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Introduction. The sums formed from the set of non-negative powers 
of 2 are just the non-negative integers. It is easy to obtain “abelian” 
results to the effect that if a set is distributed like the powers of 2, then 
the sum set will be distributed like Dhe non-negative integers. We will 
be concerned here with converse, or “Tauberian” results. The main theme 
of this paper is t’he following question: if the set of sums formed from 
a given set of positive real numbers resembles an arithmetic progres- 
sion, how much must the original set resemble a set of constant mul- 
tiples of powers of 2? 

If we denote the given set by k,, i&, 7c,, . . . , arranged in ascending 
order, and let S(m) count the number of those sums of distinct ?ci that 
do not exceed IC, our problem is, roughly, that of showing that k, is close 
to 2” if S(z) is close to %. Our first result gives sharp bounds for liminf 
and limsup of 2%/k, in terms of liminf and limsup of S(z)/m. In the 
next section, we show that if S(X) - II: is bounded, then k,- 2% is bounded, 
and furthermore, 2 /k,-- 2finJ ( co, so that if t’he kti are integers, then 
k, = 2” for all large ‘IL. We extend the method in the suc.ceeding section 
to obtain estimates for i&- 2” and 2 [k,- 2”j in terms of suitable bounds 

n<N 
for S(m) - z? even if S(m) - x: is unbounded. Finally, on a slightly dif- 
ferent note, we show t’hat it is not possible for S(a) to behave too much 
like m” if CL < 1. 

1. Asymptotic behavior. Let K = kO, k,, k,, . . , , 0 < 7t, < k1 < k, 
< -. S”, be any sequence of positive real numbers, Let S(m) denote the 
number of choices of Q,, Q, Ed, . . . such that for each j = 0, 1, 2, . . . , 
either &j = 0 or &j = 1, and suc’h that ~~k,,+~~k~+... <%. Let 

A = liminfS(x)/a, a = liminf2l”/k,, 
Z+M S-?&2 

B = limsupS(%)/a, 
2-+OZl 

p = li,mpp2”/kn. 
+ 
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A simple estimate shows that 

(1) a<A and /3>B. 

We now give sharp inequalities in the opposite direction. 
THEOREM 1. a = A and 

Inequality (2) is best possible ilz the sense that, given any a ad @ with 4 < 
-=c a//l < 1, there mists a sequence E for which equal;ty holds, ad g+velz 
any A and B with 3 < A/B < 1, there emists a sequence K for which equal- 
ity holds. 

Remarks. It follows immediately from the theorem that 

if limB(m)/z = 13 # 0, then lim2”jk, = 0. 
Z4 A+oo 

This result was proved by a different method in [l]. The question was 
raised in [I] whether the statement remains true for 0 = 0. The answer 
is no, as the following example shows. Let k,n = 22n, and let &a-, = k2n 
for O<r<2n-x. It is easy to see that &J(a) = o (0). On the other 
hand, 2”/i& = 1 for infinitely many 12. It is easy to modify the exam- 
ple so that the k, are distinct, but it seems difficult to satisfy the 
additional condition, described in [l], that the sums of the 7~~ are all 
distinct. 

It seems likely that our methods, if carried out in greater detail, 
would yield an estimate similar to (a), but taking account of the inte- 
gral part of log2p/a, and that such an estimate would be best possible 
for any range of a//I, and not merely for a/#? > 4. Finally, if we permit 
&j = O,l, . . . . N- 1, then it seems likely that our methods will yield 
analogous results for the limsup and liminf of iVn/k,. 

Proof of the estimates. First, LY(k,--1) <2n, since if Q&+ 
+ E~~Q-/-. . . + &,7e,+. . . < k,- 1, then E, = E,+~ = . . . = 0, so that there 
are at most 2” suitable choices of (~~1, Hence 

s&-l) < 2” 2n k, 

h-1 ‘---=Ic,‘k,-p i&--l 

and on letting n. + CO, we get A < a. 
To obtain the estimate (2), we may suppose that a > 0, since if a = 0 

then (2) is trivially true. We now choose any a > l/a, so that k, < 2”a 
for all sufficiently large rt. Without loss of generality, we shall suppose 
that kn<22r%t for all ~~=0,1,2,..,, because for any two sequences 
K and K’ with k, = kk for n > IZ,, , it is easy to show that A = A’, B = 
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= B’ , a = a’, B = /?’ . And given any b with b > 1 //I we will have k, < 2nb 
for infinitely many n. 

