,,&, E,+I=PI) (m~2k). If m>2k, W=(PI, . . ., Pflz) is a path 
of the required kind. If m =2k, then, by our assumptions, K’ contains a 
node P which is not in C and which is joined to a node of C, say PI. 
Then W===(P, PI, . . . . P,,,) is a path of the required kind. 

If I’ is not twofold connected, then let rI and r2 denote two terminal 
members of r, and A1 and AZ their cut-nodes. rr and I’? are twofold con- 
nected and apart from A1 and A? their nodes have degree 2 k in rr and r2, 
respectively. This is possible only if ,T(T~) 2 kf 1 and z-(IT2) 2 k+ 1. From 
this and from (1. 9) and (1. 12) it follows that Ii contains a path of length 
2 k which starts in A1 and I’? contains a path of length 2 k which starts 
in A?. If Al=As, then these two paths together constitute a path with at 
least 2k edges, and if AI =+ A-,, then these two paths together with an 
AIA2-path of 1’-rI-r2 constitute a path with more than 2k edges. 

REMARK. Theorem (1. 14) can be proved easily whithout using the preced- 
ing theorems. 

(1.15) The “accuracy” of Theorems (1. 13) and (1. 14) is demonstrated 
by the following graph 1’: 

I’ consists of the nodes PI, . . . . A, QI ,..., Q-l: (2skin-k) and 
of all edges Pi Qj (i = 1, . . . , k; j= 1, . ., n-k). I’ is an even graph ([6], 
p, 170). The degree of every node of r is z k and it may easily be veri- 
fied that I‘ is k-fold connected, further that the longest circuits and paths 
in r have 2k edges. 

It is seen from the example of this graph that in the theorems in ques- 

4 This result was obtained independently by GA. DIRAC. 



ON M.tXIMAL PATHS 4h’D CIRCUITS O> GRAPHS 345 

tion it is not possible to assert the existence of longer paths and circuits 
than those proved to exist, even if the connectivity is assumed to be higher. 

(1. 16) Using an altered form of Theorem (1.8) and MENGEK’S well- 
known “n-path theorem” the following theorems can be established: 

/f the degree of every node of the twofold connected graph I‘ is 2 k 
(k 2 2) and if z-(I’) z 2k, then through each node of r there passes a circuit 
having at least 2 k edges. 

Ij the degree of every node of the twofold connected graph T with the 
exception of the two nodes A and B is 2 k (kz 2), then every node of I- 
lies on an A B-path having at least k edges. 

These theorems are not proved in this paper. 

§2 

12. 1) Let the classes of all graphs containing exactly II nodes and 
containing, respectively, no paths, circuits, arcs with more than I edges (1~1) 
be denoted by F(n, I), G(n, I), H(n, I). The graphs in each class which 
contain the most edges are called the extreme graphs of the class concerned, 
and the number of edges in these graphs will be denoted by f(n, I), g(n, I) 
and h(n, 1), respectively. So if the graph I’ is a member of, respectively, 
F(n, I), G(n, I), H(n, I), then the following inequalities hold: 

(*I ‘v(f) 5 f(n, l), r(f) zg(n, I), z,(r) d h(n, l), 

and if I‘ is an extreme graph of the class concerned, then equality holds 
under (*). 

We wish to estimate or determine f, g and lz and to find the extreme 
graphs. 

Clearly, if n d 1 (1 z 2), the only extreme graphs of F(n, f-l), G(n, I), 
H(n, f) are the complete n-graphs. 

(2. 2) Our method of estimating the values in question from below is 
to construct graphs belonging to the classes F, G, H and containing as 
many edges as possible. 

In this paper r? (1 Sk<n) denotes the graph which consists of the 
nodes P1,. . ., A, Q1, . . ., Q,L--L together with all the edges P,?, (i, j = 1,. . .) k; 
i#j) and all the edges P&Q.? (i- 1, . . . . k;j= 1,. ..,n-k). 

If 1 Sk< n-l, then r?” denotes the graph obtained from the graph 
r: by the addition of the edge QIQ~. Accordingly, the graph r:, is defined 
only for I22 and n 3 [(I+ 1), 21. In what follows the graphs r: will be 
called stars and the graphs rz will be called &stars for all values of II. 

