
Journal of the Mathematical Society of Japan ’ Vo!. II, No. 4, October, 1959 

On the Lipschitz’s condition for Brownian motion. 

By K. L. CHUNG*, P. ERD~S and T. SIRAO 

(Received April 9, 1959) 

(Revised May 25, 1959) 

Let X(t) (05 t < 00) be the Brownian motion process. Concerning the 
uniform continuity of X(t), there exists P. Levy’s result. Before stating his 
result, let us define the concept of upper class and lower class with regard 
to the uniform continuity of X(t) (0 2 ts 1). 

If there exists a positive number E such that 1 t’--t[ 5 E implies the rela- 
tion 

(1) lf(~‘)-f(t)IIg(It’--tl) I 

where g(t) is a non-negative, continuous, non-decreasing function defined in 
some finite interval (0, T) and vanishing with t, then we say that f(t) satisfies 

Lipschitz’s condition relative to g(t). Putting p(t) = +(+)2/” if X(t) (05 t 

S 1) satisfies Lipschitz’s condition relative to y(t) with probability 1 we say 
that e(t) belongs to the upper class. If X(t) (0 5 t 5 1) does not satisfy Lip- 
schitz’s condition relative to y(t) with probability 1 we say that q(t) belongs 
to the lower class. P. Levy [l] proved that the function 

q(t) = 42 log t)* 

belongs to the upper class for c > 1 and belongs to the lower class for c < 1. 
Following his method, T. Sirao [Z] improved the result as follows: The 
function 

q(t) = (2 log t+c log log t)+ 

belongs to the upper class for c > 5 and belongs to the lower class for c < -1. 
In this paper we shall prove the following theorems. 

THEOREM 1, A non-negative, continuous and monotone non-decreasing func- 

tion q(t) belongs to the upper OY lower class according as the integral 

is converge& or diverge&. 
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THEOREM 2. The function q(t) defined by 

(3) Jw> = (2 log t+5 logc,,t+:! log(,,t+~~*+2 Iogh-,,t+c lo&?&)*, 

where logc,,t denotes the n-times iterated logarithm, belongs to the @per class 

for c > 2 und to the lower class for c 5 2. 
These theorems were quoted by P. Lkvy [3] without proof. They give 

a difinitive solution to the problem of uniform continuity of Brownian mo- 
tion X(t> and are comparable to A. Kolmogorov’s criterion in the theory of 
iterated logarithm for X(t) at time point 00. 

Theorem 2 is a simple corollary of Theorem 1. Hence we prove only 
Theorem 1. 

LEMMA 1. Without loss of generality, we may assume that 

(4) (2 log t-10 log log t& q(t) 5 (2 log t+10 log log $I 

PROOF. We show that if Theorem 1 holds under the assumption (4), 
then it holds without (4). Let us denotes the first member in (4) by cl(t) 

and the last member in (4) by q,(t). 

Define s(t) as follows: 

(5) At> = min(maxW(t>, 3&N, +dt)> . 

Then the convergence of the integral (2) for q(t) implies the same for $(t). 
In fact, let us assume the convergence of (2) for q(t). If the set of t on 
which q(t) is less than -#l(t) is not bounded, there exists an increasing sequ- 
ence {t,} such that +(t,)5 +1(t,) and t, tends to infinity with n. Since y%(t) 

is a non-negative and non-decreasing function, we have 

1 c(log t,f 

where c is a positive constant. Since logt, tends to infinity with IZ, the 
integral for e(t) is divergent. This contradicts our assumption and there- 
fore til(t) must be smaller than e(t) for large t. On the other hand the 
integral for $.Jt) is convergent. These facts prove our assertion. Now we 
assume that the integral for @F(t) is convergent and Theorem 1 valid under 
the condition (4). Then the integral for s(t) is convergent and therefore 

s(t) belongs to the upper class. But by what has just been shown $(t) 2 @F(t) 

for large t. So we have @j(h) 5 9(/z) for smal1 h where (b(t) is defined by q(t) 
as p(t) is by e(t) and therefore @F(t) belongs to the upper class. Thus Lem- 
ma 1 is proved in the convergent case. 
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Secondly let us assume that the integral for q(t) is divergent. If the 

set of t on which q(t) is less than qfFl(t) is bounded, then it follows that g(t) 
is less than q(t) for large t and accordingly the integral for s(f) must be 
divergent. On the contrary, if there exists an increasing sequence {tn} having 
the property 

(6) 3@,)<9&h Ln-fm as f-m, 

then we have 

(7) %b = $1(&J * 

By the monotony of 4(t), we have 

J~yt)e-a~vm 2 3”(t,)e-g;,(,I)(tn-tl) 

(8) 
= ~13(tn),-%Ic:(tn)(t,-ti> . 

