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1. Introduction. Geometrically, a graph is a collection of points (or 
vertices) together with a set of edges (or curves) each of which joins two distinct 
vertices of the graph, and no two of which have points in common except 
possibly end points. Two given vertices of the graph may be joined by no edge 
or one edge, but may not be joined by more than one edge. From an abstract 
point of view, a graph G is a collection of elements (xl, ~2, . . .) called points or 
vertices, together with a second collection 9? of certain pairs (x~, x0) of distinct 
points of G. It is helpful to retain the geometric language, and refer to any pair 
in gas an edge (or a curve) of G that joins the points xI1! and x6. 

A family of sets Si, SZ, . . . gives a graph in a natural way, if to each set S, 
we associate a point X~ and agree that 

(1) 3c, and xg are joined by an edge of G if and only if LX # /3 and S, n S, # 0, 

where 0 denotes the empty set. As far as we know it was E. Szpilrajn- 
Marczewski (2) who first proved that the converse is also true; see also culik 

(1). 

THEOREM SM. Let G be an arbitrary graph. Thelz there is a. set S and a family 
of subsets S1, St, . . . of S which can be put into one-to-one correspondence with the 
vertices of G in such a way that (1) holds. 

Notice that Theorem SM remains true if we replace S, n S, # 0 by 
S, n & = 0 in (l), because we can alxvays replace G by its complement. 

Our objective in this paper is to determine the minimum number of elements 
in the set S. In fact we shall prove the following theorem. 

THEOREM 1. If G is any graph with n vertices, then there is a set S with [n2/4] 
elements and a family of n subsets of S such that (1) holds. Further [n2/4] is the 
smallest such number. 

2. Coverings by complete graphs. A graph G is said to be complete if 
every pair of points of G is joined by an edge of G. A complete graph on two 
points is just a line segment, and a complete graph on three points is just a 
triangle. We define the sum G = Gr + Gz of two graphs as follows: (1) x is a 
vertex of G if it is a vertex of Gi or of Gz, (2) x, and x~ are connected by an 
edge in G if they are connected by an edge in Gr or in G2. We remark that if 
they are connected in both Gl and Gz, then they are still connected by just a 
single edge in the sum. If a graph G is the sum of graphs Gi, Gz, . . . , GR, we 
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shall say that these graphs cover G. An isolated point of a graph is a point that 
does not belong to any edge of the graph. The number of vertices of G is called 
the order of G. With these agreements we have the following theorem, 

THEOREM 2. Any graph G@) of order n > 2 with no isolated points can be covered 
by at most [n2/4] complete graphs. F&her, in the covering we need to use only 
edges and triangles. 

Proof. We use induction, going from index n to index n + 2. The theorem is 
obviously true for n = 2 and n = 3. Further, we note that for any positive 
integer n 

@I [(n + 2)*/41 = [n2/41 f n + 1. 

Now let G(“+*) be a graph of order n + 2 and let x1 and x2 be any two points 
that are connected by an edge of G (n+*). Let G(‘) be the subgraph consisting of 
the vertex set V = {x3, x4, . . . , x,+2) and those edges of G@+*) that connect 
pairs of points in V. By hypothesis, this graph can be covered by at most 
[n*/4] triangles and edges. Consider 3tk E v. If xk is joined to both xi and x2 in 
G@-t2), then we introduce a triangle x1 x2 xk and call this Gk. If xk is connected 
to xl or x2, but not both, then we introduce for Gk an edge xl X& or x2 Xk. If xk is 
not connected to either xl or x2, then there is no need to introduce a line seg- 
ment or triangle. Hence for k = 3, 4, . . . , n + 2 we have at most n complete 
graphs G,. Finally we need Gi, the edge connecting x1 and x2. Since G(“) is a sum 
of at most [n2/4] edges and triangles, G(w2) is the sum of at most [n*/4] + (n+ 1) 
edges and triangles. From (2), this completes the proof of the theorem. 

Theorem 2 was also proved independently by L. Lovasz (oral communication). 

