
SOME REMARKS ON SET THEORY, VIII 

P. Erdijs and A. Hajnal 

This paper discusses some problems similar to questions considered in earlier 
communications of the same title [2], [3] and to some questions treated by P. Erdijs 
and R. Rado [4], [5]. 

1. ON INDEPENDENT SETS 

Let M be a set (in this note, M will denote the set of real numbers), and to each 
x E M, let there correspond a set S(x) c M, called the PictUYf? of s, such that 
x $ S(x). A subset M’ of M is called independent (or free) if, for each pair of points 
x and y in M, x $ S(y) and y $ S(x). In [2, I, p. 521 it was conjectured that if M is 
the set of real numbers, and if the measure of S(x) is bounded and S(x) is not every- 
where dense, then there always exists an independent pair. In fact, it is easy to see 
that if we assume c = N,, then this conjecture is false. To construct a counter- 
example, we well-order M into an W, -sequence { x~} (a, < a,). For each (Y, we 
write 

S(xLyI) = Sl(x,)U Szb$y), 

where SI(xo) is the interval (+, x, + l), and where x E S&) provided p < o! 
and xp does not lie in the interval (x. - 1, %). Clear y, S(G) has measure 1 (the P 
set S2(xo) is at most denumerable) and is not everywhere dense, and no two points 
are independent. 

Instead of the hypothesis that e = N,, we have used only the hypothesis that the 
measure of every set of power less than c is 0. In fact, we need only the hypothesis 
that the set of real numbers can be well-ordered into a sequence {x(y) (a < stc) 
such that every set which is not cofinal with 52, has measure 0. Denote this hypo- 
thesis by I& We do not know whether H, is equivalent to the hypothesis that each 
set of power less than c has measure 0. Further, we do not know whether, if S(x) 
has the properties above, the negation of H, implies the existence of an independent 
pair. 

Piranian (private communication) recently asked what can be said about inde- 
pendent points if each S(x) has measure 0 and is not everywhere dense. 

THEOREM 1. If S(x) has measure 0 and is not everywhere dense, theye exists 
an independent pair; under the additional asswmptirm Ho, an independent triplet need 
not exist. 

Proof. Let A = {a,} (1 < n < m) be a denumerable dense set. Then 

U”- (Ill 
- 

n-1 S a is clearly of measure 0, and its complement contains a point b. Since 
S(b) is not everywhere dense, there exists an m such that a,$ S(b). Clearly, a, 
and b are independent. 

On the other hand, let { x, } (01< St,) be a well-ordering of M. For 0 < LY < fi c, 
let S(w) be the set of those xp (~3 < o!) that have the same sign as + (here the sign 

Received December 7, 1959. 

18’7 



188 P. ERDiiS and A. HAJNAL 

of 0 is taken to be positive). Then S(G) is not everywhere dense; also, under the 
hypothesis H,, it has measure 0. Clearly there is no independent triplet; this com- 
pletes the proof of Theorem 1. We are unable to decide about the existence of an in- 
dependent triplet, under the assumption that I&, is false. 

Theorem 1 can easily be strengthened: If each S(x) has measure 0 and is no- 
where dense, then there exist sets A and B, of power N 0 and c, respectively, such 
that every pair x, y with x E A and y E B is independent. We can not decide 
whether the sets A and B can be chosen so that both have power c. 

THEOREM 2. If each fiicture S(x) is bounded and has outer measure at most 1, 
then for every positive integer k there exists a set of k independent points. 

In the proof, we shall use the following well-known lemma: Let I be a bounded 
set, and let {Bn} (1 < n < *) be a sequence of subsets of I, each of inner measure 
greater than a fixed positive constant. Then there exists an infinite sequence (nj} 
such that ny=l Bnj is not empty. 

Instead of the conclusion in Theorem 2, we shall prove the following slightly 
stronger result, by induction on k: For each n, there exists an independent k-tuplet 

{ a)} F= b-4 
i 11 

satisfying the condition n < u1 < u(F) < -a- < u(kn). For k = 1, each 

up) > n satisfies the requirement, since by definition each point constitutes an inde- 
pendent set. Assume that we have demonstrated the existence of an independent 
(k - l)-tuplet whose elements are arbitrarily large. Let Id denote the interval 
(n, n + k). Corresponding to each integer m, there exists an independent (k - l)- 
tuplet {u\m)}fzll with m < u(r) < *.m < up\. Since the outer measure of 

lJF:i ~(u!~)) is at most k - 1, there exists a set B,, 
which lie: in I 

of inner measure at least 1, 
nk and does not meet UFill S(uim)). By our lemma, there exists an 

increasing sequence { mj } and a point x in 1, such that x # fi kulS(ui ’ ). 
(m.1 

j=l i=l 

Since the set S(x) is bounded, it does not meet the set {ui 
enough. In other words, if we write 

‘“‘p--;, if j is large 

(4 (4 (mj) (4 (mj) 
u 1 = x, uz = u1 , a*-, Uk = Ukel ) 

the set (u(?) ) k i=l is independent, and our proof is complete. 

