ON THE NUMBER OF COMPLETE SUBGRAPHS CONTAINED IN CERTAIN GRAPHS

by

P. ERDŐS

 $G^{(n)}$ will denote a graph of *n* vertices, G_l a graph of *l* edges and $G_l^{(n)}$ a graph of *n* vertices and *l* edges. Loops will not be permitted and two vertices can be connected by at most one edge. In the complete graph $G_{\binom{n}{2}}^{(n)}$ of *n* vertices,

every two vertices are connected by an edge. A complete graph $G_i^{(3)}$ of three vertices is called a triangle. The complementary graph $\overline{G}_i^{(n)}$ of $G_i^{(n)}$ is defined as follows: The two graphs have the same vertices and two vertices are connected by an edge in $\overline{G}_i^{(n)}$ if and only if they are not connected by an edge in $G_i^{(n)}$. In other words a graph $G_i^{(n)}$ and its complementary $\overline{G}_i^{(n)}$ gives a splitting of the edges of the complete graph $G_{\binom{n}{2}}^{(n)}$ into two disjoint classes. $\overline{G}_i^{(n)}$ can be written as $G_{\binom{n}{2}-i}^{(n)}$, but of course this in general does not determine its structure uniquely since the number of vertices and edges does not determine the structure of the graph.

The vertices of G will be denoted by $x, x_1, \ldots, y_1, \ldots$. The graph $(G - x_1 - \ldots - x_r)$ will denote the graph from which the vertices x_1, \ldots, x_r and all the edges incident to them have been omitted. $G(x_1, \ldots, x_k)$ will denote the subgraph of G spanned by the vertices x_1, \ldots, x_k . The valency v(x) of x is the number of edges incident to it. v(G) will denote the number of edges of G, and $\pi(G)$ the number of its vertices.

 $C_k(G)$ will denote the number of complete subgraphs $G_{\binom{k}{2}}^{(k)}$ of G. Recently A. GOODMAN [1] proved that

(1)
$$\min \left(C_3(G^{(n)}) + C_3(\overline{G}^{(n)}) \right) = \begin{cases} 2 \binom{u}{3} & \text{if } n = 2 u \\ \frac{2}{3} u(u-1) (4 u+1) & \text{if } n = 4 u+1 \\ \frac{2}{3} u(u+1) (4 u-1) & \text{if } n = 4 u+3 \end{cases}$$

where the minimum is to be taken over all graphs $G^{(n)}$ having n vertices.

A simpler proof of (1) was later given by A. SAUVÉ [2].

GOODMAN asked if the sign of equality in (1) can hold if $C_3(\bar{G}^{(n)}) = 0$, i.e. if $\bar{G}^{(n)}$ contains no triangle. His answer was affirmative for even n. For odd n I showed [2] that the answer is negative for n > 7 and it is easily seen to be affirmative for $n \leq 7$.

ERDŐS

G. LORDEN [3] proved the following stronger result: Assume that $C_3(\overline{G}^{(n)}) = 0$. Then for all even n and odd n > 9

(2)
$$\min C_3(G^{(n)}) = \begin{pmatrix} \left\lfloor \frac{n}{2} \right\rfloor \\ 3 \end{pmatrix} + \begin{pmatrix} \left\lfloor \frac{n+1}{2} \right\rfloor \\ 3 \end{pmatrix},$$

(i.e. $G^{(n)}$ runs through all graphs whose complement contains no triangle). LORDEN further determined all cases where there is equality in (2). GOODMAN also raised the problem of determining

 $\min (C_k(G^{(n)}) + C_k(\bar{G}^{(n)})),$

but this seems difficult even for k = 4.

I will prove by probabilistic arguments the following

Theorem 1. For every $k \ge 3$ and every n

$$\min \left(C_k(G^{(n)}) + C_k(\bar{G}^{(n)})
ight) < rac{2\binom{n}{k}}{2^{\binom{k}{2}}}.$$

It is surprising that a crude probabilistic argument gives a result which for k = 3 is so close the correct one. This phenomenon can often be observed in this subject [4]. Theorem 1 seems to show that Goodman's problem will be much more difficult for k > 3 then for k = 3, since it does not seem easy to find graphs which give values of $C_4(G^{(n)}) + C_4(\overline{G}^{(n)})$ which are as small as