It is easy to prove that the number [n2/4] that occurs in Theorem 2 cannot 
be replaced by any smaller number. Let n = 2k or 2k + 1 and let A be a col- 
lection of k points and B be a collection of the remaining points (either k or 
k + 1 in number). We define T@) to be the special graph of order n in which 
x, and xg are joined by an edge, if and only if one of the points is in A and the 
other point is in B (3). Clearly T@) has no triangles and the number of edges is: 

k2 = [(2k)2/4] = [n2/4], if n is even, 

and 

k(k + 1) = [ (2k + 1)2/4] = [n2/4], if n is odd. 

Hence the graph T@) will always require [n2/4] complete graphs for a cover. 
We shall give a refinement of Theorem 2 in $4. 

3. Proof of the main result. If the graph G of Theorem 1 has any isolated 
points x~, we can select the empty set for S, and for such points condition (1) 
will be satisfied. Hence in proving Theorem 1 we may assume that G has no 
isolated points. We next cover G with N complete graphs G1, G2, . . . , GN, 
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where N < [n2/4]. By Theorem 2, this can be done and in fact in such a way 
that each G, must be either an edge or a triangle. With each graph Gk we 
associate an element ek and with each point x, we associate a set S, of elements 
ek, where 

(3) e, E St if and only if x, E GE, 

i.e. S, is the collection of those elements for which the corresponding complete 
graphs contain x,. If we set 

s = i, s,, 
a=1 

then clearly S contains N elements. Further, S, f? S, z 0 if and only if there is 
a common element ek. This means that X, and xg belong to the same complete 
graph GA, and this means that x, and xg are joined by an edge in G. Conversely, 
if x, and xg are joined by an edge in G, this edge will appear in some G, in the 
cover and hence ek will be in both S, and S,+ Consequently, the sets constructed 
by condition (3) will satisfy condition (1). This concludes the proof of the first 
part of Theorem 1. 

To see that [n2/4] is the smallest number for which Theorem 1 is true, we 
turn again to the special graph T @). Here each edge must give rise to at least 
one element, for if X, and xg are joined, then S, A So contains some element 
e,F But if this element were present in any other intersection, such as S, n Sa, 
then the points x0 3ta x, or xor xg x6 would be vertices of a triangle in T(“). But 
T(*) contains no triangles. Hence each edge in T(“) gives rise to at least one 
distinct element. Hence any representation of T(“) by the intersection of sets 
satisfying the condition (1) must use at least [n2/4] elements. 

In the reverse direction of Theorem 2 we can prove: 

THEOREM 3. Let G be a graph and suppose that for each point x, E C there is a 
set S, such that condition (1) is satisJied. If the set S = V S, contains N elements, 
then G is the sum of N complete graphs. 

Proof. For each fixed ek in S we form a complete graph Gk using those points 
xrr for which S, contains ek, Clearly each GK is a complete subgraph of G and 
G = Gi-t Gz$...+Giv. 

4. A refinement. Let G, and G# be two of the complete subgraphs con- 
structed in the proof of Theorem 2. It is easy to see that G, and GB may have an 
edge in common. With a little more labour we can avoid this. 

THEOREM 4. Any graph G(“) of order n > 2 with no isolated point can be covered 
by at most [n2/4] complete gmfihs G1, G2, . . . , GN, and no two of the graphs G,, Go 
will have an edge in common. Further, in the cozzering we need to use only edges and 
triangles. 

Proof. We say that a vertex x has valence k if k edges terminate at x. 
The theorem is obviously true for n = 2. We assume that it is true for all 
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graphs of order less than n and note that for any positive integer n 

(4) [n2/4] = [(n - 1)2/4] + [n/2]. 

Hence in the induction we must show that in going from G[*i) to G@) we need 
add at most [n/2] complete graphs that are pairwise edge disjoint. 

Suppose G(*j has a vertex of valence < [n/2]. Call this vertex 3~1 and let V-l) 
be the subgraph on the points {x2, ~3, . . , , x,]. Then in going from G(*l) to 
G@) we only need to use the edges joining xi to the other points of G(‘Q for our 
complete graphs, and there are at most [n/2] of these. In this case the proof is 
complete. 

