PARTITION RELATIONS CONNECTED WITH THE CHROMATIC NUMBER OF GRAPHS

P. ERDÖS and R. RADO[†].

1. The chromatic number of a combinatorial graph Γ is the least cardinal number a which has the following property. The set of nodes of Γ can be divided into a subsets in such a way that no edge of Γ joins two nodes belonging to the same subset. The simplest example of a graph of chromatic number a is the complete graph of order a, which has exactly a nodes each two of which are joined by an edge. A tree, i.e. a graph without circuits, has a chromatic number which is at most equal to two. More generally, this holds for every even graph, i.e. a graph all of whose circuits have an even number of edges. It is known[‡] [1] that there are finite graphs without triangles whose chromatic number has any prescribed finite value a (Theorem 1). The construction used in [1] fails when a is infinite. The first part of this paper is concerned with a construction, modelled on that of [1] but differing from it in some essential respects, which yields a graph Γ_a , without triangles, of any given chromatic number $a \ge \aleph_0$ (Theorem 2). Under the assumption of a form of the general continuum hypothesis the set of nodes of such a graph can be made as small as it can be, *i.e.* of cardinal a (Theorem 3).

In the second part a new type of set-theoretical partition relation will be introduced, formed in analogy to partition relations studied in [2], which refers to a generalization of the notion of the Baire categories in analysis. For this relation we prove a result (Theorem 4) which might be considered as a wide generalization of a special case of a theorem of Dushnik and Miller§. It is worth noting that the last named theorem holds for any infinite value of the cardinal number a entering in its statement whereas Theorem 4 will only be proved for every regular infinite a. By means of Theorem 2 we shall in fact prove (Theorem 5) that the conclusion of Theorem 4 is false for every singular infinite cardinal, under the assumption of a form of the general continuum hypothesis.

2. Set union, difference, intersection and inclusion in the wide sense, are denoted by A+B, A-B, AB, $A \subset B$ respectively, and A-B is used irrespective whether $B \subset A$ is true or false. The set of all mappings of B into A is A^B . The cardinal (number) of A is |A|, and the cardinal of an ordinal (number) n is |n|. Occasionally we shall use the obliteration operator $\hat{}$ whose effect is to remove from a well-ordered series the term

[†] Received 23 July, 1957; read 21 November, 1957.

[‡] In fact, the graph constructed in [1] has no triangle, no quadrilateral and no pentagon. In the present note quadrilaterals and pentagons will not be excluded.

^{§ [3],} also [2], Theorem 44.

[[]JOURNAL LONDON MATH. Soc. 34 (1959), 63-72]

above which it is placed. Thus $\{x_0, x_1, ..., \hat{x}_n\}$ (*n* finite) means just $\{x_0, x_1, ..., x_{n-1}\}$, whether or not the *x*'s are distinct. This operator may even be placed above a symbol which has not yet been defined. If *m* and *n* are ordinals and $m \leq n$ then [m, n) denotes the set of all ordinals ν such that $m \leq \nu < n$. Brackets $\{\}$ are used exclusively in order to specify a set by giving a list of its elements, and (x, y) denotes an ordered pair. Thus $[m, n) = \{\nu : m \leq \nu < n\}$. The next larger cardinal to *a* is denoted by a^+ . For any cardinal $a \geq 2$ we denote by *a'* the least cardinal *b* such that, for some index set *N* satisfying |N| = b and suitable cardinals $a_{\nu} < a$, we have $a = \Sigma(\nu \in N) a_{\nu}$; the cardinal *a* is regular if a' = a, and singular if a' < a.

For any set A the symbol $[A]^2$ denotes the set whose elements are all subsets $\{x, y\}_{\neq}$ of A of cardinal 2. A graph is a pair $\Gamma = (S, T)$ of sets such that $T \subset [S]^2$. The order $\phi(\Gamma)$ of Γ is defined by $\phi(\Gamma) = |S|$, and the chromatic number $\chi(\Gamma)$ is the least cardinal a such that, for some index set N of cardinal a, there is a partition $S = \Sigma(\nu \in N) S_{\nu}$ such that $[S_{\nu}]^2 T = \emptyset$ for all $\nu \in N$.