 $\binom{n}{4}$ 32. The construction analogous to the one of GOODMAN gives only $3\binom{\left\lfloor \frac{n}{3} \right\rfloor}{4}$ which is much bigger. It seems likely that

(3)
$$\lim_{n \to \infty} \min \frac{C_k(G^{(n)}) + C_k(\bar{G}^{(n)})}{\binom{n}{k}} = \frac{1}{2^{\binom{k}{2} - 1}}.$$

(3) follows from (1) for k = 3. I can not prove it for k > 3. I will only outline the proof of the crude estimate $\binom{2k-2}{k-1} = t$

(4)
$$\lim_{n \to \infty} \min \frac{C_k(G^{(n)}) + C_k(\bar{G}^{(n)})}{\binom{n}{k}} \ge \frac{k!}{t(t-1)\dots(t-k+1)}.$$

The following further problems might be of interest. Determine

$$\min C_k(G^{(n)}) = f(n, k, l)$$

where $G^{(n)}$ runs through all graphs of *n* vertices for which $\overline{G}^{(n)}$ does not contain a complete graph of *l* vertices.

The result of LORDEN gives that for all even n and for odd n > 9

$$f(n, 3, 3) = \begin{pmatrix} \left\lfloor \frac{n}{2} \right\rfloor \\ 3 \end{pmatrix} + \begin{pmatrix} \left\lfloor \frac{n+1}{2} \right\rfloor \\ 3 \end{pmatrix}.$$

I can not at present determine f(n, k, l) for any other values of k and l. Perhaps for $n > n_0(k, l)$ $([m \perp i])$

(5)
$$f(n,k,l) = \sum_{l=0}^{l-2} \begin{pmatrix} \left\lfloor \frac{n+l}{l-1} \right\rfloor \\ k \end{pmatrix}$$

The simplest special case which I can not do is $f(3n, 3, 4) = 3 \binom{n}{3}$. HANANI and I proved the following

Theorem 2. Let $l = {t \choose 2} + r$, $0 < r \le t$. Then (the maximum is to be taken over all graphs having l edges)

(6)
$$\max C_k(G_l) = \binom{t}{k} + \binom{r}{k-1} = g(l).$$

Finally we prove **Theorem 3.** Let l > k. We have

(7)
$$\max C_k(G^{(n)}) = \sum_{0 \le i_1 < \ldots < i_k \le l-2} \prod_{r=1}^k \left[\frac{n+i_r}{l-1} \right] = h(n,l,k)$$

where the maximum is taken over all graphs having n vertices which do not contain a complete l-gon (i.e. a $G_{\binom{l}{2}}^{(l)}$).

Theorem 3 is probably connected with the conjecture (5). (See [8].) **Proof of Theorem 1.** The number of graphs $G^{(n)}$ having the labelled vertices x_1, \ldots, x_n clearly equals $2^{\binom{n}{2}}$. A simple argument shows that the number of graphs $G^{(n)}$ for which either $G^{(n)}$ or $\overline{G}^{(n)}$ contains the complete

subgraph having the vertices x_{i_1}, \ldots, x_{i_k} is $2 \cdot 2^{\binom{n}{2} - \binom{k}{2}}$. Thus summing over all the $\binom{n}{k}$ k-tuples

(8)
$$\sum \left(C_k(G^{(n)}) + C_k(\bar{G}^{(n)}) \right) = \binom{n}{k} 2^{\binom{n}{2} - \binom{k}{2} + 1} \frac{n}{k}$$

where the summation is extended over all the $2^{\binom{n}{2}}$ graphs $G^{(n)}$. (8) immediately implies (n)

(9)
$$\min (C_k(G^{(n)}) + C_k(\bar{G}^{(n)})) \leq \frac{2\binom{n}{k}}{2^{\binom{k}{2}}}$$

The sign of inequality in (9) follows if we observe that if $G^{(n)}$ is the complete graph of n vertices, then

$$C_k(G^{(n)}_{\binom{n}{2}}) = \binom{n}{k} > rac{2\binom{n}{k}}{2\binom{k}{2}}$$

 $(\overline{G}_{\binom{n}{2}}^{(n)})$ is the graph without edges). Thus for at least one of the $2^{\binom{n}{2}}$ summands (8) we have the inequality sign in (9), which completes the proof of Theorem 1.

¹⁵ A Matematikai Kutató Intézet Közleményei VII. A/3.