In the contrary case, every vertex of G cn) has valence > [n/2]. Let xl be the 
vertex with the smallest valence t, and set t = [n/2] + r, where by hypothesis 
r > 0. Let 3~1 be joined to the vertices yl, ~2, . . . , y 1 and let G(‘) be the subgraph 
of G(*) spanned by yl, y2 . . yt. Suppose that Q1) has Y independent edges; 
that is, no two edges have’; common vertex. Call these edges 

(Yl, Y2), (y3, Y4), * . . , (YZt-1, Y27) 

and remove them from P-l). Cover the resulting graph with at most 

t(n - 1)2/41edg es or triangles, that are pairwise edge disjoint. Then G(@ is the 
sum of these complete graphs together with the triangles 

(Xl, y1t yd, (3cl,Y3, Y4), . . . I (Xl, yzr--1, Y27) 

and the edges (xl yk), K = 2r + 1,2r + 2, . . . , t. The number of graphs in the 
sum is at most 

[(n - 1)2/4] + r + t - 2r = ](n - 1)*/4] - r + [n/2] + I = [n*/4]. 

To complete the proof, we shall show that G(l) must have r independent edges. 
Assume that G( 2, has only r - 1 independent edges 

(yl, Y2), (y3, Y4), . . . , (Y2r-3, Y2r-2). 

By hypothesis, y2,--1 has valence > [n/2] + r. It can be joined to at most 
2r - 2 of the points yl, yz, . . . , y+-2, and to at most n - t of the points not in 
G(‘). Hence the valence of y2+-1 is at most 

2r - 2 + n - t = 2r - 2 + n - [n/2] - r = ?2 - [n/2] + r - 2 < [n/2] + r. 

But this is the minimum valence. Hence y2+ is joined to some other point in 
G(“) and G(“) has at least r independent edges. This completes the proof. 

The graph T@) shows that the number [n*/4], mentioned in the theorem, 
cannot be replaced by any smaller number. 

5. Open questions. These results suggest a number of related problems. 
For example, suppose that the graph G cn) has [n”/4] + R edges, where k is a 
fixed positive integer. Then it is clear that G(*) can be covered by fewer than 
[n2/4] complete graphs. What then is the new minimum as a function of k? 
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Here it may be advantageous to use compfete graphs of order greater than 3 if 
k is large. 

In another direction it seems as though every G@) can be covered by at most 
N - 1 circuits (here a single edge is counted as a circuit) but so far we have not 
been able to prove this. If we add the side condition that the circuits be pair- 
wise edge disjoint (no two circuits have an edge in common), then n - 1 
circuits will not suffice as T. Gallai proved in the following way (oral communi- 
cation). Let the vertices be denoted by xl, x2, ~3, yi, yz, ya, . . . , yn--3 and let 
G*(n) be the particuIar graph with the 3(n - 3) edges (x~, ye), a: = 1, 2, 3, 
/3 = 1, 2, 3, . . . ( ?a - 3. Aside from the trivial circuits consisting of single 
edges, all other circuits have either the form Cl : (XX, yp, x2, yr, xl), or the form 
C2 : (xl, ys, x2, y.,, x3, ya, x1), or suitable permutations of these. The requirement 
that the cover be edge disjoint forces the inclusion of the single edge circuits 
(x8, y#) and (x8, y7) in any cover that includes C1. Hence if all pairs yB, y7 are 
covered by circuits of type Cl, the number of circuits required would be 
3(n - 3)/2ifnisodd,and3 + 3(n - 4)/2ifniseven. 

If the edge-disjoint cover includes a circuit of type CZ, then it must also 
include the single-edge circuits (xr, y,), (XZ, ya), and (~3, ~6). Suppose that 
tz E 0 (mod 3) and the yc vertices are grouped in sets of three and that the 
covering is made up of circuits of type CZ and single-edge vertices. Then the 
number of circuits is 4(n - 3)/‘3. Since this is less than the number of circuits 
used in the first case, it is clear that for n E 0 (mod 3), the smallest number of 
edge-disjoint circuits needed to cover the special graph G*(n) is 4(n - 3/)3. 
The cases n 9 I,2 (mod 3) lead to a similar result. 