Clearly, $\chi(\Gamma) \leq \phi(\Gamma)$. If Γ is complete, *i.e.* $T = [S]^2$, then $\chi(\Gamma) = \phi(\Gamma)$. The result of [1], as far as triangles are concerned, states that, given any finite cardinal a, there is a finite graph Γ_a such that $\chi(\Gamma_a) = a$ and, at the same time, $[\{x, y, z\}]^2 \notin T$ whenever $\{x, y, z\}_{\neq} \subset S$. In order to make it easier to follow our extension of this result to $a \geq \aleph_0$ we give a slightly modified version of the original proof of Kelly and Kelly for finite a.

THEOREM 1. Corresponding to every $a < \aleph_0$ there exists a graph Γ_a , without triangles, such that $\phi(\Gamma_a) < \aleph_0$ and $\chi(\Gamma_a) = a$.

Proof. It suffices to define an operator M which turns every graph Γ into a graph $M\Gamma$ such that

- (i) $\phi(M\Gamma) = \phi(\Gamma)\chi(\Gamma) + \phi(\Gamma)\chi(\Gamma)$.
- (ii) If $\chi(\Gamma) < \aleph_0$, then $\chi(M\Gamma) = \chi(\Gamma) + 1$.
- (iii) If Γ does not contain any triangle then $M\Gamma$ does not contain any triangle.

For if such an operator has been found then the assertion of the theorem holds for the graph $\Gamma_a = M^a \Gamma_0$ obtained by *a*-fold iteration of M applied to the graph $\Gamma_0 = (\emptyset, \emptyset)$. Let $\Gamma = (S, T)$ be a graph, and let *n* be the initial ordinal belonging to the cardinal $\chi(\Gamma)$. We put $M\Gamma = \Gamma' = (S', T')$ where

$$\begin{split} S' &= \{ (\nu, x) \colon \nu < n ; \ x \in S \} + \{ (n, x_0, x_1, ..., \hat{x}_n) \colon x_0, ..., \hat{x}_n \in S \} ; \\ T' &= \left\{ \{ (\nu, x), \ (\nu, y) \} \colon \nu < n ; \ \{ x, y \} \in T \right\} \\ &+ \left\{ \{ (\nu, x_\nu), \ (n, x_0, ..., \hat{x}_n) \} \colon \nu < n ; \ x_0, ..., \hat{x}_n \in S \right\}. \end{split}$$

Then $T' \subset [S']^2$, and (i) and (iii) hold. By definition of *n* there is $f \in [0, n)^S$ such that $\{x, y\} \in T$ implies $f(x) \neq f(y)$. Define $f' \in [0, n+1)^{S'}$ by putting

$$f'((\nu, x)) = f(x) \quad (\nu < n; x \in S),$$
$$f'((n, x_0, ..., \hat{x}_n)) = n \quad (x_0, ..., \hat{x}_n \in S)$$

Then $\{\xi, \eta\} \in T'$ implies $f'(\xi) \neq f'(\eta)$, so that $\chi(\Gamma') \leq |n+1|$. If we now suppose that $\chi(\Gamma') = |n| < \aleph_0$, then there is $g' \in [0, n)^{S'}$ such that $\{\xi, \eta\} \in T'$ implies $g'(\xi) \neq g'(\eta)$. Define $g_{\nu} \in [0, n)^{S}$ by putting

$$g_{\nu}(x) = g'((\nu, x)) \quad (\nu < n; x \in S).$$

Let $\nu < n$; $\{x, y\} \in T$. Then $\{(\nu, x), (\nu, y)\} \in T'$;

$$g_{\nu}(x) = g'((\nu, x)) \neq g'((\nu, y)) = g_{\nu}(y).$$

By definition of *n*, and since *n* is finite, there is $x_{\nu} \in S$ such that $g_{\nu}(x_{\nu}) = \nu$. Put $\nu_0 = g'((n, x_0, ..., \hat{x}_n))$. Then

$$\begin{split} \nu_0 < n \, ; \, \left\{ (\nu_0, \, x_{\nu_0}), \, (n, \, x_0, \, \dots, \, \hat{x}_n) \right\} \varepsilon \, T \, ; \\ g' \Big((\nu_0, \, x_{\nu_0}) \Big) = g_{\nu_0}(x_{\nu_0}) = \nu_0 = g' \Big((n, \, x_0, \, \dots, \, \hat{x}_n) \Big) \end{split}$$

which contradicts the definition of g'. Hence $\chi(\Gamma') = |n+1|$, and (ii) follows. This proves Theorem 1.