ERDŐS

Now we prove (4). A well known theorem of RAMSEY [5] asserts that for $t = \begin{pmatrix} 2 & k - 2 \\ k - 1 \end{pmatrix}$ (10) $C_k(G^{(t)}) + C_k(\bar{G}^{(t)}) \ge 1$.

(10) implies that if x_{i_1}, \ldots, x_{i_t} are any t vertices of $G^{(n)}$ then

(11)
$$C_k(G(x_{i_1}, \ldots, x_{i_l})) + C_k(\overline{G}(x_{i_1}, \ldots, x_{i_l})) \ge 1.$$

From (11) we have by a simple argument (every *t*-tuple gives at least one complete *k*-gon of $G^{(n)}$ or $\overline{G}^{(n)}$ and the same *k*-tuple occurs in exactly $\binom{n-k}{t-k}$ *t*-tuples)

$$C_k(G^{(n)}) + C_k(\bar{G}^{(n)}) \ge \frac{\binom{n}{t}}{\binom{n-k}{t-k}} = \frac{n(n-1) \dots (n-k+1)}{t(t-1) \dots (t-k+1)}$$

which easily implies (4).

It would not be difficult to show that

$$\lim_{n \to \infty} \min \frac{C_k(G^{(n)}) + C_k(\bar{G}^{(n)})}{\binom{n}{k}}$$

exists, but I can not determine it (its value was conjectured in (3)).

Now we outline the proof of Theorem 2. max $C_k(G_l) \ge g(l)$ is trivial. It suffices to consider the complete graph $G_{\binom{l}{2}}^{(t)}$ and an extra vertex connected with r vertices of $G_{\binom{l}{2}}^{(t)}$. The Theorem is trivial for $l \le \binom{k}{2}$. For $l < \binom{k}{2}$ both sides of (6) are 0, and for $l = \binom{k}{2}$ both sides are 1. We shall now use induction and assume that Theorem 2 holds for all l' < l and then prove it for $l = \binom{t}{2} + r$, $0 < r \le t, k \le t$. We clearly must have $\pi(G_l) \ge t + 1 \left(\text{since } l > \binom{t}{2} \right)$. Assume first that G_l has a vertex x_1 of valency < t. Clearly G_l contains at most $\binom{v(x_1)}{k-1}$ complete k-graphs one vertex of which is x_1 . Thus clearly $C_k(G_l) \le \binom{v(x_1)}{k-1} + C_k(G_l - x_1)$ and $v(G_l - x_1) = l - v(x_1)$.

Hence by our induction hypothesis and a simple computation $(v(x_1) < t)$

$$C_k(G_l) \leq \binom{v(x_1)}{k-1} + g(l-v(x_1)) \leq g(l).$$

462

If all vertices of G_l have valency $\geq t$, then from $l \leq \binom{t+1}{2}$, $\pi(G_l) \geq t+1$ we easily obtain

$$l = ig(t+1) \\ 2ig), \quad \pi(G_l) = t+1.$$

But then $C_k(G_l) = \binom{t+1}{k} = g(l)$, which completes the proof of Theorem 2.

We prove Theorem 3 by induction with respect to n. (7) holds for all k if $n \leq k$ (for n < k both sides of (7) are 0 and for n = k they are both 1). Assume that (7) holds for every m < n and every k. Since $G^{(n)}$ does not contain a $G_{\binom{1}{2}}^{(l)}$ by a theorem of ZARANKIEWICZ [6] it must contain a vertex x of valency not greater than

$$n - \left[\frac{n+l-2}{l-1}\right] = N.$$

By our induction hypothesis

(12)
$$C_k(G^{(n)} - x) \leq h(n-1, l, k)$$
.

Denote by y_1, \ldots, y_t ; $t = v(x) \leq N$ the vertices of $G^{(n)}$ connected to x by an edge. Clearly the graph $G(y_1, \ldots, y_t)$ contains no $G^{(l-1)}_{\binom{l-1}{2}}$, thus by our induction hypothesis it contains at most h(t, l-1, k-1) subgraphs $G^{(k-1)}_{\binom{k-1}{2}}$. Hence the number of subgraphs $G^{(k)}_{\binom{k}{2}}$ of $G^{(n)}$ one vertex of which is x is at most

(13)
$$h(t, l-1, k-1) \leq h(N, l-1, k-1)$$
.

