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1. Introduction 

Let d(n) denote the number of divisors of n, and a,(n) be the k-fold iterate 
of d(n), i.e. d,(rz) = d(n) and &(n) = a(&- ,(v)) for k 22. Let 

(1, 1) aw = ,z’d,In). 
nzx 

BELLMAN and SHAPIRO [l] conjectured that D,(x) = (1 + o(l)) c, x log k x 
for all k z 1, where log, denotes the k-fold iterated logarithm. 

This conjecture was proved for k = 2 and 3 by KATAI [2], [3]. The aim of this 
paper is to prove it for k =4. The cases ks-4 seem to be essentially more difficult. 

Theorem 1. We haoe 

Dd(X) = (1 +o(l))c xlog, x 

as x-03, where c is a positive constant. 

2. Notations and decomposition of the sum D4(x) 

The letters p,p,, .-., q, ql, . . . stand for prime numbers. Let o(n) denote the 
number of the different, and Q(n) the number of all prime factors of ~1, i.e. for 
7-l =py...pp let w(n)=r and Q(B) = cxI + . . . +gr. Let A(n) = (- 1)“(2 and let 
p(n) denote the Moebius function. (Ip( = 1 or 0 according as rz is square-free 
or not.) Let a,(n) =dzda. 

The letters c, c1 . . . denote suitable positive constants, and E, al . . . are arbitrary 
small positive constants not necessarily the same in every place. 

We use the symbol < in VINOGRADOV'S sense. 

For the sake of brevity denote x1 = log x, Xi+ i = log xi, y1 = logy, yi+ 1 = log JJ~ 

(iz 1) and set 

(2. 1) aj(x) = 
(log log x)j- l 

(j- l)! 
(j = 1, 2, a*.). 
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Denote by%? the set of integers all whose prime factors occur with an exponent 
greater than 1. Clearly every integer can be uniquely written in the form 

(2.2) n=Km with (K,m)=l, KEX, m square-free. 

K will denote the quadratic part, m the square-free part of n. .4$x is the set of integers 
whose quadratic part is K. 

For K i X let the numbers k, kl, k, , c1 be defined as follows: 

(2.3) k=d(K), k=SzkI, k, odd, k,=d(k,). 

Then for an II in (2.2) we have 

(2.4) d,(n) = (ti + 1 + m(m))k, . 
Set 

(2.5) ZK = 2 4(n). 
IISX 

ne.drx 
Then 

(2.6) 

Furthermore 

where in rK we sum over those II for which w(m) =r (see (2. 2)). Let further 

(2. Q-(2.9) Z(Y, K r> = ( 
n, 

&l&01; Z(Y, K) = nz Id41e 
w(n)=r (n, K)= 1 
IFiy 

So by (2.4) we have 

(2.10) 27; = d,(k,(cc+l+r))Z $,K,r . 
( I 

For a general natural number n let gn denote the set of those positive integers 
all prime factors of which occur in n. Let further 

(2. 11) 

Let n,(x) be the number of those integers not exceeding x which contain exactly 
r prime factors. 
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3. Lemmas 

Lemma 1. For all r zl we leave 

(3.1) %(X1 < Cl 
x(x2 +c,)‘-l 

x,(r-l)! ’ 

This is a known theorem of HARDY and RAMANUJAN [4]. 
Hence we easily deduce the well-known 

Lemma 2. For aE1 constant 6 =-0 the inequalities 

(3.2)-(3.3) 2 1 <( Y(log Y)-76, 2 1 -=X Y(log Y)-yd 
?lSY ilSY 

R(n)<(l--6)10g2Y R(n)>(l+d)log2y 

hold with a suitable positive constant ya. Further we hatle y9 =2 in (3. 3). 

Lemma 3. Let h(x) denote an increasing futiction of x, tending to infinity 

with x. Then 

(3.4) 
X 

2. 
XiIj-x215h&l/*2 

aj(X) = (1 +O(l))x, 

and consequently 

(3. 5) 2 aj(X., = O(xA 2 
jsxz-h(x),‘;; jZ,xz+h(x)~Gi 

aj (x) = 0 (x1). 

Lemma 3 is well known and can be proved by a simple computation. 

Lemma 4. Let P-C 1 be an arbitrary positive constant, Y1 zz Yz 2 Yf. Then 

(3. 6) Y,4”~~+y* m+-l0~2 YJ2 -=K Y2 log, Yl. 

This lemma can be proved by the method of TURIN (see [5]). 

Let 
(3.7) WJC, t> = 2 2 1. 

xtmn2Sx+h 
n>t 

Lemma 5. For O-=~SX’~~ and O<hsx213 we have 

(3. 8) I&(x, t> -=z ~$1 +ht-l with $I = 0,23. 

Lemma 6. We have 

(3. 9) 2(x, 1) = $x+U(x”“). 

Furthermore, for 0 5 h 5 x2j3, 

(3. 10) 

ho Ids. 

Z(x+h, 1)-2(x, 1) = -$x+O(h’/2)+U(x+) 
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For the proof of (3. 8) and (3. 10) see RICHERT [6]. (3. 9) is well known. 

Let I(y, c) denote the interval [vz - cig, yz +c&]. Let further A be an 
arbitrary but fixed constant and 

(3.11) yJJi* S y” 5 y. 