7 Acta Mathematics X13-4 
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With the notation 

y(n, 2kj- l)= y(n, 2k)+ 1 

we have ~(r:,) = ~+((n, 1) for 12 2 and n > [(I$ 1),‘2]. 
It may easily be verified that the graph I‘(, has the following proper- 

ties: it is [I 2]-fold connected, it contains no path and no circuit with more 
than 1 edges, if n 2 1~3, then it contains an I-gon, and if n >I, then it 
contains an f-path. Hence r:, is a member of each of the classes F(n, r), 
G(n, f) and H(n, I), and so - havin g regard to the remarks concerning the 
case n 5 1 in (2. 1) - 

(2.3) f(n, 1) 2 c/ (n, 0, g(4 0 z y(n, l>, h(n, 1) 2 y (4 4 (Is 1). 

(2.4) The graph 1‘,,,) 0’” 1) is defined as follows: Let 12 = qj + r 
where r<j. r,,,, has exactly n nodes, and if r = 0, it consists of q compo- 
nents, while if r>O, it consists of q + 1 components, if I’ = 0, all its com- 
ponents are complete j-graphs, and if r>O, then q of its components are 
complete j-graphs and the remaining component is a complete r-graph. (I;,r 
consists of a single node.) 

C(n,j) (j 2 1) denotes the following class of graphs: Let n=q(j-1) -k r 
where 1 5 r~j-1. G*(rt,j) is the class of connected graphs containing 
exactly n nodes which have q members if n> 1 and I-=== 1, and q+ 1 mem- 
bers if n > 1 and r> 1, every member is a complete j-graph if n > 1 and 
I’= 1, and q members are complete j-graphs and one member is a complete 
r-graph if n>l and r>l. G*(l,j)= {rl,l) for all j z 1. 

r~,j is to denote that element of G*(n, j) which contains at most one 
cut-node. 

In the notation 

~(n,j,r)= $“j -+‘(jjl-r) 

it is found that 

and that 
tp(rtT J-~) = $(Iz, j, r) where n = q (j + 1) + r (r4-k 1) 

if rcG*(n,j), then 7*(21)=1#(n,j,r) where n=q(j-l)+r (lzr~j-1). 

The following statements may easily be verified: 

r,p1 F F(n, f), G*(n, 1) c G(n, f), r,t,r < ff(n, I) (I 25 1). 
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Hence 
’ f(n, f) 2 q(n, 1, r) 
1 

(n=q(I+l)+r;r<I+l), 

(2.5) 

I 

g(n, 1) m q,(n, I, r> (n=q(l--l)fr; 1 srff-1), (I 2 I)., 

\ h(n, f$zw(n, 1-1, r) (n=qf+r; r<I) 

The statements below follow from a simple calculation: 
(1) If 1=2k (ks I), then y(n, 2k)sq(n, 2k, r) and equalityholdsonly 

if r-k or r= k+ 1, So (2. 5) gives a better estimate of f and g unless 
r-k or I’= k+ 1, in which cases (2.3) and (2.5) are equally good. 

(2) If 1=2k (kz 1) and n>k(k+ l), then q(n, 2k)>q(n, 2k-1, r). 
Here (2. 3) gives a better estimate of h. 

(3) Iff=2k+l (k~l)andn>k+3,theny(n,2k+l)<~(n,2kfl,r,’. 
For this case (2.5) gives a better estimate of f and g. 

(4) If f=2k+ 1, then, according as (a) r -= k or r = k+ 1, or 
(b) r=k-1 or r=k+2, or (c) r<k-1 or r>k+2, cp(n,2k+ l)>, =, 
or < +(n, 2k, r) and, accordingly, (2.3) gives a better or equally good or 
worse estimate of h than (2. 5). 

In order to estimate f,g and h from above we need the theorems of 5 1. 

THEOREM (2.6) 

f(n, 1) 5 + n 1 (I > l), 

equnlity holds only if 11 = q(l+ I), in which case ~,,AI is the only extreme 
graph of the class F(n, 1) 

PROOF, If n 5 Z+ 1, then a graph r having exactly n nodes cannot 
contain a path with more than 1 edges, so 

and equality holds here only if r is a complete (I+ I)-graph. So the theorem 
is true if nZl+l. 