Clearly, this argument fails for $a \ge \aleph_0$ since in this case the existence of x_{ν} can no longer be inferred. All we know is that $|\{g_{\nu}(x): x \in S\}| = |n|$ which does not imply that $g_{\nu}(x)$ takes every value in [0, n).

4. THEOREM 2. Corresponding to every cardinal $a \ge \aleph_0$ there exists a graph Γ_a which has the following properties:

- (i) Γ_a does not contain any triangle.
- (ii) $\chi(\Gamma_a) = a'; \phi(\Gamma_a) \ge a.$
- (iii) If $a_0 < a$ implies $2^{a_0} \leq a$, then $\phi(\Gamma_a) = a$.

THEOREM 3. Let $a \ge \aleph_0$. Then there exists a graph Γ_a' , without triangles, such that $\chi(\Gamma_a') = a$. If

$$a = \sup \left(b \,\varepsilon \, B \right) b',\tag{1}$$

for some non-empty set B of infinite cardinals such that $b_0 < b \in B$ implies $2^{b_0} \leq b$, then Γ_a' can be made to satisfy, in addition, $\phi(\Gamma_a') = a$. Such a set B exists, for instance, when either (i) a is regular, and $a_0 < a$ implies $2^{a_0} \leq a$, or (ii) a is singular, and $\aleph_0 \leq a_0 < a$ implies $2^{a_0} = a_0^+$.

5. Proof of Theorem 2. Let $a \ge \aleph_0$, and denote by m and n the initial ordinals belonging to a' and a respectively. We define sets $S_{a\nu}$, $T_{a\nu}$ for

 $\nu < n$ as follows. Let $\nu_0 < n$, and suppose that $S_{a\nu}$ and $T_{a\nu}$ have been defined for $\nu < \nu_0$. Then we let $S_{a\nu_0}$ be the set of all pairs (ν_0, A) such that

$$A \subset \Sigma(\nu < \nu_0) \, S_{a\nu}; \quad |A| < a'; \quad [A]^2 \, \Sigma(\nu < \nu_0) \, T_{a\nu} = \emptyset$$

In particular, $(\nu_0, \phi) \in S_{a\nu_0}$, so that $S_{a\nu_0} \neq \emptyset$.

Let $T_{a\nu_0}$ be the set of all sets $\{x, (\nu_0, A)\}_{\neq}$ such that $(\nu_0, A) \in S_{a\nu_0}$; $x \in A$. This completes the definition of $S_{a\nu}$, $T_{a\nu}$ for $\nu < n$ and it follows that

$$S_{a\mu}S_{a\nu} = \emptyset \quad (\mu < \nu < n).$$

 \mathbf{Put}

$$S_{a} = \Sigma(\nu < n) S_{a\nu}; \quad T_{a} = \Sigma(\nu < n) T_{a\nu}; \quad \Gamma_{a} = (S_{a}, T_{a}).$$
$$|S_{a}| = \Sigma(\nu < n) |S_{a\nu}| \ge \Sigma(\nu < n) 1 = a. \tag{2}$$

Then

Also $T_a = \Sigma(\nu < n) \{ \{x, (\nu, A)\}_{\neq} : (\nu, A) \in S_{a\nu}; x \in A \} \subset [S_a]^2$

so that Γ_a is a graph. In the remainder of the proof of Theorem 2 we shall suppress the suffix a.

Proof of (i). Let $[\{x_0, x_1, x_2\}_{\neq}]^2 \subset T$. We have to deduce a contradiction. We may assume that

$$x_{\alpha} = (\nu_{\alpha}, A_{\alpha}) \varepsilon S_{\nu_{\alpha}} \quad (\alpha < 3); \quad \nu_{0} < \nu_{1} < \nu_{2} < n.$$

Let $\alpha < \beta < 3$. Then

$$\{x_{\alpha}, \ (\nu_{\beta}, A_{\beta})\} = \{x_{\beta}, \ (\nu_{\alpha}, A_{\alpha})\} = \{x_{\alpha}, \ x_{\beta}\} \in T$$

and therefore either $x_{\alpha} \in A_{\beta}$ or $x_{\beta} \in A_{\alpha}$. Now

x

$$\{x_{\beta}\}A_{\alpha} \subset S_{\nu_{\beta}}\Sigma(\nu < \nu_{\alpha}) S_{\nu} = \emptyset$$

$$\epsilon S_{\nu_{\alpha}}A_{\beta} \subset S_{\nu_{\alpha}}\Sigma(\nu < \nu_{\beta}) S_{\nu}; \ \nu_{\alpha} < \nu_{\beta};$$

and hence

$$\{x_{\alpha}, x_{\beta}\} = \{x_{\alpha}, (\nu_{\beta}, A_{\beta})\} \in T_{\nu_{\beta}}.$$