We now choose n. large, with k, < 2nb, and estimate S(212cc). Clear- 
ly, B(25J) > N1 +N,, where N1 is the number of choices of {Ed}, 
j=O,l ,.,.,12-l, such that 

(3) EOki)S-...$E,-lkrs-1 $253 

and Nz is the number of choices of (Ed), j = 0, 1, . . . , n- 1, such that 

(4) ~~k~+...+~,-~k,~~+k, <SRa. 

But if E020a+...++-,2n-1a <2” a, then (3) holds, and therefore N, 2 2n. 
And if &020a+...+E,-12”-‘a <2”(a-b), then (4) holds, so that 

iv, s, [2+-f)] > 2”(d) -1. 

Hence 

S(2”a) > 211+2”(l-b/a)-l, 

On letting m -+ bo through a suitable sequence, we get 

We may now let a --f l/a and b + l/j3 to obtain (2). 
The estimate is best possibZe. To show that (2)’ is best possible, we 

prove the first part, that given any a and ,8 with & < a/p < 1, there 
exists a K such that B = p(2a/p- a”/b”). The second part then follows 
since cp(/I) = j3(2a//I-~I.“//I”) is a continuous function of #?, with 9 (a) = A 
and ~(28) = 3 A/2, so that if we are given A and B with 1 < B/A < 3/2, 
we may apply the first part with a = A and B such that q(p) = B. For 
the construction of K, let mm be a sequence of positive integers that in- 
creases very rapidly to 00. Let a = l/a and b = l//3 and define k, by 
i& = 2”a unless rz = 12, for some m, and k, = 2%b if rz = n,,, for some ?n. 
The point of the restriction a/@ > $ now appears; for the sequence K 
to be suitably defined, we need 2”b > 2*-la, or b/a > 8. 

A simple argument now shows that B > limsup B,, where B, is 
n+cc 

defined as follows. Let IP be the sequence {k,), j = 0, 1,2, . . . , where 
ki=2ia for j#% and ki=2?b if j=n. Let &(m)=E(m:IP) and 
let B, = sup(&(S)/m), where the supremum is over all values of 
tl: > So, where m,(rz) is a function of n that tends very slowly to + 00 
as n tends to +oo. 

To determine &(a), we must count those {Ed) for which 

(5) Eo20a+...+E,_12”-‘a+E,2nb+E,+1212f1Ct+... <S. 
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We now define jW(t) as the number of choices of (Ed) for which 

(6) &020+&121+..*+&E,~12n-1+&,+12n+1+... <t. 

Now, considering in (5) the two cases E, = 0 and E, = 1, we see that 

If we write y = d/a, then from (7) we get 

(8) 

so that 

19) 

fL (W _ 1 f,(~) +fn(~--2nbla 
w - I a Y Y ? 

B, = ; sup fTzC~)+fnC~-2mb/a) 
Y 

7 

where the supremum is over the range y > yO, where y0 = yo(lz) = 
zo(n)/a. A computation shows that, writing [t] for the integral part 
of t, 

(10) fnI4 = 2 n[&] +min (2”, l.+ [t]-2?t+1 [-+&I) for t > 0, 

and, of course, fn(t) = 0 for t < 0. For we may write t = 7c2”+‘+ s, 
where k is a non-negative integer, and 0 < s c aAql. And co2’+ ~~2lf 
+...+&J”-’ may be any non-negative integer p < 2”, while ~,+~2~+l+ 
+EE,+z2n+2+... may be any number 2”+l q, where 4 is any non-negative 
integer. Thus, we may rewrite (6) as 