Now let n’> 1+ 1 and suppose that the theorem is true for all n such 
that n in’. We prove that in that case the theorem is also true for n’. 
Let r < F(n’, 1). 

(1) If r is not conneded, then let its components be I’*, . . . . r, (pS2), 
:z(TJ=n, (i==l,...,p). Then nI+.~~+n,,=n’, n,<n’ and r;<F(n,,l) 
(i= 1,. . ., p). So by hypothesis 

7* 
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and equality holds only if Y(C)= & (i= I, . . ., p), i, e. if rl, . . . . I;, are 

.a11 complete (I + l)-graphs. In this case our theorem is therefore true for n’. 
(2) Suppose that I‘ is connected. We show that there exists a node P’ 

whose degree in r, p(P), is at most 1’2, For if no such node P’ exists, 
then,whether 1=2k or /=2/~-/-l, p(p)zk+l foreverynode P. If f=2k, 
then x(r)>2k+l, and if rt(T)>2k+2, then, by (1. 14), r contains a 
path having at least 2k+2 edges, while if .7(T) = 2kL2, then, by Theorem 
(1, lo), r contains a path having 2kf 1 edges. If l=2kf I, then z(T)> 
,2k+2 and so, by (1. 14), I’ contains a path having 2kf2 edges. In 
every case we have a contradiction. 

Suppose therefore that e (P’) ~5 1~2 and let T’=r---P’. Then T’El’(n’-1, 1). 
II” cannot contain a complete (I + I)-graph because if it did, then I’ would 
contain an (If I)-path. So by our induction hypothesis jf(r’) < (n’-1) f/2, 
and therefore 

J*(r) == <J(P) + P(r) < ;+ (d-1); = n$ 

THEOREM (2. 7) 

g(n, r> 5 -;(tl-l)f (I 2 9, 

equafify hofds only if II = q(i- 1) + 1, in which case the extreme graphs of 
the class G(n, I) are the efements of the class G*(n, I) 

PROOF. The theorem is trivially true for II = 1. If 1 <II 5 1 2nd 
rc G(n, l), then 

J,(r-) 5 * - 2 
n(n-1) -= (II-1)f 

I 

and equality here can hold only if r is a complete f-graph. The theorem is 
therefore true for II 5 I. 

Suppose that 11 >I and suppose that the theorem is true for all n if 
n< n’. We show that it is then true also for n’. Let r C G(n’, I). 

(1) If r is not connected, let its components be r;, . . . , r,, (p 2 2) and 
let ;-c(rj) = n,. Then nl+ . I I + II, = n’, tz, < n’ and r, C G(Iz,, l) (i = 1, . . . , p). 
By our hypothesis therefore 

I?(/-) = ?‘(r~) + --* + J’(r,,) s (fl- 1) 1, 2 + --- + 

+(n,,-l)f, 2=(n’-p)f 2<(n’---1)1’2. 

(2) If I‘ is connected but not twofold connected, then let Z-1 denote a 
terminal member of L’ and let l-?= r---r;. ~(1‘1) = nl, :T(~z)= n?. Then 
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n’=nl+n~--1, nl<n’, n?<n’, r~ C G(nl, I), r? C G(n:!, I), and so, according 
to our hypothesis, 

and equality can hold only if 1; C G*(nI, I) and ix c G*(II?, I). But then 
r c Gyn’ I). 

(3) Let I’ be ft~ofold connecf~d. We show that r then has a node P’ 
of degree f l/2. For if no such node exists, then c(P) 2 k+ 1 for every 
node P both if i=2k and if l==2k+l. If 1=2k, then rr(T)>2k, in 
which case if r7 (I) 2 2k + 2, then by (1. 13) I‘ contains an m-gon with 
m 2 2k+2 while if (T(I) = 2k-J- I, then by (1. IO) I’ has an H-line and 
therefore contains a (2k-+ I)-gon. If I= 2k+ 1, then r-r(l) > 2k + 1 and so 
1’ contains an m-gon with m 2 2k+ 2 by (1. 13). We have obtained a contra-. 
diction in every case. 