Therefore $\{x_0, x_1\} \in [A_2]^2 T_{\nu_1} \subset [A_2]^2 \Sigma(\nu < \nu_2) T_{\nu} = \emptyset,$

by definition of A_2 . This is the desired contradiction, and (i) follows.

Proof of (ii). Define $f \in [0, m)^S$ as follows. Well-order S in such a way that whenever $\mu < \nu < n$; $x \in S_{\mu}$; $y \in S_{\nu}$, then x < y. Let $x_0 \in S$, and suppose that f(x) has been defined for $x < x_0$. Then $x_0 = (\nu_0, A_0) \in S_{\nu_0}$, for some $\nu_0 < n$ and some $A_0 \subset \Sigma(\nu < \nu_0) S_{\nu}$, and f(x) has already been defined for $x \in A_0$. Also, $|A_0| < a' = |m|$, so that there exists an ordinal $f(x_0) < m$ such that $f(x_0) \neq f(x)$ ($x \in A_0$). This defines f(x) for $x \in S$. Now let $\{y, x\} \in T$. We want to prove $f(y) \neq f(x)$. We may assume that $x = (\nu, A) \in S_{\nu}$; $y \in A$. Then by definition of f(x), we have $f(x) \neq f(y)$. This shows that f(x) is an admissible "colouring" of Γ with |m| colours, so that $\chi(\Gamma) \leq |m| = a'$. We shall now assume that

$$\chi(\Gamma) < a' \tag{3}$$

and derive a contradiction. Let k be the initial ordinal belonging to $\chi(\Gamma)$. Then there is $g \in [0, k)^S$ such that $g(x) \neq g(y)$ whenever $\{x, y\} \in T$. We define, for $\mu < m$, sets L_{μ} and ordinals ρ_{μ} as follows. Let $\mu_0 < m$, and suppose that L_{μ} and ρ_{μ} have been defined for $\mu < \mu_0$ and that

$$L_{\mu} \subset S; \
ho_{\mu} < n \ (\mu < \mu_{0}).$$

Then, by Zorn's Lemma, there is a maximal set L_{μ_0} such that

$$\begin{split} L_{\mu_0} &\subset S \,; \quad [L_{\mu_0}]^2 \, T = \varnothing \,; \quad g(x) \neq g(y) \, \text{ whenever } \{x, \, y\}_{\neq} \, L_{\mu_0} \,; \\ L_{\mu_0} &\subset \Sigma \left(\rho_\mu < \nu < n \right) S_\nu, \text{ for each } \mu < \mu_0. \end{split}$$

Then, by definition of a', $L_{\mu_0} \neq \emptyset$. Also,

$$|L_{\mu_0}| = |\{g(x): x \in L_{\mu_0}\}| \leq |k| < a',$$

and it follows that there is an ordinal $\rho_{\mu_0} < n$ such that $L_{\mu_0} \subset \Sigma \ (\mu < \rho_{\mu_0}) S_{\mu}$. This defines L_{μ} and ρ_{μ} for $\mu < m$. Put $\xi_{\mu} = (\rho_{\mu}, L_{\mu}) \ (\mu < m)$. Then $\xi_{\mu} \in S_{\rho_{\mu}} \ (\mu < m)$. Let $\mu_1 < \mu_0 < m$. Then

$$\boldsymbol{\varnothing} \neq L_{\mu_{0}} \subset \left(\Sigma \left(\rho_{\mu_{1}} < \nu < n \right) S_{\nu} \right) \left(\Sigma \left(\nu < \rho_{\mu_{0}} \right) S_{\nu} \right).$$