(11) 

and f*(t) = fn(k2'+'+ s) is the number of choices of p and CJ that make 
(11) valid. Now for 4 = 0, 1,2, . . . , k- 1 there are exactly 2n choices 
of p that make (11) hold. So far we have accounted for k-2” choices. 
For 91 = k+l, k+2, . . . . there are no acceptable values of p. For q = k, 
if s > 2’- 1 then there are 2” choices of p, while if s < 2”- 1, then there 
are [s+ l] choices of p. Thus, we have 

(12) fn(k+2”+14-s) = 2%+min(2”, [Sfl]), 

which is equivalent to (10). 
Now, writing y = 2n*1 k+ s, with k a non-negative integer and 

0 < s < an+l as before, we get 

(13) fnCy) = 2”k+min(2”, [sl+l), 

(14) fit (y -2ab/a) = max{O ,2”k + 2”[ + ] + min (2”) [s - 2”b /a] +I. -2”+‘[ *I)), 
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where 

(15) 
s- Z”b/a *= 

2 w-1 7 

and we remark that [* ] = 0 or -1 according as s > 2”b/a or s < 2*b[a, 
respectively. 

We now let 

(W 9W = g&4 = 2”k+min@“, d, 

(17) h(Y) = b%(Y) = max{O, 2*k+2n[*]+min(2”, S-22rsb/a-2”+‘[++])}, 

and let 

where 

(W 

2 
Since [BL-I?,] < ~ 

ydnn) ’ 
we see that B = lim sup BA . We now compute Bk . 

?a+cc 

Case 1. s < 2”bla. Here [*I = -1, g(y) = 2%+s, and h(y) = 
=max (0, 2nk-22n+mm(2”, s-2%b/a+2”+‘)], but 211+1+s-22”b/a > 
2 n+1-2”b/a = 2”(2-b/a) 3 2” since b/a = CX/#I < 1, so that h(y) = 2”k, 
and supIy(y) = (2”+‘k+ ~)/(2”+‘k+ S) = 1. There are three more cases, 
in all of which [* ] = 0 since s 3 2nb/a. 

Case 2. 2”b/a <s < 2n. Here g(y) = 2%+s and h(y) = 2”7G+ 
$ min[2”, s - 2”b/a) = 2%k + s - 2”b /a since s - 2”b /a < 2” a Eence 

Y(Y) = 
2”+‘k + 2s - 2”b /a 

2”+%+s ’ 

and an elementary computation shows that 

suP,Y(Y) = 
9co+h(2n) = 2-b 

2” a’ 

Case 3. 2” <s < 2”+2”b/a. Here, g(y) = 2%+2” and h(y) = 
2%+min(2”, s-2ab/a) = 2nk+s-22”b/a, and hence 

Y(Y) = 
2n+1k + 2”+ s - 2*b /a 2” - 2”b/a 

2”+%+ s 
=1+ 

2”+lkfs ’ 
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and an elementary computation shows that 

suP,Y(Y) = 
s(2”)+W2”) = 2-b 

2n a’ 

Case 4. 2n+21Eb/a < s -=c 2”+l. Here g(y) = 2% $2” and h(g) = 
2% + min (2”) s -23/a) = 2% + 2n so that 

YlU) = 
yf’k+ ptl 

2”%+s ’ 

and an elementary computation shows that 

sup4y(y) = s12n+2nb/a)+F,(2n+2nbIa) 2 -Ezz 
2”+ 2”b/a l+b/a ’ 

So we must compare the three numbers 2 -b/a, 1, 2 (14 b/a)-‘. 
Now each of them is 2 1, and 2 - b/a > 2 (1+ b/a)-I, as an elementary 
estimate shows. Eence BL = (2 - b/a) /a = ,9 (2a/,3 - a”/fi”) , and the result 
follows, on letting fi + 00. 

2. Bounded error terms. 

THEOREM 2. If there are constants cr anti? G, 80 that for al1 m > 0 
we have 

PO) z--c, < S(m) < ~+%, 

then 

cm k, < 2”+ cl for all n 

and 

(22) 3c, 3 2”-(%+%) $ 2++l > m,+c,. 

