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ON CIRCUITS AND SUBGRAPHS OF CHROMATIC GRAPHS 

9. ERD~S 

A graph is said to be k-chromatic if its vertices can be split into k 
classes so that two vertices of the same class ase not connected (by an 
edge) and such a splitting is not possible for 7c-- 1 classes. Tutte was the 
first to show that for every k there is a k-chromatic graph which contains 
no triangle [l]. 

The lower girth of a graph is defined as the smallest integer t so that 
our graph has a circuit oft edges. J. B. Kelly and L. M. Kelly [2] showed 
that there exist graphs of arbitrarily high chromatic number and lower 
girth 6. I proved [3] that for every t and Ic there is a graph of chromatic 
number L and lower girth t. In fact I showed the following sharper 
result : To every k there is an E so that for n > q,(c, Ic) there is a Gcn) 
(GC”) will denote a graph of n vertices, Glfi) will denote a graph with n 
vertices and 1 edges) of chromatic number Ic and lower girth > E logn. 
We shall show that in some sense this result is best possible. First we 
introduce some notations, f(m, L ; n) denotes the maximum of the 
chromatic number of all graphs G”), every subgraph of m vertices of which 
has chromatic number not exceeding k ; g,(n) is the largest integer for 
which there is a I?(~) of chromatic number k and lower girth g,(n). Clearly 
g,(a) is the largest odd integer not exceeding n (since every odd circuit 
has chromatic number 3). For k > 3 the determination of g,+(N) seems 
very difficult. In [3] I proved? CC,, cg, . . . will denote suitable positive 

constants) 
log n 

src(n) > CllogE * (1) 

Now I shall prove 

THEOREM 1. For k 3 4 tee have 

g,(n) < 

Theorem 1 and (1) shows that for E > 4 the order of magnitude of 
gk(n) is logn (it would be easy to replace (1) by an explicit inequality). 
It seems likely that for k > 3 

exists, but I have not been able to prove t,his. 
Theorem 1 shows that the chromatic number can be ” large ” only if 

the lower girth is < E logn. Theorem 1 further implies that every G(“’ 

f In [3], (1) is proved in a slightly clkfferent form. 
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which is 4-chromatic must cont,ain a circuit of lengt,h < 1 + 2 log2 n. I 
thought that every 4-chromatic G((“) must also contain an odd circuit of 
length < cz log n. In other words, I conjectured that for a sufficiently 
large constant c2 we have f( [c2 log %I,2 ; D) = 3 (a graph all of whose circuits 
are even is 2-chromatic). T. Gallai (not knowing of my conjecture) 
constructed a 4-chromatic O(* the smallest odd circuit of which has length 
[n*]. Gallai’s example is not yet published, Gallai and I then conjectured 
that the largest value of m for whichf(m, 2; n) = k is of the order of 
magnitude &@+@, but we have not even been able to prove that for every 
E > 0 and % > NJE), f([~ll;], 2; VL) = 3. 

The situation seems to change quit’e radically if we consider f(m, 3, ?I,) 
instead of f(m, 2, YL). In fact I shall prove 

THEOREM 2. To every k there is an E > 0 so that if rt > nO(E, k) there 
exists a k-chromatic GC:(“) every subgraph of which hnvimg [en.] vertices is at 
most 3 chromatic. 

Instead of Theorem 2 we shall prove the following stronger 

THEOREM 3. Tar m>3 we h.ave 

f(m, 3; n) >Ca($)lil(log&)-l. (1’) 

For f (m, k; N) at present we only can show a trivial upper bound : 

f(m,k; %)< f+1 k. [ 1 
(2) is indeed trivial since we can split t.he vertices of C(*) into at most 

[n/m]+ 1 sets each having <m elements, and by assumption the graphs 
spanned by these vertices are at most k-chromatic. 

(2) is certainly very far from being best possible. It is easy to deduce 
from a result of Szekeres and myself 1]4] that for wz > k [f (m, k, s) in 
fact is meaningful only for nz > k] 

f (m, k ; n) <j(k+l, k; n) < c4n1--(l@). (3) 

The deduction of (3) from [4] is easy and can be left to the reader ( to 
simplify his task we only remark that if every subgraph of kf 1 vertices of 
G(“) is at most k-chromatic then G(“) cannot contain a complete(k-k I)-gon 

I further proved that 151 

4(3, 2 ; n) > c5 n&/log 12. (4) 

It seems probable that 

f( k+ 1, k ; la) > ?$l-(Uk)-e, 
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foreveryE>Qifn,>nO(E, k). I do not know to what extent the exponent 
Q in Theorem 3 can be improved for all values of M. 

Proof of Theorem 1. A simple induction argument shows that every 
k-chromatic G(G contains a subgraph G@@ every vertex of which has 
valency >, k- 1 (the valency, or order, of a vertex is the number of edges 
incident to it). Assume now that Gtn) is k-chromatic and is of lower 
girth t. Let G(d be a subgraph of G(m) every vertex of which has valency 
> k- 1 and let X, be any vertex of G(N. Consider the set of vertices 
of Gcd which can be reached from X, by a path of [(t-1)/2] or fewer 
edges. Clearly every such vertex can be reached by only one such path 
(for otherwise Gem), and therefore GC*), would contain a circuit of fewer 
than t edges). Since, further, every vertex of G(m) has valency > k-l, 
we obtain by a simple argument that there are more than (k-2)[(t1)‘21 
vertices which can be reached from X, by a path of [(t-1)/2] or fewer 
edges. Hence 

which proves Theorem It. 
The proof of Theorem 3 will use simple probabilistic arguments and 

will be similar to previous proofs used by Renyi and the author [5]. 
First we need two Lemmas which are of independent interest. Denote 
by G/n) a graph having n vertices and 1 edges. If the vertices are labelled 

then the number of different graphs G,C@ clearly equals 
( > 

(1’ . A set of 

vertices of GinI is said to be independent if no two of them are connected 
by an edge. 