Since the last term in (8) tends to infinity with n, the integral for q(t) is 
divergent in our case. Now, by the result in [2], $&) belongs to the upper 
class and therefore, for almost all sample point o, there exists E such that 

(9) I-w, ~>-X(f, 4 I < %(lf’--tl) for It/--t] <E, 

where y?(t) is defined by +&) in the same way as p(t) is by q(t). On the 
other hand, since by assumption #&) belongs to the lower class, for almost 
all o we can choose a sequence {(t,, t,‘)} having the following properties 

IX(cL?-X&I >Wf?%‘-~nl)7 
W) 

It/-tnl+O as n-m. 

From (9) and (lo), we have 

(11) @~l~n’-&al) < PdlL’---tn/). 

(11) shows that v(t) is at last equal to p(t) at t= [ t,‘-t, I. This fact and (10) 
show that q(f) belongs to the Iower class. Q. E. D. 

We now proceed to prove Theorem 1. 
1) Proof of the convergent case. 
First of all we remark that it suffices to prove, for almost a11 o, the 

existence of a positive E’ such that 

X(t’, cd)-X(t, 0) 5 p( 1 t/--t [) for It’--tl <E’. 

In fact, let us assume that this assertion holds. Then it follows from the 
symmetry of Brownian inotion that the probability of the existence of a 
positive E” satisfying the inequality 

-y( I t’-t I> 2 X@‘, cd)-xct, 0) for It/--t/ < E” 



266 K. L. CHUNG, P. ERD~S and ?I?. SIRAO 

is equal to 1. Taking E for the minimum of E’ and E”, we have Theorem 1. 
Therefore we may consider the difference X(t’)-X(t) instead of its absolute 
value. 

For each triple (p, K, I), let E& be the event 

u2> X(y) -X(g) L q(k) , k = 0,1,2,..., 2p , 

z= 1,2,**-,p. 

A simple computation shows that 

for large p. Summing up P(E&) for p= 1,2,..., k = 1,2,..., 2”, I= [%I, 

c 1 -- +l,=.=,p, we have 

Applying Lemma 1, we obtain 

Next, for each triple (p, k, I), let F,$ be the event 

04) max { X(+L+t)-X($i--s)}Z1/$ 1(g), 
oct.sc-l- 

!2p 
k = 0, 1,2,..., 2p, 

l=l,2;*.,P. 

For convenience’ sake, we consider the F$ only such that the time parame- 
ters t of X(t) which appear in the above definition are positive and less 
than 1, It is well known that 

P(max X(s) $ a) i 2P(X(t) > a) , 
055t 

where a is any real number. Since the Brownian motion is an additive 
process, we have 
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By Lemma 1 we have, for large p and I, 

Therefore, if I is an integer existing between [s] and p, there exisb a 

positive constant c such that 

(16) P(F&) 5 cPh%:,) . 

Combining (13) and (16), we obtain 

(17) 

According to Borel-Cantelli’s lemma in the convergent case, (17) shows that 
the events F& appearing in (17) occur ” onlj jhitely Mary times ” with pro- 
bability 1. Or, in other words, there exists a positive E with probability 1 

such that if -&+r is smaller than E, F,,, P does not occur for any pair (k, 2) 

appearing in the summation of (17). 
Now, for any pair of (t, t’) satisfing the condition 1 f-t j <E, we choose p 

as follows : 

P+l 
-2tyTi-c It/-t1 5 g <2E. 

If we define k and I by the following inequalities 

(19) 
k+Z 4j+- < min(t, t’) 5 $- < 2” 5 m&t t t’) < Fi-t k!L 

2p ’ 
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it follows that [=$-I < I ~i;;p and therefore we obtain 

-W’)-X(t) 5 max (X($+t)-X(&-s)) 
0ct,d 

q$-~~~(&j 

with probability 1. 

ma 

Thus Theorem 1 is proved in the convergent case. 
2) Proof of the divergent case. 
Let E& be the event defined by (12). By the monotony of 4(t) and Lem- 
1, we have 

= O(l) j-+(t) e-“‘(‘) dt = +m . 

It is sufficient to show that E& occur iI infinitely often” with probability 1. 
For this purpose, we use the following Lemma given in [4]. 

LEMMA 2. Let (E,} be a sequence of eve& satisfying the following condi- 

tions. 