Filzally, we have 

(23) c p,--2”] < m 
n 

so that if the k, are integers, then k, = 2” for all sufficiently large 12. 
Proof. As before, if x: < 7c,, then B(m) < 2”. Thus k,-cl < 2” 

and (21) is established. Now let 

Kn = &+kl+*.*+kn-1. 
Then 

(24) &-l-c2 3 fJ’(Kn) 2 2”. 

We next prove that 

2k, > Kn 



for all m satisfying 211- ‘- nc,- c2 > 0. For suppose 
for each choice of Ed, . . . , E,-~, at least one of the 

n-1 n-1 

that 2k, < K,. Then 
sums 

h+C Efkj or k,+C (l-~~)i& 
i=o j=O 

is less than K,, so that in this case we would have S(E,) 3 2n+2fi-1. 
According to (21) and (23), we would have 

(25) 2n+ncl+c2 S, Kn+c, > S(Kh;,) >, 2nt2”-‘, 

and the assertion is proved. Under the hypothesis of (22), we have 2k, > K,. 
Now for each y with 

0 ,< y < 2k,--Km 
we have 

(26) &+Y+c, a fi(Kn+y) 2 ~“+W&+Y--4, 

where the second term on the right counts the number of Q,, . , . , E,-~ 
for which 

11-l 

Hence 

kn+x &ikj <&a+~. 
j=O 

(27) &-ty+c, >2”+KTC,+y---n--c,, 

and (22) is established. 
Now we choose p so that 2P-1 > c,+ c,. Then 

cw -G < 2”+Kp for all large m. 

For, assume that rz is so large that (22) holds, that YL > p, and that 
k n+l > 2”. Then if (28) fails, there would exist at least 2P choices of 
“07 e17 . . . , .Y~- i for which 

It-1 

c 
&jkj > 2’ty 

j=o 

namely all choices with E~+~ = . . . = &N-1 = 1. Since there are at most 
B(c,$ c%) sums not exceeding 2n in which one of the summands is 7c,) 
and no such sums in which one of the summands is k,+l or larger, we 
obtain 

(29) 2” -cl < S(2”) < 2n-2P+S(c,+C,) < 2”-2~+C~+C2+C2) 

which is contrary to the hypothesis that 2” =z 2c,+2c,. 
If J9k,-22”) = 00, then according to {24), 

(30) c (&-2y = cm. 
kn>2” 
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Thus, we could choose 12, < n2 < . . . c ?I,,, with n, so large that (22) 
and (28) hold for n 3 ml) with 

G1 3 &+cl+c2 and kni > 24 
and such that 

(31) A = iky > 22”f+e,-tl = B+l+c,. 
j=l j=l 

We now show that 

c 
2mf 3 B implies c k, > A. 

This is obvious if (VQ} is a subset of {m?>. If not, let YL~ be the largest 12 
not contained in (%y}. It follows that 

> A+ 2ns+1 -$-C2-2%+l -Kp+K,, > A. 

Hence #(A) is no greater than the number of sums of powers of 2 that 
do not exceed B, and this number is at most B + 1. Hence S(A) < B+ 
fl < A-cl, contrary to hypothesis. 

CoRoLLBRY. If -cl < ii?(m)- ICE < c2 for some positive con&ant 1 
and all 3 3 0, then 

(33) k, s n--Is”+ Cl for all n, 

(34) k, 3 r12”-(clfCz) if ?L-12”-1 > nc,-cc,, 

and 

(35) 2 Ik,-P2nj < co. 

This result folIows by applying Theorem 2 to the sequence (A&J. 
CoRoLLBRP. If th,e k, arc ilztegers, then the only colzstants I that can 

occw above huve the form 1 = 2”[M, where N 2 0 alzd ME=- 0 are integers, 
and the% k, = 1-12n for all sufficiently large n. 

The proof is a simple application of (35), and we omit it. 

3. Unbounded error terms. The methods of the preceding section 
can be extended to the case where S(z) --11: is unbounded. 