Letf(n) denote the smahest integer such that every graph with n vertices can 
be covered byf(n) or fewer edge-disjoint circuits. The graph G*(n) proposed by 
Gallai shows that lim inff(n)/n > 4/3. It can be shown that 

f(n) < *n log n + 0 (4, 

but it may be true thatf(n) < cn for some suitable c. 

6. Representation of a graph by distinct sets. In the proof of Theorem 1, 
the sets obtained need not be distinct. Indeed there may be two different 
vertices x, and xg for which S, = So. Both James H. Reed and G. Sabidussi have 
pointed out that if the n sets corresponding to the vertices of G are required to 
be all different, then the proof of Theorem 1 is not sufficient. However, if n > 4, 
we obtain the same minimum as in Theorem 1. 

THEOREM 5. Let d(n) be the smallest number of elements in S with the property 
that for each graph on n vertices, there is a fumily of n ATerent subsets 

&(a = 1,2,. . . , n) 

of S such that the relation (1) holds. Then d (2) = 2, d (3) = 3, and 
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(5) d(n) = [d/4] 

ifn ;Z 4. 

Proof. The exceptional cases n = 2 and n = 3 are trivial. We proceed by 
induction from n to n + 2, and we first prove that if d(n) < [n2/4] for n = 4 
and n = 5, then the same inequality holds for all n > 4. 

If the graph G(w2) on n + 2 points has no edges, then we set S = {e=) for 
a = 1, 2, . . . ( n + 2. This selection is satisfactory because n < [n2/4], for 
n > 4. Suppose that in the induction from n to n + 2 the graph G(n+2) has 
an edge (x,+1, x~+z) and that neither of these two points are terminal points of 
any other edge. Let G@) be the graph on the n points (~1, x2, . . . , x~]. Then we 
add two new elements ei* and e2* to the set for G(“) and take for our new sets 
s %+I = { ei*), &+2 = {el*, e2*) while leaving the sets for G(‘Q unchanged. In this 
case the induction is complete. 

In all other cases the graph will contain an edge (x,+1, x*+2) that is connected 
with at least one other point of the graph. By equation (2), we have n i- 1 new 
elements at our disposal. Call them el*, e2*, e3*, . . . , ez+l. We form the set S,+i 
by putting in e,* (a = 1, 2, . . . , n) if and only if x, is connected to ~+l by an 
edge. Similarly, S n+2 is the set of all e,* for which (x~, x*+2) is an edge in G(“C2). 

It may happen that one of the two sets .S,,+t and &+2 is empty. In this case we 
form the sets X+i and S& by adding the element ez+r to both S,+i and S,+Z. 
Then %+I Z S:+Z. If S,+ir\S,+z is empty, we also adjoin the element e:+i to 
both sets. In any other case we can set .%+, = S,+i and S$Z = &+2 U fe:+l}. 

Let Si, S2, . . . , S, be the sets that satisfy Theorem 5 for G(“). For 
a = 1,2,. . . , n, we form the new sets S,* by adding e,* to S, if x,, is connected 
to either x,+1 or xa+2 by an edge. Then the sets Si*, St*, . . . , X+2 satisfy the 
requirements of Theorem 5. 

If n = 4, it is a simple matter to draw pictures of the 11 different graphs on 
four points, and to construct the necessary sets with at most [42/4] = 4 
elements. The same technique can be used if n = 5, but in this case the number 
of different graphs is sufficiently large to make a short cut desirable. Since 
[52/4] - [42/4] = 6 - 4 = 2, we have available two new elements for S in 
passing from n = 4 to n = 5. If G(5) has one vertex with valence 2 or less, it is a 
simple matter to proceed from G c5) to Gc4) by deleting this vertex and its edges 
and then to go back to Gc5) using the two new elements. Hence one needs to 
consider only those graphs on five points for which each vertex has valence 
greater than or equal to 3. But there are only three such graphs and these are 
easy to discuss. 

This proves that d(n) < [n2/4]. But the same special graph T@) used in 
Theorem 1 also proves that d(n) > [n2/4]. 
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