Hence there is ν such that $\rho_{\mu_1} < \nu < \rho_{\mu_0}$, so that $\rho_{\mu_1} < \rho_{\mu_0}$ $(\mu_1 < \mu_0 < m)$. Since $g(\xi_{\mu}) < k$ $(\mu < m)$, and |k| < |m|, there are ordinals α, β such that $\alpha < \beta < m$; $g(\xi_{\alpha}) = g(\xi_{\beta})$. Put $L_{\alpha}' = L_{\alpha} + \{\xi_{\beta}\}$. Then

$$\xi_{\beta} = (\rho_{\beta}, L_{\beta}) \varepsilon S_{\rho_{\beta}} \subset \Sigma (\rho_{\mu} < \nu < n) S_{\nu} \quad (\mu < \alpha),$$

and hence, by definition of L_{α} ,

$$L_{\alpha}' \subset \Sigma \left(\rho_{\mu} < \nu < n \right) S_{\nu} \quad (\mu < \alpha).$$
(4)

If we assume that there is $x \in L_{\alpha}$ such that

$$\{x, \xi_{\beta}\} \in T, \tag{5}$$

then $x \in L_{\alpha} \subset \Sigma$ $(\nu < \rho_{\alpha}) S_{\nu}$; $x = (\nu_1, A)$, for some $\nu_1 < \rho_{\alpha}$;

$$\{x, (\rho_{\beta}, L_{\beta})\} = \{\xi_{\beta}, (\nu_{1}, A)\} = \{x, \xi_{\beta}\} \in T,$$

and we have either $x \in L_{\beta}$ or $\xi_{\beta} \in A$. Now

 $\{x\}L_{\beta} \subset S_{\nu_{1}}\Sigma \ (\rho_{\alpha} < \nu < n) \ S_{\nu} = \emptyset,$

so that, in view of $\rho_{\beta} > \rho_{\alpha} > \nu_1$,

$$\xi_{\beta} \varepsilon S_{\rho_{\beta}} A \subset S_{\rho_{\beta}} \Sigma (\nu < \nu_{1}) S_{\nu} = \emptyset.$$

This contradiction proves that (5) is false. We infer from the definition of L_{α} that

$$[L_{\alpha}']^2 T = \emptyset. \tag{6}$$

If $x \in L_{\alpha}$, then $\{x, \xi_{\alpha}\} = \{x, (\rho_{\alpha}, L_{\alpha})\} \in T_{\rho_{\alpha}} \subset T; g(x) \neq g(\xi_{\alpha}) = g(\xi_{\beta}).$ This implies, by definition of L_{α} , that

$$g(x) \neq g(y), \quad \text{if} \quad \{x, y\}_{\neq} \subset L_{\alpha}'. \tag{7}$$

Finally, if $\xi_{\beta} \in L_{\alpha}$, then the contradiction

$$\xi_{\beta} \varepsilon S_{\rho_{\beta}} L_{\alpha} \subset S_{\rho_{\beta}} \Sigma \left(\nu < \rho_{\alpha} \right) S_{\nu} = \emptyset$$

follows. Hence $\xi_{\beta} \notin L_{\alpha}$, so that

$$L_{\alpha} \subset \neq L_{\alpha}'. \tag{8}$$

The set of relations (4), (6), (7), (8) constitutes a contradiction to the maximum property of L_{α} . Hence the assumption (3) was false and (ii) is established.

Proof of (iii). We suppose that a is such that $a_0 < a$ implies $2^{a_0} \leq a$. We begin by deducing that, whenever b < a, then $a^b \leq a$. If, first of all a is a limit number then, by [4],

$$a^{b} = \Sigma (a_{0} < a) a_{0}^{b} \leqslant \Sigma (a_{0} < a) 2^{a_{0} b} \leqslant \Sigma (a_{0} < a) a = a.$$

If, on the other hand, $a = c^+$ then

$$a^b \leqslant (2^c)^b = 2^{cb} \leqslant a.$$

We can now prove that $|S_{\nu}| \leq a$ ($\nu < n$). Let $\nu_0 < n$, and suppose that $|S_{\nu}| \leq a$ for $\nu < \nu_0$. Then it follows from the definition of S_{ν_0} that

$$|S_{\nu_0}| \leq \Sigma (b < a') \left(\Sigma (\nu < \nu_0) |S_{\nu}| \right)^b \leq \Sigma (b < a') (a |\nu_0|)^b$$
$$\leq \Sigma (b < a') a^b \leq aa' = a.$$

This proves that $|S_{\nu}| \leq a$ ($\nu < n$) and hence, by (2), that

$$a \leq |S| = \Sigma (\nu < n) |S_{\nu}| \leq a |n| = a,$$

and (iii) follows. This completes the proof of Theorem 2.