THEOREM 3. Rappose that 

2-fl@) <S(z) Sx+f2@) for all 3; 3 0, 

where the fi are continuous, positive, non-deweasing fuwxtions, not both 
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bounded, such that fi (x) /x + 0 us x + 00, and such that x-f1 (a) and m+fi(x) 
are strictly Gncreasimg. Let pll and pz be the inverse fwnctions defined by 

33 = Y-fi(Y/) e3 Y = ~+vpll(m), 

03 = Yffi(Y)ifi(Y) $3 Y = m-v,z(N, 

so that the qi are non-decreasing, f.pi (x) lx + 0 as x + 00, and x+ ipI (x) , 
x- p2(x) are strictly ilzcreasing for suff&Gmtly large o. Then 

(37) k, < 2*+~7~(2”) for all ti, 

(38) k, 2 2”-p, (2”) for all 'large n. 

Let q3 be the invsrse function def&ed by 

27 = y+fz(Yl c+ Y = m-%(m). 
Then 

(39) &>2” -p3 (2n) for all n 

and 

(40) Kn < 2m+q94(212) for all large n, 

whcwe 

914 (a) = 2fI (3) + 2fi (N + 2P, (@ * 

Pinally, if we set 

then 
v’(X) = maxtfi(2’+% ~2(2”)+~1(22)+9)4(2”)}, 

(41) 2 ,k,-2n, = O(y(iv)). 
0 

For example, if fi (x) and f2(x) are both x’ for large m, then the cpi (m) 
are each asymptotic to a suitable constant multiple of Y. 

To prove (37), use the inequality S(z) < 2” if LX < k,, as before. 
To prove (39), use the inequality 

&%+fimt) 3 fJWn) 2 2”, 

also as before. By a method entirely analogous to that of the preceding 
section, it follows that 2k, > K, for all sufficiently large n. And for 
such N, proceeding again as before, we have, for each y with 0 < y 
< 2k,- K,, 

(42) K7b+Yff,(K,+Y) > fi(K*+Y) a 2”fNK?&SY---k,) 

> 2”+Km+Y-kn-fl(Kn+Y-ha), 
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so that 

ha 2 2”-fl(K*+Y--~)-f,(Kn+Y) 2 21t--f,wJ--f2vQ, 

which implies (38). 
In order to prove (40), we suppose that 

Kn > 2”+&, 

where rz is so large that kn+l > 2” and k, > 2”-‘. Then, as in the proof 
of Theorem 2, we get 

2”-fJ2”) < S(2”) < 2s-22p+S(211- 76,) 

< 2”- 2p-/- 2”- 2”+yJP72(212)+f2(2n) 

;:3, 5sp G flw7 t-J-2 co + 9% (2”) 

SD that in view of (37), we have 

(44) K, < 2”+123 < 2n+2p+1 < 2”+2fl(2”)+2f2(2W)+2q72(2”) 

for all sufficiently large rz, 
Now assume that 

lim sup $c, -2”p@7) = 00. 
k=o 

In view of (39), this implies that 

limsup E (76, -2n)+/7Y(N) = 00, 
k=O 

where 
(7cm- 2”)’ = max(0, k,-- 2n). 

We first prove that if g(N) = log,(cp,(2N) + ~~(2~) + ~~(2~))) then 

(45) 

For, let n,, a2, . . . , n, be the values of n for which 

k, > 2”, x(N) < n1 -c nz -c . . . < n, < N. 
Let 

A = $cni >~2nf+w(iv)+1 = B+y(N)+l. 
f=l j=l 

Then, a& in the proof of Theorem 2, cZrni > B implies that c7cmj > A. 
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This is obvious if (nini> is a subset of (+}. If not, let n, be the largest ele- 
ment of {q} not contained in @nit, so that 

c k, > A + hs+l -&as+1 +&, 
> A+2~sng-r-1--P72(2ns+1)-2ns+1-Q14(2ns+’)+2~1--oC2”‘) 

> A+2”(*vLpP72(2N)-~3(2-~)-q?g(2N) > A. 