(9 gP(Ek)=+m. 
k=l 

(ii) For every pair of positive integers h, +a with R 2 h, there exist c(h) and H(n, &I 

> ?z such that for every m 2 H(n, h) we have 

Pb%J&‘,.-, En’) > cVWEn), 

where P(F/E) denotes the conditional probability of F on the hypothesis E dm? 
E’ denotes the complement of E. 

(iii) There exist two absolute constants cl and c2 with the following propetiy: 

to each Ej there corresponds u set of events E,,,..-, Ei, belonging to {Ek} such that 

(4 

awd if k > j but En r’s not among the Eji (15 i S s) then 

(b) PCEjEd < ~3lEj>REk) l 
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TJaen the probability that the events Ek occur “ infinitely often ” is equal to one. 
We rearrange E& and denotes it by E, so that we may apply Lemma 2 

in our case. The rule of ordering is given by the following. If E, =I?&, 

E:, = E&r,, then n < m if and only if one of the following three conditions 
holds : 

(4 PCP’, 

(PI P=P’ and l>l’, 

(r-1 P=P’, I = 1’ and k<k’. 

Now we prove that ,the sequence {En} satisfies the conditions of Lemma 2. 
(i) is a consequence of (20). For (ii), we use the characteristic property of 

Gaussian distribution. Let E, = E& and put lJ, = X(&2*)-X(-&). For 

every pair (h, n) with n k/z, if we define lJht,Uh+l,..., U, similarly then 

E(U,) = 0 (i= h, h+l;.., lz), HUwJ=O, 

E(U,U,)S-&- (i=h,h+l,...,n), 

where E(U) denotes the expectation of U. Since $- tends to zero as 9 

increases, (21) shows that for each i (h 5 i 5 n) the correlation coefficient of 
Vi and U, tends to zero as m increases. In other words, U, is asymptotically 
independent of the joint variable (U,, Uh+,,..., U,). Therefore we have 

This shows that (ii) holds in our case. For the justification of (iii), we need 
some lemmas. 

LEMMA 3. Let U and V be two random vuriables whose joint distribution is 

Gaussian and each of them has a standard Gaztssiart distribution. Let the CW- 
relation coeficienf of U and V be p, then there exists a positive constant c1 such 

that 

(23) P(U>a, V>b)jc,P(U>a)P(V>b) for p< --&-. 

PROOF. If ,D is negative or if a or b is small, (23) holds trivially. There* 
fore it is sufficient to prove Lemma 3 for sufficiently large a, b and positive 
p. Without loss of generality, we may assume a S b. Then we have 

w-wzY+vQ) m  _ -~~-~~ . . -  -  

P(U>a,V>b)=~~~l--~ s e 
27+-p+ b a 

‘(l-“) d=fy 
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124) 

1 2b 26 -m 

ss 

-xy 
= 

zn(l+)* b a 
e e adxdy 

The first term on the right side is estimated as follows: 

(25) 

b -tx* -2 
e 2(1-P) e ’ dxdy 

< 1 2b 
ss 

2b 

me 
- ‘;s2); d!! 

= 2,41+)% b 
e a dxdy 

5 P{U> (a-Z/a)/(l-p$}P(V> 6) 

= O(l)P(U > a)P( v > b) . 

On the other hand, for sufficiently large a, the second and third term on the 
right side of (24) are trivially smaller than the right side of (23) replaced 
c1 by 1. These estimates assure the validity of Lemma 3. Q. E. D. 

LEMMA 4. Let U and V be random variables as in Lemma 3. [f the corre- 

Jation co&ient of U and V is less than l/2+ and 0 < a < b then there exist two 
$ositive constants ca and 6, satisfying the following inequality 

W3 P(U > a, V > b) S c~~-~~~‘P(U > a) . 

PROOF. Let E be a positive constant which is less than 1 and let p be 
the correlation coefficient of U and V. It suffices to prove Lemma 4 for 
sufficiently large a and positive p. Then we have 

x27) 

P(U > a, V > b) = --l~-mjmJme 
tx’-zPxy+g~) --- 

271(1-p+ a b 
2(1-p’) d-=5 
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+$J= f e--- ~ Z (lie) b 
sy=(jy 

= 0(~){e-rl-(l+“/2,B)“b~/2+e--E/2b.)p(~> a). 

If we take the minimum of (l-(1+~/2)*)“/2 and ~/2 for a2 then Lemma 4 
follows from (27) immediately. Q. E. D. 

LEMMA 5. Let U am! V be random vuriabls as in Lemma 3. Lienothtg the 

con‘elation coe.#icient of U and V by p, there exist two positive constants c, and 
& such that 

w3) P( U 3 a, V> a) 5 c3e-B*(1-P’)a’P( U > a) for a $0. 