So assume that e(P) zl!2 and let I”-r--P’. Then I“ f G(n’-I, f). 
r is connected and Q(P) 2 2. r’ is not an element of G*(n’--1, 1). For if 
this were the case, then P’ would lie on a circuit with more than I edges. 
From our induction hypothesis it follows that 

r(r)=p(P’)+ v(F)<1/2+(n’-2)1/2=(n’- 1)!;2. 

This proves the theorem. 
For the investigation of h(12, I) it is useful to consider the cases I=2k 

and I = 2 k + 1 separately. 

THEOREM (2.8) 
h(n, 2k) s (n-l)k (kz I), 

if n = 1, then equality holds for all k and 1;,1 is the extreme graph of 
H(1,2k), if n>l and k-l, then equality holds for all n and the star 
with n nodes r? is the only extreme graph of fhe class H(n, 2), finally if 
n > 1 and k 3 1, then equality holds only if n = 2k, and fhe complete (2k)- 
graph is the only extreme graph of H(2 k, 2k). 

PROOF. Because H(n, I)C G(n, I), we have that h(n, 2k) zg(n, 2k). 
By (2. 7), g(n, 2k)z(n-l)k, so 

h(n, 2k)z(n-1)k. 

Equality can hold only if n ==q(2k-l)+ 1 and if H(n, 2k) contains an 
element of G*(n, 2k). But an element of G*(n, 2k) belongs to H(n, 2k) only 
if it contains no path with more than 2k edges. This holds only for the 
graphs described in Theorem (2. S), whether k= 1 or k> 1. 



350 P. ERDiiS AND T. GALLAI 

If I= 2k + 1, then, since H(n, 1) = F(n, I), we need only consider 
the case kz 1. 

THEOREM (2.9) 
h(n,2k+1)5nk (k z I), 

and here equality does not hold if k- 1 and II = 1 or n = 2, and it does 
hold if k= 1 and n >2, in which case the extreme graphs are those of which 
all the components are -l-stars; if k> 1, then equality holds only if 
n = q(2k + 1) (q >O), and the only extreme graph is T’,,,?!, +I. 

The proof which is similar to the proof of (2.6) will be left to the reader. 

§3 
In this paragraph we determine the graphs with the most edges among 

the connected graphs of the class F(n, 2k) and the extreme graphs of the 
class H(n, 2 k) for sufficiently large values of II. 

We denote the classes of the connected graphs in F(n, f), C;(n, I), H(n, I), 
respectively, by &n, f), C?(n, I), @(tl, 1>, and the number of edges in the 
extreme graphs of these classes (the graphs with the most edges) by 
Jn, I), g(n, I), iz(n, I), respectively. From the fact that .r,i is connected it 
follows that each of these maximal numbers of edges is 1 y(n, I). 

(3. 1) If ;r’ is an extreme graph of any one of fke classes F(n, 2k), 
c(n, 2k), f?(n, 2k) (kz 2) and if n > k”-k-i- 1, then I- contains a 2k-gon. 

PROOF. If 1’ contains no 2k-gon, then 2-E G(n, 2k-1), and so by 

,(2. 7) ~v(l’)s(n--1) (k--j. On the other hand, it follows from the extremal 

property of 1‘ and from the remark on the graphs 1;: made above, that 
v(r) z ~(Ti:l‘) = n k-k(k+ 1)/2. Accordingly, 

(n- I)(‘/?-+\ &nk-k(k+ 1) 2, 
i 

from which it follows that n ok’- k+ 1. This contradicts our hypothesis. 
From Lemma (1.6) we deduce the following lemma : 

LEMMA (3. 2) Let fhe graph r have an H-line and let ~(1’) -= m g 4. If 
1” contains p muttrally H-independent nodes S1,. . ., S,,, then p 5 m:2 and 
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and if p = nz/2, then equality in (1) holds only if f =ri:’ and the nodes 
Sl, .**, S,, spun a complete p-graph in I’. 