6. Proof of Theorem 3. If a' = a then we may put $\Gamma_a' = \Gamma_a$. Now let a' < a, and let m be the initial ordinal of cardinal a'. Then $a = \Sigma (\mu < m) a_{\mu}$, for some suitable cardinals $a_{\mu} < a$. Let $\Gamma_a' = (S_a', T_a')$, where $S_a' = \{(\mu, x) : \mu < m; x \in S_{c_{\mu}}\}$,

$$T_{a}' = \left\{ \{\mu, x\}, \ (\mu, y) \} \colon \mu < m \, ; \ \{x, y\} \in T_{c_{\mu}} \right\} ; \ c_{\mu} = a_{\mu}^{+},$$

and $S_{e_{\mu}}$ and $T_{e_{\mu}}$ are the sets of nodes and edges respectively of the graph $\Gamma_{e_{\mu}}$ defined above. By Theorem 2

$$\chi(\Gamma_{c_{\mu}}) = c_{\mu}' = c_{\mu}$$

and therefore, by definition of Γ_a' ,

$$\chi(\Gamma_a') = \sup (\mu < m) c_\mu = a.$$

68

Let us now suppose that a satisfies (1) for some set B possessing the property given in Theorem 3. Then we modify our definition of Γ_a' by putting $\Gamma_a' = (S_a', T_a')$, where $S_a' = \{(b, x) : b \in B; x \in S_b\}$,

$$T_{a}' = \left\{ \{(b, x), (b, y)\} : b \in B; \{x, y\} \in T_{b} \right\}.$$

We have $\chi(\Gamma_a') = \sup (b \in B) \chi(\Gamma_b) = \sup (b \in B) b' = a$ and, by Theorem 2 (iii),

$$a \leqslant \phi(\Gamma_a') \leqslant \Sigma (b \varepsilon B) \phi(\Gamma_b) = \Sigma (b \varepsilon B) b \leqslant a |B| = a.$$

Finally, if a satisfies (i) of Theorem 3 then the set $\{a\}$ can be used as B, and if a satisfies (ii) of Theorem 3 then the set $\{b; \aleph_0 \leq b < a\}$ can be used as B. This proves Theorem 3.

7. Our next theorems are most conveniently expressed in terms of a partition relation of the form

$$A \to (b, \Lambda)^2$$
. (9)

Here A is a set, b a cardinal number and A a set of sets. The relation (9) expresses, by definition, the proposition that, whenever $[A]^2 = K_0 + K_1$, there is $X \subseteq A$ such that

either
$$[X]^2 \subset K_0$$
; $|X| = b$
or $[X]^2 \subset K_1$; $X \in \Lambda$.

The negation of (9) is denoted by

$$A \leftrightarrow (b, \Lambda)^2$$
.

Let Ω be a set of sets. A set A is said to be of first Ω -category if there is $\Omega' \subset \Omega$ such that $|\Omega'| < |\Omega|$ and $A \subset \Sigma(X \in \Omega')X$, and otherwise of second Ω -category.

THEOREM 4. Let Ω be a set of sets and suppose that $|\Omega|$ is a regular infinite cardinal. Let A be a set which is of second Ω -category, and denote by Λ_2 the set of all subsets of A which are of second Ω -category. Then

$$A \rightarrow (\aleph_0, \Lambda_2)^2.$$

Remark 1. Let Ω be the set of all closed, nowhere dense sets of real numbers. Assume that $2^{\aleph_0} = \aleph_1$. Then a set A of real numbers is of econd Ω -category if, and only if, A is of second Baire category. For the complement of every closed set is the union of open intervals with rational endpoints, so that $|\Omega| = 2^{\aleph_0} = \aleph_1$. Now Theorem 4 shows that if the nodes of a graph Γ , which does not contain any infinite complete subgraph, form a set A of real numbers of second Baire category then there is a subset X of A, of second Baire category, which is independent, i.e. which is such that no two elements of X are joined by an edge of Γ (assuming $2^{\aleph_0} = \aleph_1$).

In the case of graphs of a more special type similar results have been obtained by F. Bagemihl [5] which are, however, not implied by our result.