We cainot decide whether the hypothesis of Theorem 2 implies the existence of 
an infinite independent set. A nondenumerable independent set clearly need not exist; 
to see this, let S(x) consist of the two intervals (x - l/2, x) and (x, x + l/2). 

If we replace the hypothesis that S(x) is bounded by the hypothesis that S(x) is 
closed, the existence of an independent set of cardinality c follows from a theorem 
of Fodor [S]. But under the hypothesis that S(x) has outer measure at most 1 and 
that the set {x}U S(x) is closed, we have not been able to prove the existence even 
of an independent pair. 

We again call attention to two problems mentioned in earlier papers. In [Z, I, 
p. 531, it was shown that if each picture S(x) is nowhere dense, then there exists an 
infinite independent set. Does there exist an uncountable infinite set? We can not 
even answer the following simpler question: Does there exist an uncountable inde- 
pendent set, if none of the pictures S(x) contains a subset of type q (or if each 
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picture S(x) is a sequence of type w with the only limit point x)? Let { EQ} 
(1 < o! < Sic) be a family of c sets of positive measure. Can it happen that each 
subfamily of power N 1 of the sets E, has an empty intersection? In [2, II, p. 1731, 
it was pointed out that the problem is obvious if E = N,. 

2. ON GRAPHS WHOSE VERTICES ARE REAL NUMBERS 

In a graph G, a set S of vertices is independent if no two vertices in S are con- 
nected by an edge. A subgraph G ’ of G is a compLete graph if each pair of its ver- 
tices is connected by an edge in G’. We denote by GM a graph whose vertices are 
the elements of M, the set of real numbers. It was proved by Dushnik and Miller [1, 
Theorem 5.221 that if nt is a transfinite cardinal, then every graph of power m con- 
tains either an infinite complete subgraph or an independent set of vertices whose 
power is m; in the notation of [4], this statement takes the form m -t (m , N $. We 
row assume the continuum hypothesis and reach a slightly stronger conclusion. 

THEOREM 3. Zf c = & 1, then each graph G M contains either an infinite com- 
plete subgraph OY an independent set of vertices of positive outer measure. 

It would be easy to give a direct proof of Theorem 3; but the theorem follows 
more quickly from the well-known result of Sierpifiski [8, p. 311 that if c = N,, then 
there exists a set S c M, of power c, which meets every set of measure 0 in a set 
which is at most denumerable. Let GM be any graph whose vertices constitute the 
set M, and let Gs denote the subgraph of GM which is determined by Sierpiiiski’s 
set S. By the theorem of Dushnik and Miller, Gs has either an infinite complete sub- 
graph or an independent set S’ of vertices whose power is c; by construction of S, 
the set S’ has positive outer measure. 

THEOREM 3’. If c = N,, then each graph GM contains either an infinite com- 
plete graph OY an independent set of vertices of second category. 

Theorem 3’ follows from a theorem of Lusin [7, Theorem I] which states that the 
continuum hypothesis implies the existence of a set S of power e that meets every 
set of first category in a set which is at most denumerable. 

Let I be a u-ideal of subsets of M, and let M $ I; that is, let I be a collection of 
sets AQI such that every countable union of sets of I is again in I, such that every 
subset of a set of I is in I, and such that M is not in I. We shall say that I has the 
property P provided it contains a transfinite sequence {BP} (0 < 0 < Q2,) of sets 
such that each set of I is contained in at least one of the sets BP. By means of this 
concept, we now obtain a proposition which contains Theorems 3 and 3’ as special 
cases. 

THEOREM 3”. Zf c = N, and if the o-ideal I has property p, then each graph 
GM contains either an infinite complete subgraph OY an independent set which is not 
in I. 

To prove this theorem, form a nondecreasing transfinite sequence {A,} 
(0 < (Y <fi2,) in I such that each set in I is contained in at least one of the A@. Let 
{ xo} be a transfinite sequence of distinct points such that xol $ A,, and let G denote 
the subgraph of GM which is determined by the set {x~}. If G contains no infinite 
complete subgraph, it contains an independent set S’ of power c; clearly, none of the 
sets of I contains S’. 