PROOF. The theorem is trivially true for rn = 4. In what follows it will be 
assumed that m >4. Let C= (Pl, . . . , P,,, , P>,,+l = PI) be an H-line of 1‘ and let 
the nodes S==P,, (i=l,..., p) be mutually H-independent. It may be 
assumed that I= UL< ...< a&m. Further let Ri=Prjel, Ti = Prji.l, p(Tj)=pi 
(i=f,..., p; PO= PpI1) and let the elements of the sets {RI,. . ., R,,), {&, , . ., S,,) 
and {TI, ..‘, TV) be named R-, S-, T-nodes, respectively. 

Because the S-nodes are H-independent, two S-nodes cannot be neigh- 
bours on C, and therefore this is true of the R- and T-nodes also, so that 
an S-node cannot coincide with a T-node or with an R-node. It follows 
that p 5 m/2. 

BY (1.6) 
(2) ~i+P,jIlil (i, j== 1, . . .,p; i#i). 

Adding these inequalities together 

(3) Ql + -** fpJJ5prn 2. 

Let i’ denote the complement of the graph I’ and let the degree of 
Ti in r be denoted by !,i (i= 1,. ..,p). Then 

(4) pi + @; = nz - 1 (i- l,...,p). 

By the remark after Lemma (1. 6) neither two R-nodes nor two T-nodes 
can be joined in I’. Consequently, all the edges T, T?. (i,j= 1, , . .) p; i#j) 
are in p, and so the number of edges of r at least one end-node of which 

is a T-node is 6, + .c. + @I,--- 

Accordingly, 

and so, having regard to (4) and (3), 

r(F) Zp(m- l>-(9, + *.*+p,,~-j~j~p(n*-l)- 

w ‘P -pm -__- 
2 1 I- 

‘P-k 1’ ~_ 
.2, 2 i 2 1 * 

Hence 

(6) 

Equality holds here only if it holds in (2) and in (5) throughout. If 
p=m/2, then th is is the case only if p1 = .. . = pl, = m,‘2 and every edge 



352 P. ERDhS AND T. GALLAI 

of r’; is incident with some T-node, that is to say any two nodes which are 
not T-nodes are joined by an edge in ZY In this case, however, every 
R-node is also a T-node; and these are all joined to every S-node, further 
any two S-nodes are joined to each other. This implies that r- Z$ and 
that the S-nodes span a complete p-graph in I’. 

(3.3) [f the connected graph I’ contains a 2k-gott (kz 2) bat does 
not confain any path having more than 2k edges and if n =:z(L~)~ 
2 3k + 2, fhen II(~) 5 y(n, 2k), and eqaalify holds only for I’- r-i:!. 

PROOF. Let C = (P,, . . . , P.,k, PCk+* = PI) be a 2k-goi1 of 1”. The nodes 
of C will be called P-nodes and the remaining nodes of Z’ will be 
called Q-nodes. Let the Q-nodes be denoted by QI, . . ., Qa2 where q = n- 
-2kzk+2. 

Not two Q-nodes are joined in I’. For if the edge QI Q? exists, for 
example, then, since z‘ is connected, there is a path Uf in r which starts 
in Q1 or Qz and ends in a P-node, say PI, and does not contain any 
f-node other than PI, and contains only one of the nodes Q,, Q1 - say Q1. 
Then the edge Q1Q2 and the paths W and (PI, .& ., P2F)L’F) together constitute 
a path with at least 2k+ 1 edges. This contradicts our hypotheses. 

From this and from the fact that I’ is connected it follows that every 
Q-node is joined to some P-node. 

If Pi and Pj are distinct P-nodes and if there are two disfincf nodes 
Q, and QI1 such that the edges Pi Q, and Pz;QT1 exist, then P; and Pj are 
H-independent in [Cl. For such an open H-line leading from Pi to Pj in 
[C] would, together with the edges fiQ, and Pj QTl, constitute a (2k+ I)-path. 

We divide the P-nodes into three classes. A P-node will be called an 
rr-node if it is joined to at least two Q-nodes, it will be called a $-node if 
it is joined to exactly one Q-node and it will be called a ;/-node if it is not 
joined to any Q-node. The number of cc-, $- and y-nodes will be denoted 
by pa, pp and p.:) respectively. pCr + p:: f pv -% 2 k. 