From (12 and (13) we easily obtain by a simple argument)

(14)
$$\max C_k(G^{(n)}) \leq h(n-1,l,k) + h(N,l-1,k-1) = h(n,l,k)$$

To show that in (14) the sign of equality holds it suffices to consider the graph of TURÁN [7] where the vertices are split into l-1 classes, the *i*-th class has $\left[\frac{n+i-1}{l-1}\right]$ vertices and no two vertices of the same class are connected, but every two vertices of different class are connected by an edge. Thus the proof of (7) and Theorem 3 is completed.

Finally I would like to state the following conjecture which is a sharpening of (7): Put

$$F(n,l) = \sum_{0 \leq i_1 < i_2 \leq l-2} \left[\frac{n+i_1}{l-1} \right] \left[\frac{n+i_2}{l-1} \right].$$

F(n,l) is the number of edges of Turán's graph, by his theorem [7] for every $G_{F(n,l)+1}^{(n)}$ contains a $G_{\binom{l}{2}}^{(l)}$. I believe that

(15)
$$\max C_k(G_{F(n,l)}) = h(n, l, k)$$

15*

ERDŐS

where the maximum is taken over all $G_{F(n,l)}$ which do not contain a $G_{(l)}^{(l)}$. (15) would imply (7) since by the theorem of TURAN just stated a graph $\hat{G}^{(n)}$ which contains no $G_{\binom{l}{l}}^{(l)}$ has $\leq F(n, l)$ edges.

(Received October 8, 1962)

REFERENCES

- GOODMAN A. W.: "On sets of acquaintances and strangers at any party." Amer. Math. Monthly 66 (1959) 778-783.
 SAUVÉ, L.: "On chromatic graphs." Amer. Math. Monthly 68 (1961) 107-111.
 LORDEN, G.: "Blue-empty chromatic graphs." Amer. Math. Monthly 6 (1962) 114-
- 120.
- [4] See ERDős, P.: "Some remarks on the theory of graphs." Bull. Amer. Math. Soc. 53 (1947) 292-294 and also "Graph theory and probability I and II." Canadian Journal of Math. 11 (1959) 34-38 and 13 (1961) 346-352.
- [5] ERDŐS, P. and SZEKERES, G.: "A combinatorial problem in geometry." Compositio Math. 2 (1935) 463-470.
- [6] ZARANKIEWICZ, K.: "Sur les relations symmétriques dans les ensembles fini." Coll. Math. 1 (1947) 10-14.
- [7] TURÁN, P.: Matematikai és Fizikai Lapok 48 (1941) 436-452 (in Hungarian), see
- also "On the theory of graphs." Coll. Math. 3 (1954) 19-30.
 [8] MOON, I. W. MOSER, L.: "On a problem of Turán." A Magyar Tudományos Akadémia Matematikai Kutató Intézetének Közleményei 7 (1962) A, 311 314.

О ЧИСЛЕ ПОЛНЫХ ГРАФОВ НАХОДЯЩИХСЯ В НЕКОТОРЫХ ГРАФАХ

P. ERDŐS

Резюме

Для графов, не содержащих рёбер-петель и многократных рёбер, имеют силу следующие теоремы:

Теорема 1. Для всякий n и $k \ge 3$ существует такой граф G с n вершинами, что сумма чисел полных графов с k вершинами, находящихся в G и в дополнительном графе от G меньше $2\binom{n}{k}/2^{\binom{k}{2}}$.

Теорема 2. Пусть $l = {t \choose 2} + r$, $0 < r \leq t$. Тогда граф, имеющий l

рёбер может максимально содержать $\binom{t}{k} + \binom{r}{k-1}$ полных графов с k

вершинами.

Теорема 3. Пусть k < l. Тогда граф с n вершинами, не содержащий полного графа с 1 вершинами, может содержать максимально

$$\sum_{0 \leq i_1 < \ldots < i_k \leq l-2} \prod_{r=1}^k \left| \frac{n+i_r}{l-1} \right|$$

полных графов с к вершинами.

Műszaki szerkesztő: Vidosa László A kiadásért felel az Akadémiai kiadó igazgatója Kézirat érkezett: 1962. XI. 19. - Példányszám: 800 - Terjedelem 19,9 (A/5) ív

63.56324 Akadémiai Nyomda, Budapest - Felelős vezető: Bernát György

464