LEMMA 1. Let I= [rn], r>c,: then fobr all except possibly &((i)) 

graphs G$“’ the maxximum num?bes of independent verticesis less than (n/r) log r. 

Let Xl, . . . . x, be the vertices of G{%j. The number of graphs CT’(“) for 
which x;~, . . . . xi, is an independent set is clearly 

Ib 
2 ii 

(()-()) I ’ 

Since the vertices can be chosen in (C) ways, the number of graphs G/ml 
for which the maximum number of independent points is >,u is not 
greater than 

t This idea is used in [3] and also in Lemma 3 of P. Erdds and L. P&a. “ On the 
maximal number of disjoint circuits of a graph “, Publ. Math. Debrecen, 9 (1962), 3-12. 
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By (5) the proof of our lemma will be complete, if we show that, for 
u > (n/r) logr, r > es, we have 

(6) can be shown by a simple computation and is left to the reader. 
It would be easy to drop the condition r > cg, but then {a/r) logr 

would have to be replaced by, say, 

9-b log b-+2) 
r+c, - 

It seems that the order of magnitude (n/r) logr is not far from being 
best possible at least for certain ranges of r. 

CoRoLLbRY. Let 1= [rn], r>c,. Thenfor all except & (!I 
( > WPJ@ 

G/n) the chromatic number of G,Cnl is greater than rllogr. 

The corollary immediately follows from Lemma 1, since if G(n) is 
k-chromatic the maximum number of independent vertices must be 
>n/k (since the ru vertices can be split into k independent sets). 

LEMML~ 2. Let I= [rn] G-$2&. Ther, for all but & vwh 

G,Cfij every subgraph qmlaned by u of its vertices, 4 < u < lo-” m-3, c&a&s 
fewer than #u e&es. 

In particular the lemma implies that these G{“) contain no complete 
quadrilateral. This result is contained in my paper with R&nyi quoted 
in [6]. 

Denote by N(u, t), 4 < zc < lo-“nr -3, $u < t < min ((t), I) the number 
of graphs 4(a) which contain a subgraph GjU). To prove our lemma 
we have to show that 

xzN(u,t)<:, ‘I’ , ut ( > (7) 

where the summation is extended over 4 < u < l@+?ar-3, 

*U.<tt- ((aq. 

First we estimate N(u, t). Let xtl, . .., XL be any u vertices of Gp). 
The number of graphs Cr, cn) for which the subgraph spanned by xix, . . , , xgU 
contains t edges clearly equals 

(‘i’) ((3-F’)* 

Since the vertices xi,, . . . , xc. can be chosen in (3 ways, we evidently have 

N(u, t) = (1) (‘f’) ((y). (8) 
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From (8) we obtain by a simple computation 

(t > &A) I= [rn], u < lo-6w-3), 

N(u, t)(‘;‘)-‘<gy(& ((f;)e’3e~]t 

< (‘@$“)” < j1*~+-$w)~ = 10-t. (9) 

From (9) we easily obtain by u > 4, t > $u, that (7) holds and hence our 

lemma is proved. 
( 
Y < A0 was needed to make sure that lo-” TW-~ > 4 

should be true ; in other words, that the range for u should not be empty. 
> 

COROLLARY. Let I= [rn] < -&$& , (3 then for all but & I 
( ) 

gruphs 

GE(s) every subgraph spanned by u of its vertices u < lo-“tar-” is at most 

Z&chromatic. 

A4s stated previously a simple induction argument shows that every 
GC@ of chromatic number > 4 contains a subgraph G@‘) every vertex of 
which has valency > 3. Thus Q@‘~ has at least -&c edges and the corollary 
follows from Lemma 2. 

The constant lob6 could easily be replaced by a larger one and the 
exponent -3 in 10-6n~-~ could also be slightly increased, but I do not 
pursue these investigations since the corollary is sharp enough to deduce 
Theorems 2 and 3 and at present I cannot obtain best possible estimations, 
or even estimations which are likely to be anywhere near being best 
possible. 

Now we can prove Theorem 3. Put r = &(n/m)1’3, 2 = [nz]. By 

the corollary to Lemma 1 we tist of all obtain that for all but &( ‘f)) 

graphs Gfc”) their chromatic number is greater than 

&> Gg(JfJ3 (log$y: (10) 

if c3 is sufficiently small (Lemma 1 applies since we can assume that 
r > c6, for if not then m > 10-B~,-3 and for sufficiently small c3 (1’) 

becomes trivial.) 

Secondly, by the corollary to Lemma 2 
( 
since m 3 4, T < & and 

Lemma 2 applies 
1 

for all but -,% (i’ 
i > 

graphs C/n) the chromatic number of 

all their subgraphs having at most u vertices is < 3 for 

u < 10-snr-3 = m, (11) 
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(10) and (11) implies that for m > m, at least 2 of the graphs satisfies 

(l’), which completes the proof of Theorems 3 and 2. 

To conclude I just wish to remark that from (4) one can deduce a 
much stronger result than is obtained by putting m = 4 in Theorem 3. 
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