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ABSTRACT

The following results and some generalizations are obtained . Consider all colorings
of the n vertices of a k-graph G into l colors . Then, if k is sufficiently large (k > k„(r, 1)),
at least a proportion r of the k-edges of G will contain vertices colored in every color
for any r<I .

It is possible to color the points of any graph G with two colors so that
less than half of the edges in G have endpoints of the same color . Further
results of this kind have been obtained by one of the authors [1] .

In this note we consider an analogous problem for k-graphs . Let Gk be
a k-graph (a collection of k-element sets of points which we will call
k-edges) and suppose we color the points of Gĺ, in 1 colors . We seek the
maximum over all colorings of G,, of the proportion of k-edges in Gk
which contain at least one point of every color .

Let p(G,, 1) be the maximum just described and let m(n, k, 1) and
m(k, 1) be, respectively, the minimum value of p(Gk , 1) over all k-graphs Gk
on n points, and the minimum over all finite k-graphs .

Below, we evaluate m(n, k, 1) by showing that the graph which minimizes
p(Gk , 1) for each n is the complete k-graph on n points, Sk , n ; i .e ., the
k-graph consisting of all k-edges . We also provide a simple direct evalua-
tion of m(k, 1) .

Our results imply, for example, that

lim m(k, 1) = 1

for all 1, so that for sufficiently large k there exist colorings of any k-graph
which make most of its k-edges contain all colors .
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where S2(k, l) is a Stirling number of the second kind, i .e ., the number of
partitions of k elements into exactly I indistinguishable parts .

THEOREM 2 . For any (n, k,1), the minimum value of p(G k , l) is achieved
if Gk is the complete k-graph on n points .

COROLLARY . For any (n, k, I) such that l divides n, we have

and

Our results can be divided into the following three parts :

THEOREM 1 . For any finite graph

COLORING GRAPHS

m(n k 1) > S2(~' I) 1 !
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PROOF OF THEOREM 1 : There are I n distinct colorings of a graph on
n, points into l colors . Of these, In-kR colorings will color a given k-tuple
in exactly l colors, where R is the number of ways of coloring k points in
exactly l colors . Moreover, R is clearly I! times the number of partitions
of k into exactly I non-empty parts, which latter number is S2 (k, 1) . The
proportion of all colorings which will give rise to all /-colors in any k-tuple
is then

Let Gk have q(Gk) k-edges, and let r(C, G k ) be the number of edges of
Gk colored in all l colors under the coloring C. Let B(C, E) be 1 if the edge
E is colored in all colors by C and 0 otherwise .
We then have

r(C, Gk) _ Y e(C, E) .
EEG,

By the remarks above, for any edge E, the average value of B(C, E) over
all colorings is given by
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Averaging the expression above for r over all colorings into l colors then
yields

<r(C, Gk»C =

	

<B(C, E»
EEG,

- q(Gk) lk S2(k, l) .

This equation means that, for any graph Gk , the average proportion of
edges colored in all colors, over all possible bcolorings, is

lk
S2,(k,

l) .

Since p(Gk , l) is the maximum of r(C, Gk)lq(G k) over all /-colorings we
have

p(Gk , Z) > 1k
S2 (k, l)

for any finite graph Gk , and we can conclude that

m(k, 1) > lk S2(k, l) .

PROOF OF THEOREM 2 : For a coloring C of a graph Gk on n points
and an element g of the symmetric group Sn on the n points of Gk , let Cg
be the coloring obtained by performing the permutation g before the
coloring C. For any k-edge E, let Eg be the k-edge whose elements are the
images of the elements of E under g, and let Gkg be the k-graph whose
members are of the form Eg for each E in Gk .

For any coloring and any edge we have

B(C, E) = B(Cg, Eg)

hence
r(C, Gk) = r(Cg, Gkg)-

Using these facts, we find, upon averaging r(Cg, G,.) over all g in Sn , that

<r(Cg, Gk)i,Esn - <r(C, Gkg -1)>9c=ES„

=
n~ B(C, E)€n) q(Gk)/(k) >

E

since each edge E lies in Gk9-1 for exactly n!q(Gk)l(k) elements g of S,, .
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This latter expression tells us that

<r(Cg, Gĺ,)>,,Slg(Gk)

is independent of G k and in fact is given by r(C,Sĺ,,n)/(;) since, for G k = Sk,n,
the averaging is trivial .