According to the above, any pair of rr-nodes are H-independent in [Cl, 
and so are any cl-node and any J-node. Since two neighbouring nodes of 
G are not H-independent in [C], the neighbours on C of an (r-node can 
only be y-nodes. It follows from this that pazpy?,, and so pCt5 k and 

(1) pBi=2k-2p,. 

C is an H-line of the graph [Cl, so Lemma (3. 2) applies to the 
cl-nodes. Accordingly, 

(2) 
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The number of edges which join a P-node to a Q-node is 

(3) "l'$l 22 qpcc TP$, 

and so it follows from (l), (2) and (3) that 

l$Z’) = v([C]) + l’pq s [;2,k‘j+2k+(y-k-2)p.;( pm; r ‘1. 

Because q 2 kf 2, the expression on the right attains its maximum 
value in the range 0 zpc Sk only if ,urr = k, and a simple calculation shows 

that this maximum is equal to nk - 
‘k+l 
I I 2 =y(n,2k). So v(QS:((n,2k) 

and equality holds only if pa= k and equality holds in (I), (2) and (3). 
But if pa = k, then p; =0 and equality holds in (I), and further, by (3. 2), 
equality then holds in (2) only if [C]= I% and the cl-nodes span a com- 
plete k-graph in [Cj. Finally, because ps=O, equality holds in (3) when 
every Q-node is joined to every rr-node. 
been enumerated it follows that ,,=r?. 

From the properties which have 

THEOREM (3.4) If n~k”-k+6-(kZ I), fhen f(n, 2k)=y(n, Zk), and 
the only extreme graph of the class F(n, 2k) is Z$. 

PROOF (1) First assume that k= 1. By (2.6) f(n, 2) z n with equality 
holding only if n =3q, and then r,l.:; is the only extreme graph. From this 
and from f(n, 2)zf(n, 2) it is seen that f(n, 2)s n-l = y(n, 2) except if 
n =3. But if r is connected and z(r) = n, ~(13 = II- 1, then r is a tree 
([6], p. 471, and therefore does not contain a path with more than 2 edges 
only if I’= Cf. The theorem is therefore true if k- 1 and n >3. 

(2) Assume that-kZ2. Then, because n >k’--k+6, by (3. 1) any 
extreme graph r of F(n, 2k) contains a 2k-gon, and since S-k+6 z 
23k-f-2, it follows from Theorem (3. 3) that v(r)~y(n, 2k), equality hold- 
ing only if r=rZ. Our theorem follows from this and from r? E F{n, 2k). 

(3. 5). If r is an extreme graph of the class H{n, 2k), then z’ has 
not more than (k + l)i2 components. 

PROOF. Suppose that the components of f are I-, , . . . ,1;, and =(I;) = n; 
(i= I,..., p). Then nl+ ..s + n,, = n and r; is an extreme graph of the 
class H(n,, k) for i-== 1 , . . ., p. Then, according to Theorem (2. S), v(I’J 5 
s(n,---l)k (i=l, . . ..p). and so l*(r) = v(r,) + . -. + ~(1~~) 5 (n-p) k. 
On the other hand, V(T) 1’1 (n, 2k) by (2.3), therefore 

(n-p)kEnk-k(k+ 1) 2, 

and hence p( (k+ 1)/2. 
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THEOREM (3. 6) Zf n > i (k+ l>“, then h(n, 2k)= ~(n, 2k) and Z?’ 

is the only extreme graph of the class H(n, 2k). 

PROOF, For k = 1 the assertion of our theorem is contained in (2.8). 

Suppose that ks 2, II > -& (k+ l)“, and 1’ is an extreme graph of the class 

H(n, 2k). According to (3. 5) I‘ then has a component f’ such that 
n’ = rr(T ) > (k+ 1)‘. r’ is an extreme graph of the class fi(n’, 2k) and 
therefore contains a 2k-gon by (3. 1). (k+ 1)‘>3kf 2 because kg 2, so 
by (3. 3) IJ(Z”)Z ~(n’, 2k), equality holding only if r’= rzt. But 
Z$ c fi(n’, 2k), and so r’ = rf!’ and ~(r”)=q(n’, 2k). We show that 
r’=r. For suppose that 1” #r and let Y= r-r’. n”= ?,(r”)=n-11’ 
and P < H(n”, 2k). By (2. 8) ~(Y)r(n”-l)k, and so V(Z)= v(Z”)+ 

+(n”-l)k=y(n, 2k)-k. But this contradicts (2.3). 