Remark 2. If n is an infinite ordinal such that |n| is regular then we may put, in Theorem 4,

$$\Omega = ig\{ \{
u \} \colon \
u < n ig\} \ ; \ A = [0, \ n).$$

A subset X of A is of second Ω -category if, and only if, |X| = |n|. Hence Theorem 4 states in this case that, in the notation of [2], $a \to (\aleph_0, a)^2$ whenever $a = a' \ge \aleph_0$. This is the theorem of Dusknik and Miller [3] in the special case of regular cardinals.

Proof of Theorem 4. We may assume that $\Omega = \{A_{\nu} : \nu < n\}$, and that n is an initial ordinal of cardinal $|\Omega| \ (\geq \aleph_0)$. Let $[A]^2 = K_0 + K_1$. We have to find a subset X of A such that either

$$[X]^2 \subset K_0; \ |X| = \aleph_0 \tag{10}$$

$$[X]^2 \subset K_1; \ X \in \Lambda_2. \tag{11}$$

If $A \not\in \Sigma$ ($\nu < n$) A_{ν} then (11) holds for $X = \{\xi\}$, where ξ is any element of $A - \Sigma$ ($\nu < n$) A_{ν} . Now let $A \subset \Sigma$ ($\nu < n$) A_{ν} . For $x \in A$ we put

$$U_0(x) = \left\{ y: \{x, y\} \in K_0 \right\}.$$

Case 1. There are elements $x_0, ..., \hat{x}_{\omega_0}$ of A such that

$$x_k \varepsilon A \Pi(\lambda < k) U_0(x_\lambda) \varepsilon \Lambda_2 \quad (k < \omega_0).$$

Then (10) holds for $X = \{x_0, ..., \hat{x}_{\omega_0}\}.$

Case 2. There are $k, x_0, ..., \hat{x}_k$ such that $k < \omega_0; x_0, ..., \hat{x}_k \in A$ and, if

$$D = A \Pi (\lambda < k) U_0(x_{\lambda}),$$
$$D \in \Lambda_2; D U_0(x) \notin \Lambda_2 \quad (x \in D).$$

Then we define $y_0, ..., \hat{y}_n$ as follows.

Let $\nu_0 < n$ and $y_0, ..., \hat{y}_{\nu_0} \in D$. If $D \subset \Sigma (\nu < \nu_0) \left(\{y_\nu\} + U_0(y_\nu) + A_\nu \right)$ then there are $\mu_0, ..., \hat{\mu}_{\nu_0} < n$ such that $D \subset \Sigma (\nu < \nu_0) \Sigma (\mu < \mu_\nu) A_\mu$. Now, since $|\nu_0| < |n| = |n|'$, we have $\overline{\mu} = \sup (\nu < \nu_0) \mu_\nu < n$ and therefore

$$D \subseteq \Sigma \left(\mu < \overline{\mu} \right) A_{\mu}; \ D \notin \Lambda_2,$$

which is a contradiction. Hence we can choose

$$y_{\nu_0} \in D - \Sigma (\nu < \nu_0) (\{y_{\nu}\} + U_0(y_{\nu} + A_{\nu})).$$

This defines $y_0, ..., \hat{y}_n$. We now show that (11) holds for $X = \{y_0, ..., \hat{y}_n\}$. First of all, $[X]^2 \subset K_1$ by definition of y_{ν_0} . Also, if $X \notin \Lambda_2$, then there is $\nu_1 < n$ such that $X \subset \Sigma$ ($\nu < \nu_1$) A_{ν} , and then $y_{\nu_1} \in X \subset \Sigma$ ($\nu < \nu_1$) A_{ν} , which contradicts the definition of y_{ν_1} . This proves Theorem 4.

or

8. Our last theorem will imply that the assertion of Theorem 4 is false if $|\Omega|$ is any singular infinite cardinal, provided we assume a version of the general continuum hypothesis.

THEOREM 5. Let a be a singular infinite cardinal number and let B be a non-empty set of cardinals less than a such that $b \in B$ implies $2^b = b^+$, and let $a = \sup (b \in B) b^+$. Then there is a set Ω of sets such that, if $A = \Sigma (X \in \Omega) X$, and Λ_2 denotes the set of all subsets of A which are of second Ω -category then (i) $|\Omega| = a$; (ii) $A \in \Lambda_2$; (iii) $A \to (3, \Lambda_2)^2$.