Now, if p(Gĺr , l) < p(Sk ,n , l), there must be a coloring C such that

r(C, Gk)19(Gĺ,) < r(C, Sk.n)/(k)'

But by the result immediately above there must then be some g c S,, such
that

r(Cg, Gk)lq(Gk) > r(C,sk,n)/(k) ;

thus, for all Gk , p(Gk , l) > p(Sĺr,n , l) .

PROOF OF COROLLARY : For the complete graph one can easily verify
that any coloring C which assigns exactly [n/l] or [n/l] + 1 points to each
color will satisfy r(C, Sk , n) = m(n, k, l) . The value of m(n, k, l) can
immediately be deduced from this fact ; by the principle of inclusion-
exclusion, we obtain

a
m(n, k, l) -

	

1)3 (S ) (n(1 k s)ll
)/(k)'

S=o

For large values of n this expression is asymptotic to and always greater
than

(-1)s(S)(I-S),//k .
S=0

An elementary identity for the Stirling numbers,

Sz(k l) - (- 1) i ' (-1)e tk
t=o t!(k - t)! '

implies that the upper limit for m(k, l) obtained here is the same as the
bound obtained in Theorem 1 .

Our Theorem 2 above is capable of wide generalization. In fact, the
method of proof used above applies to any situation in which we seek to
minimize over a class of graphs the maximum over any class of colorings
that is symmetric under point permutation, the proportion of the edges
possessing any property which is invariant under point permutation .
This generalization can be expressed as the following theorem .
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THEOREM 3 . Let Gk be a k-graph and C, a class of colorings of the
points or, for m < k, of the m edges of Gk . Let ĺr be a property of colored
k-edges. (We say an edge E has property Tr for coloring C if B(E, C) = 1 .)
Let p(Gk , CL) be the maximum over all colorings in C, of the proportion
of k-edges in Gk which have property ĺr . Let m(n, k, Ci) be the minimum
value of p(G k , C) over all k-graphs on n points . Then, if the class C, is
symmetric under point interchange, and the property ĺr is invariant under
simultaneous permutation of coloring and edge (so that S,, g e S,,
9(E, C) = B(Eg, Cg)),

m(n, k, Cl ) = p(Sk ,,,, Ca)

where Sk, is the complete k-graph on n points .

The proof of this theorem is the same as that of Theorem 2 .

We can apply the generalization to obtain answers to the following
modifications of our original problem .

(a) Let
~M(n, k,/,r) ,
m(n, k, 1, r ;)

be the minimax, that is, the minimum over k-graph of the maximum over
all colorings of points in I colors, of the proportion of edges colored in

at least r colors .exactly

(b) Let m(n, k, l, s	s) be the minimax over graph colorings of the
proportion of edges such that s ; points per edge are colored in color j .

(c) Let m(n, k, l, s,, ,. . ., s l , t, , . . ., t t ) be the minimax over graph colorings
in n points for which t; edges are colored in color j, of the proportion of
edges such that s; points per edge are colored in colorj.

The possibilities of further variation in this problem are obviously
great. In each case above we can conclude that the minimum-maximum
occurs for the complete graph Sk , n , for which to answer to each of these
questions becomes a routine computation .

The conclusion that limk,- m(k, l) = 1. has been used by C. Jockusch [2]
in proving the following result in recursion theory, nomenclature for
which will not be defined here .

The sets with the property that some set of lesser degree of unsolvability
is strongly hyper-hyperimmune have zero measure . This result implies
that the measure of the family of sets, each one of which is Turing equiva-
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lent to some member of a given downward closed family C, is the same as
the measure of the family whose members each have some member of C
recursive in it. A downward closed family here means a family of infinite
sets such that every infinite subset of every member is also a member .
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