CONJECTURES. We conjecture from the above that all extreme graphs 
of the classes occurring in 5 2 and 5 3 can be found among the graphs 
It , I’,,.[ and the members of the class G*(n, I). Among the twofold connect- 
ed graphs Z’:, is probably in every case the only extreme graph if II >I -+ 1. 

§4 
We are going to prove the following 

THEOREM (4. 1) Let X(T) = n. Assume further the maximrrm nrrmbel 
of independent edges is k (k 2 1). Then 

Equality can occur only if I‘= [?, or if one component of I- is a 
complete (2 k+ l)-graph and the other components are isolated nodes. 

PROOF, We can clearly assume n> 2k. Choose k independent edges 
and call these u’-edges and the remaining edges ,$-edges. The n-2k nodes 
of the graph which are not incident with cl’-edges we call unsaturated. 
Following BERGE ([2], p 1%) we add a node U to r and connect U with 
every unsaturated node by an edge. The new graph we call r’ and the new 
edges and the old &-edges we call a-edges (U is incident with n-2k 
a-edges, every other node is incident with exactly one cc-edge). 

Let ,!, be a directed U-loop. We call L alternating if its edges are 
alternatingly cc-edges and $-edges in the ordering determined by f.. A node 
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P of .T’ is called c!-accessible if there exists an alternating U-loop of final 
node P whose last edge is an cc-edge and it is called ;Saccessible if there 
exists an alternating O-loop of final node P whose last edge is a &edge. 
Further, by definition, U is called J-accessible. The nodes which are $-acces- 
sible but not cr-accessible are called ,bnodes. Denote the number of p-nodes 
by .“+l. 

It is easy to see that U is not cr-accessible, thus U is a $-node ([l], 
[2], p. 176; [5], p. 140). 

Denote the components of the graph obtained from 1” by omitting the 
p-nodes and the edges incident to it by 1;, . . -, I‘,,, (m 2 1). I’; is called 
odd or even if :r(T;) is odd or even. If I’; is odd, put ZI(~;) = 2a; + 1, 
if r; is even, put ~(1‘;) = 2a;. An [!-edge one node of which is a ,&node 
and the other node of which belongs to one of the 1’; we call an entering 
edge of I’;. 

The following facts are well known ([I], [2], pp. 169-170; [S], pp. 
141-142). 

Every c-edge inciden f to a ,Y-node is an entering edge of some odd Ti 
and every odd I’; has exactly one entering edge. 

From this it follows that every a-edge is either an entering edge (of 
some odd ri) or is an edge of some 1;. Further I’; contains exactly 
ai cl-edges. 

The cr-edges in r; (1 5 is m) are clearly <<‘-edges. We obtain their 
number by subtracting from /C the number of cc’-edges incident to the 
,&nodes, i.e. their number is k-/r. Thus 

If .Ci is even, then 7r(r;) s . If 1; is odd, then 

Thus 

Equality is only possible if every I: is odd and is a complete graph and 
ai=0 for al: i&2. 

The number of edges in I’ incident to the ,.3-ncdes is less than or I ( 
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Since every edge of T either belongs to one of the r; or is incident 
to one ‘of the $-nodes, we obtain that 

Since f(!() is a convex function of ,u and 0 5 !/ s k, we obtain 

~(1~) 5 max (f,O), f(k)) = max 1-i”“; ‘j, (,I-k)k+ f;i,i. 

Equality is only possible if IL =0 or {L = k, if ~1 -= 0, one of the 1’: must 
be a complete (2k+ I)-graph and the other ri must be isolated nodes, 
If /A= k, all the TL must be isolated nodes and every ,&node must be con- 
nected with all the nodes of 1; i. e. T = ZX”. 

(Received 24 June 1959) 
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