PROOF. By the definition of Gaussian distribution, we have 

P(U>a, V>a)= 1 J-J-e 
_ Iq=-2Pw3l) 

2x(1+)+ = a 
2u-p’) dvdx . 

Rotating the axes by 7r/4, we obtain 

P(U>a, 

1-P -- 

= O(1) e 2(1+p’s P(lJ> a). 

If we take l/8 for 6,, Lemma 5 follows from (31). Q. E. D. 
Now we prove that the condition (iii) of Lemma 2 is satisfied by our 

sequence {E,}. For given &, recalling that Ej has another expression E&, 
we choose a sequence {Ef,; i= 1,2,..., s} of events with the properties that 
j, > j, the corresponding superscript p’ is less than (p+5 logp) and EJi is not 
independent of IZP If E, is independent of E, then (b) of (ii) holds trivially 
for c? = 1. On the other hand, if Em is not independent of E,, we use Lemma 
3. Let Ej = E& and E, = E&Yv. If m is not one of the j;s then it follows 
from the definition of {E,,} that (p+5logp)<p’, Considering only the case 

of k> -$ , we have by Lemma 1 and for large p, 
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E 
1 
(x(+$+x(-g)) 

( > J-4 * 
(q~&g -x(g)) ~ ( pp’ )“( zptl )$ 

P B 
2p ( > I 2p 

(30) 
I ~ -- 

2P’ P 

z5 +($;u!f) - 

Since the joint distribution of the two random variables appearing in (30) is 
a Gaussian distribution in 2-dimension’s, we may use Lemma 3. Thus there 
exists a positive constant c such that 

P(EA)=P{X(~)-X(g) > p(k), X(e) -x(&) > p(h)} 
(31) 

5 CP(Ej)P(EJ m 

If we take the maximum of c and 1 for cz in (b) of (iii) then (b) holds. 
In order to verify (a) of (iii), we use the other expressions of the E;s. 

Let us denote Ej by E& and each one of Ej6 by E&. Dividing the sum 
of P(E,E,,) according to the magnitude of the correlation coefficient of 

(X(F) -X(-$)) and (X(+)-X($-)) we have 

(32) $I P(EjEJ = X:‘P(EjEjJ +X:“P(EjEji) , 

where C’ denotes the summation over i’s such that the correlation coefficient 

of the corresponding random variables is larger than -$- and xt/ denotes 

the summation of the remainder. Since the correlation is at most 

min(& , -&-) (&&-)-“* 

and since 1’2+ 5 Z2-P by the limitation on the ranges of 1 and I’, we see that 
the largest superscript of Eji’s appearing in x:’ is at most p+2. Moreover, 
without loss of generality, we may assume in the computation of P(E,E,,) that 

k -<E. If -&#sw, we have 
2P = 2P’ 
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The inequality follows from the definition of ordering and the fact that the 
correlation coefficient of two random variabIes appearing in the last term of 
(33) is larger than that of the second term. Since p’spf2, we obtain by 
Lemma 1 and Lemma 5 that 

p(E,E,,) 5 ce-8t++~$‘(‘;) p(E,) I 12 
(34) 

5 ce 
-s~cn;~-k2p’-P~p(Ej) , 

where c, 6 and 6’ are positive constants. Here we remark that the number 
of I& appearing in the present case is less than (k’-k2p’-p) for fixed pair 

(p’, k’) because -& 2 &. Similarly, for the case of & > -& we have 

(35) P(E&,) 5 ce 
-p(&-P-p) 

P(Ej) . 

Considering the same situation for -2t- >&, we have 

(36) 

I 

~:‘p(EjEj,J 5 2cp(Ejf$p{ ;;;;,I: (k’-k2p’-p)s-8’(k’-k2p’- ‘) 

12pI-p 

+ -& (12PJ-P - p)e-8(~2P’ - P-“)} 

where ct is an absolute constant. 
For the computation of P(EjEj,) where Eji appears in the summation of 

;r=“, we apply Lemma 4. Using the same expression for Ei and E,$ as before, 

for the case of 2$&&<717, k-i-1 k’+l’ we have 

P(EjEj.J I P 

(37) 

5 ce-“p’P(Ei> 

where c, c’, 6 and 6’ are positive constants. Similarly, for the case of -&- 

we obtain the same result. Combining all the cases, 

we have 
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(38) 

where p is an absolute constant. (32), (36) and (38) establish the validity 
of (iii a). Therefore we may aplly Lemma 2 in our case and Theorem 1 is 
proved completely. Q. E. D. 

Syracuse University, Technion, Israel, 
and Shizuoka University. 
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