Hence #(A) is no greater than the number of sums of powers of 2 that 
do no’t exceed B, so that i!?(A) < B+ 1. It follows that 

which leads to a contradiction, since A < EN < ZNS’ for all large N. 
Now we have 1$-y(~) < 42” for all or: > s,,, and therefore, from 

(45), if we let 

xow = N and xm+] OV = x(xm 07) ? 

then, provided xm+l (N) > CE~, we have 

c (k-29+ < l+y(&(N)) < $2h(? 
zm+~G”)<“+nW 

But 
sXmtN’ < Y (xna-1 cm), 

so that if xmqr (3) > q,, we have 

On adding the inequalities (46) for all suitable m, we get N 
cc k,-2n)+ < 2yIN)-tO(1), a=0 

which proves (41) by contradiction. 

4. Irregulady of S[S). We say that a function f is sEowZy oscillat- 
ing to mean that for each positive constant a, f(az)/f(z) -+ 1 as d --f 00. 

THEOREM 4. It is inapossible to hccve ~!$‘(a) N &j(x), where 0 < Q < 1, 
aniZ f(s) is a connt~n~ous positive slowly oscillating fwn&ion such that Saf(s) 
is strictly increasing. 

Pro of. Def’ine the inverse function g by 

y = Irpf(cE) @ 23 = pg (y) . 
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Then g is also a continuous positive slowly oscillating function. From 
~(7c,-) < 2n, we get 

76, < (I + E) 2”‘“g (2”) 

for any E > 0 and all sufficiently large n, so that 
a-1 n-1 

Kn = 2 k, < (1-j-E) 2 2”‘Qg(2)). 
?7a=O rn=Q 

On the other hand, we have LY[K,) > 2”, so that 

Em > (1-E)2m~og(2n), 
and hence 

(47) 

n-1 
1-E 
-< 

c 

2(*-?%)f~ SW) 

I+& m=o 9 (2”) 

for all sufficiently large 12. We show now that (47) is impossible for small E. 
We use the result [2] that there is a function h.(s) with h(z) N ~g(m) 
as z + 00, where c is a positive constant, such that h(%) has the repre- 
sentation 

(48) h(s) = expj/qt) t-l& 
1 

where 

(49) jl@)=o(l) as t+cv. 

It follows from (49) that h(%) 3 s-d for any 6 > 0, for all sufficiently 
large m, and the same inequality consequently holds for g. It follows 
that the values of g(z) when x is small do not affect the inequality (47) 
for large n, and that to contradict (47), it is enough to contradict 
the corresponding inequality for h, which by (48) may be written as 

GO) 

If we now choose 

and by the above 
then have 

y so that 1 < y < l/o, then for all sufficiently large Z, 

va+m > YY 

remarks, there is no loss in assuming this for all t. We 

n-1 9% . l--s 
-< 2 
13-E c 

vW-? - - 
c 

2-y* < 2.- 
2y--1’ 

?7&=0 F=l 

which is a contradiction if E is small enough, and the theorem is proved. 
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On the other hand, it is possible, for each positive integer o, to have 
S(m) NC&, where c is any positive constant. For example, if we let K 
consist of a copies of {a”}, n = O,l, . . . . then a simple computation shows 
that L?(S) NC~X’. Perhaps, then, it is impossible to have #(SC) wf(~):)lc~, 
where a > 0, f(z) is slowly oscillating, and sY~(cc) is strictly increasing, 
unless (L is an integer. We outline here a proof of a partial result in this 
direction, namely that if 1 -=c cz < ao, for a certain a0 (with 1 < a0 < 2) 
then S(z) --f( z ma is impossible. We treat the case f(s) = 1 for all z; ) 
the general case is similar. 

In this case, we apply argument,s like those above to get (2 - 6) k, > K,, 
for some S > 0 and infinitely many 1~ But then we have 

8((~+.4&) = 2”4((hGL), 

provided only that E is chosen so small that 

ha > (it-+&)&, 
since for every sum 

11-l 
2 E{ki < (g-E)&, 
i=O 

we have 
a-1 

2 
(l-Q)& > (:+&)L 

LO 

But the asymptotic relation 

(ii+ &)“Z N 2”- (4-E)=K; 

cannot hold identically in E unless a = 1, which is excluded, and the result 
is proved. 
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