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In the first chapter of my lecture I will discuss applications of probabilistic methods 
to RAMSAY’S theorem, next I will speak an problems of chromatic graphs and 
finally I will briefly mention some other problems. @“I will denate a graph of n 
vertices; a graph is called complete if all its vertices are adjacent. @(“) will denate the 
complementary graph of @) (i.e. two vertices in @‘j are adjacent if and only if 
they are not adjacent in @(“))> (k) will denote a complete graph of k vertices. 

1. Denote by f(k, I) the smallest integer such that for n = f(k, 1) either @@I 
contains a (k) or @@) an (2). It is known that [l] 

By probabilistic methods [2], [3] I showed that 

f(k, k) > 2k’2 

and that 

(3) f(k, 3) > ck2/(log k)’ . 

It is very likely that my method will show that for every 1 > 3 and E > 0, if k > 
> k,(Z, E) then 

f(k, E) > k’-I-‘, 

but I have not worked out the formidable details. It would be very desirable ta decide 
whether f(k, 3) .> ck2 holds and to. determine the limit of f(k, k)‘lk. I cannot even 
prove the existence of this limit. It would also be of interest to prove (2) and (3) by 
a constructive method. I only succeeded ta show by such methods that f(k, 3) > 
> kl+c for a certain c > 0, [4]. 

2. ZYKOV and TUTTE [5] were the first to construct, for every k, a graph which 
contains no triangle (i.e. no (3)) and whose chromatic number is k. J. B. KELLY 

and L. M. KELLY [6] showed that such graphs exist which contain no circuits of 
length 5 5 and they asked if there exist, far every k and 1, k-chromatic graphs which 
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contain no polygons of length (= 1. By probabilistic methods I proved that such 
graphs exist [7] (‘t 1 would be very desirable to give an explicit construction). In 
fact I showed that there exists an E~,~ > 0 so that for every n there is a @@) which 
contains no circuit of length 6 2 and for which @“) does not contain an ([net’*]) 
(the chromatic number of our @(“) is then clearly > nl-Er,l). 

More generally let S,, be a set of n elements and let Ai c S, be subsets of S,,. 
We say that the system (Ai} is k-chromatic if the set S, can be split up into k disjoint 
subsets Sj, 1 2 j 5 k so that no Ai is contained in an Sj and that such a splitting is 
impassible into fewer than k subsets. HAJNAL and I now showed that for every k, r 
and I there exists an n, = n,(k, r, 1) so that f or every n > rzdk, r, Z) there exists 
a k-chromatic system {Ai), Ai c S, where each A, has r elements and for u 5 2 the 
union of any u A’s contains at least 1 + u(r - 1) elements (for I = 2 this condition 
means that our graph contains no circuit of length s I). We use probabilistic methods; 
our proof has not yet been published. 

A well known theorem of BROOKS [s] states that every graph which does not contain 
a (k + 1) and every vertex of which has valency 5 k is at most k-chromatic. CROWN- 
BAUM constructed a 4-chromatic graph which does not contain a triangle and a 
quadrilateral and every vertex of which has valency 4 (Griinbaum’s construction has 
not been published yet). Griinbaum now asked: Does there exist, for every k and I, 
a k-chromatic graph every vertex af which has valency k and which does not contain 
a circuit of length 5 E? I am very far from being able to solve this difficult question 
and can only show by probabilistic methods that there exists an absolute constant c 
so that there exists a graph of chramatic number > ck/log k every vertex of which has 
valency k and the graph contains no circuit of length 5 1. I very much doubt whether 
Griinbaum’s problem can be settled by probabilistic methods. 

Denote by f(m. k, n) th e maximum of the chromatic numbers of all graphs @(“) 
every subgraph of m vertices of which has chromatic number 5 k. By probabilistic 
methods I praved [9] that 

j(m, 3, n) > c i 1’3 
0 I 

logk. 

(4) in particular implies that to every k there is an E > 0 so that if n > nO(&, k) 
then there exists a k-chromatic @(“) every subgraph of which having [in] vertices 
is at most 3-chromatic. The situation is radically different if we consider f(m, 2, n). 
GALLAI proved (his proof will appear in Publ. Math. Inst. Hung. Acad. Sci.) that 
f([fi”“], 2, n) = 4, in other words there exists a four-chromatic @“) every odd circuit 
of which has length > n ‘I2 Gallai and I conjectured that the largest value of m for . 
which f(m, 2, n) = k is of the order of magnitude nlfkw2, but we have not even been 
able to prove that for every E > 0 and n > n,(c), f([sn], 2, n) = 3. 

3. A theorem of R~DEI [lo] states that the directed complete graph of n vertices 
always has an open Hamiltonian path. SZELE denotes by T, the maximum number of 



open Hamiltonian paths for all possible orientations of (n). Szele [ll] proves 
by elementary probabilistic methods (calculation of the first moment) that 

As far as I know this is the first use of probabilistic methods for a combinatorial 
problem. Szele’s paper unfortunately has been almost completely unknown. The 
same method was rediscovered and used in several other papers [12]. It would be 
very desirable to construct a directed (n} which has at least n!/2”-l open Hamilton 
lines. Szele proved that lim ( Tn,n!)1’n exists, he conjectures that this limit is :, 

n = 03 
SCH~~TTE asked the following question: Determine the smallest integer f(k) for 

which there exists a directed (f(k)) so that for every k vertices of our (f(k)) there 
is another vertex of it from which edges go out to. each of the k vertices. Trivially 
f(l) = 3, Schtittc observed f(2) = 7, I proved [13] 

(6) 2k+1 - 1 sf(k) < ck’2’ 

where the upper bound is obtained by probabilistic arguments; perhaps f(k) = 
C!Z 2k+l - 1 always holds. 

In connection with some work on set theory HAJNAL and I raised the following 
question [14]: What is the smallest integer m(p) for which there exists a family of 
finite sets A,, . . ., Am(p) each having p elements and such that every set S which has 
a non-empty intersection with each Ai, 1 5 i 5 m(p) contains at least one of the A’i? 

We observed m(p) 9 
( > 

‘“i ’ . By probabilistic methods I showed [15] m(p) > 

> 2p-1, and for p > Pi, m(p) > 2j’ (log 2 - e). I cannot even prove that 

(7) lim r~+)l’~ 
p=CO 

exists. It is easy ta see that m(2) = 3, m(3) = 7, m(4) is unknown. 
Added in proof: Schtitte’s problem was also raised by RYSER and (6) was proved 

by MOSER independently. Moser and I will publish a paper on this subject in the 
Bull. Canad. Math. Sot. 

Recently I learned that a result substantially equivalent to (6) was proved by 
GLEASON, but he published nothing about this subject. 

The fact that the limit in (7) exists was proved by ABBOT and MOSER (will appear 
in Bull. Canad. Math. Sot.). Later I proved that the limit is 2. In fact 

The lower bound in (8) is due to W. SCHMIDT, the upper bound to me. Our papers 
will appear in Acta Math. Hung. Acad. 
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