MATHEMATICS (THEORY OF NUMBERS)

Some Remarks on the Functions g and g

by

P. ERDŐS

Presented by W. SIERPIŃSKI on October 9, 1962

In a previous psper [I] I proved answering a question of Miss Jankowska that there exist infinitely |many| pairs of squarefree integers a and **b** satisfying

(a, b) = 1, $\varphi(a) = \varphi(b)$, $\sigma(a) = \sigma(b)$, $\nu(a) = \pi(b)$

(r(n)) denotes the number of distinct prime factors of n).

I also proved her second conjecture, namely that for every **k** there are **k** squarefree integers a_1, \ldots, a_k satisfying

(1) $\varphi(a_i) = \varphi(a_j), \quad \sigma(a_i) = \sigma(a_j), \quad \nu(a_i) = \nu(a_j), \quad 1 \le i < j \le k.$

I further asked if for every **k** there exist integers which besides (1) also satisfy $(a_i, a_j) = 1$, $I \leq i < j \leq k$. I cannot at present decide this but 1 can prove the following weaker

THEOREM. For every k there are squarefree integers $a_{1,1} \ldots a_{k}$ satisfying

(2) $(a_i, a_j) = 1$, $\varphi(a_i) = \varphi(a_j)$, $\nu(a_i) = \nu(a_j)$, $1 \le i < j \le k$.

The same result holds if we replace φ (n) by σ (n).

The novel feature of our proof will be that we use the following purely combinatorial theorem of Rado and myself ([2]], theor, III).

Let $1 \leq a$ and b be positive integers and let

(3)
$$c = b! a^{b+1} \left(1 - \frac{1}{2! a} - \frac{2}{3! a^2} - \dots - \frac{b-1}{b! a^{b-1}} \right).$$

Then, if we have given any c+1 sets each having at most **b** elements we can always find a+1 of them having pairwise the same intersection.

From (3) we immediately deduce that if we have given $b! a^{b+1}$ sets each having at most **b** elements we can always find a+1 of them having pairwise the same intersection. We will use the theorem in this form,

In our paper [2] we show that (3) is best possible for a = 2, b = 2, but it is no longer best possible for a = 3, b = 2. We thought it probable that in (3) b! can be replaced by c_{11}^{b} for some absolute constant c_{14} If this could be done, we could easily show by the methods of [1] and the present paper that (1) is solvable for every k with the added condition $(a_{i1}, a_{j2}) = 1$, $1 \le i < j \le k$. So far we were not successful in improving (3).

Denote by $d_p(n)$ the number of divisors of n of the form p - 1. There is an absolute constant c_2 and an infinite sequence $n_1 < n_2 < \ldots$ for which (cf [3])

(4)
$$d_p(n_k) > |n_k^{c_2/(\log \log n_k)^2}$$
.

Denote by q_1, \ldots, q_{t_k} the primes q_k for which $q_1 - 1 |n_k|$. By (4) we have

$$t_k > n_k^{c_2/(\log \log n_k)^2}$$

Put

$$w = \left[\frac{10\,(\log\log n_k)^2}{c_2}\right] + 1$$

and denote by

(5)
$$s_1, ..., s_{l_k}, \quad l_k = \binom{t_k}{w} > \binom{t_k}{w}^w > \frac{n_k^{10}}{w^w} > n_k^s$$

the squarefree integers composed of the q_{\parallel} and having w prime factors. Clearly $(\exp z = e^{z})$

(6)
$$\varphi(s_i) \lhd s_i \lhd n_k^u \lhd \exp\left(\frac{20\log n_k (\log\log n_k)^2}{c_2}\right) = E$$

From $q_i - 1$ |n| we obtain that the $q_i(s_i)$ are all composed of the prime factors of n_{k+1} . From the prime number theorem (or a more elementary theorem) we obtain

(7)
$$v(n_k) < 2 \log n_k / \log \log n_k$$

and let $r_{1,i} \dots r_{u,i} u = v(n_k) < \frac{2 \log n_{ki}}{\log \log n_k}$ be the distinct prime factors of $n_{k,i}$. The number of distinct integers of the form $\varphi(s_i)$ is by (6) not greater than the number of integers not exceeding E composed of the $r_{i,i}$ $1 \le i \le u$. Clearly each r_i must

(8)
$$\frac{20 \log n_k (\log \log n_k)^2}{c_2 \log 2} = \frac{\log E}{\log 2} = t$$

(since $2^t = E$).

Therefore, the number of integers $\leq E$ composed of the $r \mid s$ is less than (1 i-f)". By (7) and (8) for sufficiently large n_k

$$(1+t)^u < (\log n_k)^{2u} < n_k^4$$
.

Thus, finally, the number of distinct integers of the form $\varphi(s_i)$ is less than n_k^4 . But then, by (5), there are at least n_k of the s_i , say

$$s_{ij}, \ldots, s_{iz}, z \ge n_{kl}$$
 for which $\varphi(s_{ij}) = \ldots = \varphi(s_{iz})$.

Now we apply the theorem of Rado and myself. We consider the primes q_4 as elements and the $s_{i,j}$. I $\leq j \leq z_1$ as sets having w elements. By (3) there are more than

(9)
$$\left(\frac{n_k}{w!}\right)^{1/(w+1)} > n_k^{c_2/20\,(\log\log n_k)^*}$$

integers s_{ij} having pairwise the same common factor. We obtain (9) by putting in (3) $a = n_{kj} b = w_j a = n_k^{c_2/20 (\log \log n_k)^2}$. Dividing away with this common factor we finally obtain more than $n_k^{c_2/20 (\log | \log n_k)^2}$ integers $\leq E$ (by (6) the s_i are $\leq E$) which are **pairwise** relatively prime and for which the value of the φ function coincides. This completes the proof of our Theorem.

We clearly obtain the following stronger result:

For infinitely many m there are more than

mca/(log log m)4

pairwise relatively prime integers i_1, \ldots, i_l for which $q_l(i_l) = m$, $l \leq t \leq 1$.

I pointed out in [I] that $m^{c_4/(\log \log m)^4}$ can certainly not be replaced here by $m^{c_4/\log \log m}$ if c_4 is sufficiently large, thus our result is fairly sharp.

MATHEMATICS DEPARTMENT, UNIVERSITY COLLEGE, LONDON

REFERENCES

[1] P. Erdös, Solution of two problems of Jankowska, Bull. Acad Polon. Sci., Sér sci. math.. astriet phys., 6 (1958), 545-547

[2] P. Erdös and R. Rado, Intersection theorems for systems of sets, Jour. London Math. Soc., 35 (1960), 85-90.

[3] K. Prach ar, Über die Anzahl der Teiler einer natürlichen Zahl. welche die Form $p_1 - 1$ haben, Monatsh. für Math., 59 (1955), 91–103.