Proof of Theorem 5. Let $b \in B$. Then $2^{b^+} < a$. For since a' < a, it follows that a is a limit cardinal, and hence b < a; $b^+ < a$, and there is $c \in B$ such that $b^+ < c$ Then $2^{b^+} \leq 2^c = c^+ < a$. Let m and n be the initial ordinals of cardinal a' and a respectively. Then there are cardinals $a_{\mu} < a$ such that $a = \Sigma (\mu < m) a_{\mu}$. There are $b_{\mu} \in B$ such that

$$a_{\mu} \leqslant b_{\mu} \quad (\mu < m).$$

By Theorem 2 there are graphs $\Gamma_{\mu}^{*} = (S_{\mu}^{*}, T_{\mu}^{*})$, without triangles, such that

 $\phi(\Gamma_{\mu}^{*}) = \chi(\Gamma_{\mu}^{*}) = b_{\mu}^{+} \ (\mu < m); \quad S_{\mu}^{*} S_{\nu}^{*} = \emptyset \ (\mu < \nu < m).$

Let

$$\Omega = \Sigma(\mu < m) \{ X : X \subset S_{\mu}^{*}; [X]^{2} T_{\mu}^{*} = \emptyset \},$$
$$A = \Sigma (X \in \Omega) X.$$

Then

 $|\Omega| \leq \Sigma (\mu < m) 2^{b_{\mu}^{+}} \leq a |m| = a.$

On the other hand, there is $f \in \Omega^A$ such that $x \in f(x)$, for $x \in A$. Then $\mu < m$; $\{x, y\} \in T_{\mu}^*$ imply $f(x) \neq f(y)$. Hence $\chi(\Gamma_{\mu}^*) \leq |\Omega|$;

$$a = \Sigma (\mu < m) a_{\mu} \leq \Sigma (\mu < m) b_{\mu}^{+} = \Sigma (\mu < m) \chi(\Gamma_{\mu}^{*}) \leq |\Omega| |m|; a \leq |\Omega|.$$

Therefore (i) holds.

If $\Omega' \subset \Omega$; $A \subset \Sigma (X \in \Omega') X$, then there is $g \in (\Omega')^A$ such that $x \in g(x)$, for $x \in A$. Again, the relations $\mu < m$; $\{x, y\} \in T_{\mu}^*$ imply $g(x) \neq g(y)$, and hence we have $X(\Gamma_{\mu}^*) \leq |\Omega'|$;

$$a \leq \Sigma (\mu < m) \chi(\Gamma_{\mu}^{*}) \leq |\Omega'| |m|; a \leq |\Omega'|.$$

This proves (ii).

We now consider the partition

$$[A]^2 = K_0 + K_1$$
, where $K_0 = \Sigma (\mu < m) \Gamma_{\mu}^*$; $K_1 = [A]^2 - K_0$.

If $Y \subset A$ and $[Y]^2 \subset K_0$, then $[Y]^2 \subset T_{\mu}^*$, for some $\mu < m$, and therefore, since Γ_{μ}^* does not contain any triangle, |Y| < 3.

[†] Such a set B exists, for instance, if a is such that $\aleph_0 \leq b \leq a$ implies $2^b = b^+$, in which case we may take $B = \{b : \aleph_0 \leq b \leq a\}$.

PARTITION RELATIONS.

On the other hand, if $Z \subset A$ and $[Z]^2 \subset K_1$, then $ZS_{\mu}^* \in \Omega$;

$$Z = \Sigma (\mu < m) Z S_{\mu}^{*} = \Sigma (X \in \Omega'') X,$$

where $\Omega^{\prime\prime} = \{ZS_{\mu}^* : \mu < m\} \subset \Omega; |\Omega^{\prime\prime}| \leq |m| < a$. Hence $Z \notin \Lambda_2$, and (iii) follows. This completes the proof of Theorem 5.

References.

- J. B. Kelly and L. M. Kelly, "Paths and circuits in critical graphs", American J. of Math., 76 (1954), 792.
- P. Erdös and R. Rado, "A partition calculus in set theory ", Bull. American Math. Soc., 62 (1956), 427-489.
- 3. B. Dusknik and E. W. Miller, "Partially ordered sets", American J. of Math., 63 (1941), 605.
- 4. N. Bachmann, "Transfinite Zahlen", Ergebnisse der Mathematik (1955), 144, Satz 3.
- 5. F. Bagemihl, "The Baire category of independent sets", Compositio Math., 13 (1957), 71-75.

Hebrew University of Jerusalem. University of Reading.