(Added March 9, 1960: Theorem 3 is a special case of Theorem 4 of [5]; but the 
proof of the latter theorem is more complicated.) 
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For an arbitrary o-ideal, Theorem 3” need not hold. Indeed, Erdiis and Rado [5] 
have constructed a graph G whose set of vertices has power C, which has no tri- 
angle, and which has chromatic number e . The independent sets of G generate a 
u-ideal for which the conclusion of Theorem 3 ” is fake. 

Consider now a partition M = A UB, where A has measure 0 and B is of first 
category, Let the edge (x, y) belong to GM provided x E A and y E B. Then GM 
contains no triangle and no independent set which is both of second category and of 
positive outer measure, This example should be considered in the light of Theorem 
6 of [3, VI, p. 2531. 

THEOREM 4. Suppose that a graph GM has the following property: for some 
finite n, there do not exist sets {Xi) (15 i 5 n) md (yj} (1 5 j < w) of vertices 
such that all the edges (3, Yj) aYe in GM. Then GM has a set of independent vey- 
tices which is of second category and of positive outer measure. 

Let (So} (CY < hl,) be the family of all sets of type G5 and measure 0 and of all 
sets of type F, and first category. To prove Theorem 4, we shall construct, by 
transfinite induction, an independent set which is not contained in any of the sets So. 

Suppose that we have already succeeded in constructing an independent set ( zy} 
(7 < ,6) with zr$ S,,. If there exists a z& $ Sp which is not connected with any ZY 
(y < b), our construction proceeds. If on the other hand there exists no such 20, our 
construction is stopped; in this case we delete from M the set { zy} (7 < p), and we 
begin the construction anew. 

If the construction is stopped only finitely often, we obtain the required independent 
set and thus prove our result. Otherwise, we begin 2n - 1 times, and there are at 
least n occasions on which the construction stops because of one of the sets of type 
G5 (or Fe). We choose n such sets of the same type, denote them by Soi (1 5 i 2 n), 

and write { xr> (0 < y < pi) for the set of points that is deleted at the time of the 
stoppage occasioned by Sp,. 

1 

Let C denote the complement of the union of the n sets Sp.. Each point y of C 
1 

is connected with one point of each of the n sets { xr} (0 < y < Bi); in other words, 

it is connected to each point of an n-tuplet { gi} (1 < i < n; ,here yi depends on y). 
Since each of the n ordinals pi is less than SJc, fewey tb& c different n-tuplets are 
involved; and since the n sets Sa. are either all of first category or all of measure 

0, the set C has cardinality c . Therefore, there exists a sequence { yj } (0 < j < w) 

of points each of which is connected to each element of some n-tuplet { xTi} 
(0 < i 2 n; yi independent of j). The existence of such a sequence {yj) contradicts 
the hypothesis of Theorem 4, and our proof is complete. 

Our proof makes no reference to any of the properties of the cardinal number c. 
If we assume that c is regular, the proof gives the following result: Each GM either 
contains, for each n < U, a subgraph (Xi) u ( yo } (1 < i < n; 01< SJ,) such that each 
pair (xi, yj) is connected; or it has an independent set;f vertices which is of second 
category and of positive outer measure. 

We are unable to decide whether it is true that each GM contains either a sub- 
graph 1%) U {YjI (15 i < W, 1 < j < w) such that each pair (Xi, yj) is connected,, 
or else an independent set of vertzes which is of second category and of positive 
outer measure. 

The method used in’ the proof of Theorem 4 yields also a stronger result: 
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THEOREM 5. For any m < c, let { &} (0 < a! < St,) be a collection of o-ideals 
with property P. 
{xi}u { ya} 

Then each graph GM either contains, for every n < w, a subgraph 
(1 < i < n, 1 < (Y < C4,) such that each pair (5, ya) is connected, or it 

has an indepen&nt set of vertices which is not contained in any of the o-ideals Io. 

Without property P, we are unable to prove this, even with n = m = 2. In fact, 
the result may very well not hold, since it seems likely that there exists a graph GM 
which does not contain a quadrilateral and whose chromatic number is uncountable; 
the independent sets of such a graph would constitute a counterexample to the pro- 
posed extension of Theorem 5. 

It is not clear whether Theorem 5 remains true for m = c; the proof certainly 
breaks down. 
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