Lemma 7. For a suitable increasing function g(y) with li+ig(y) = - we have 

(3. 12) Z(Y*, l,r) = ~(l+o(l~)~4.(~) (Y-+-1 

uniformly in I(y, 4g(y)). 

This is a slightly modified form of a result of P. ERDBS [7]. 

4. Fnrther lemmas 

Lemma 8. Let bK<tK”. Then we have 

(4. 1) 2 g< *-l/3 (u-+00). 
K>U 
K<X 

Proof. This is an immediate consequence of the simple and known fact that 

2 
<< X112+e. 

KEX 

Lemma 9. For fixed /3>0 we have 

(4.2) 
.2?- 

fi e d(n), 

furthermore 

(4.3) 2 v-p 4 d(n)zrY 
UC% 
v-u 

when y -=B and y is constant. 

Proof. Since 

zv-fi=17[l-$]-i= J7. J7 zSC(/?)d(n) 
L’El” Pin PB-=2 pss2 

which proves (4. 2). Now (4.2) implies (4, 3) since V-B SU-YV-@+Y for v ZU. 

Lemma 10. We have 

(4.4) Z(y,Kr) = $j(l+o(l))r(K)$4J4 (Y+-) 

UniformIy for KSyi, rEl(y, 2g(y)). [g(y) as in Lemma 7.1 
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Proof. The identity 
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(4. 5) Z(y, K, r) = 2 i(u)2 f, 1, r-Q(u) 
UEBK L 1 

can be proved elementarily or by using the uniqueness of Dirichlet series expansions. 
Suppose that Ksyg, rEl(y, 2g(y)). Let A =y$. For zi< A we have Q(a) -= 

==clog2V-=cy,~g(y)y~ 1’2. Hence Y- Q(a) cI(y, 2g(y)), if y is sufficiently large. 
From (4. 5) we obtain 

(4.6) 

1, v-Q(u) = z, + O(C,). 

IJEsk 

Using Lemma 7 we deduce 

Since %-L+,(Y) = (1 + a(l))u,(y) in r El(y, 2&y)) we have 

Hence by 2 u-~~cT(K) and (4. 3) we obtain 
VElK 

- 2, = -;&(l+O(l))r(K)~. 

Now we estimate the sum X2. We have by (4.2) that 

EC, s y Jyv-1 (<yd(K)d-1’2 <yy;2 
L.>A 

and so ,X, =o(Ci). Hence (4. 4) follows. 

Lemma 11. We have 

(4. 8) Z(y,K) = -$r(K)y+O(d(K)y~‘2). 

Proof. Summing in (4. 5) for 1 TZ Y -C m we deduce 

(4.9) 
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Hence by (3.9) we have 

By Lemma 9 we deduce (4.8). 

Lemma 12. Let .zfJ3~z2~z [14, L = O(Z:‘~). Then we have 

(4. 10) Z(z,tz,,L)-Z(z,,L) = ~~(L)z,+O(d(L)(z:‘?fz:!Z)). 

Proof. Using the identity (4, 9) we have 

d~fz(z1+z2,L)-z(zp L) = “Ig A(v){z(*, lj-z(f:, l)}. 
U-=Zl+ZZ 

Hence by (3. 10) we obtain 

For the last sum we have 

Using Lemma 9 for the other remainder terms we have (4. 10). 

5. For a general integer S let 

Every integer Y can be represented in the form 

(5. 2) r = R,R,e, R,E%,(R,,o,S) = 1, R,EX IP( = 1 

and this representation is unique. 
Let L =R,R, and DL be the set of those r in (5.2) for which L =R,R,. Let 

(5.3) 
and let 

(5.4) 

d(SL) = I= 2fil, , with I, odd and d(l,) = 1,) 
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Lemma 13. Let Y:l*& Y2s Yf13, Ss YF,Ol. Then 

6 5) Ts(Y, , Y1+ Y,) = f A (S)Y* log log Y, + O(Y* (log, YJW?). 

Proof. Using the notations in (5. 3) we have for an t- in (5. 2) 

(5. 6) d*(Sr) = (de) f P + l>l* = w(v)l* + (p + 1 - o(L))I*. 
Hence 

Furthermore 

By the Cauchy inequality we have 

(5. 9) 2.4 5 { 2 (O(Y)- log, Yr)2}1’2( 
YlesYi-tYZ 

2 1;}1’2 = .z;/* Ci’Z. 
Yl<rsrI+YJ 

By Lemma 4 

(5. IO) z, -c Y, log, Yl. 

Using (5. 3) we obtain (d(m)-=vn”) 

Consequently, 
(5.11) 

122 = O((SQ)~ (p -I- 1 - w(L))lz = O((SL)E). 

z* = O(S”Z,), I:, = O(S”&), 

where 

(5.12) 

We have 

c5* 13) t;7 ~Y,<r=e~ylty2~Efyf 2 
YI-~=QLSY~+Y~ 

1= I,+Y$Z,. 

Lsrz k-r2 
Furthermore 

(5. 14) 

Now we estimate the sum C,. 
Let n2 and u2 denote the greatest square divisors of the numbers RI and RP. 

Since R, E as, so u* zz RI/S 5. R, Yi”aol 2 R, Y$*3 holds. Furthermore, since 
all prime factors of R, occur with an exponent greater than 1, we have R2 =v*l 
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and I/v, i.e. v zR if3 Hence the in rC, have the form r = n2m, where n 2 R,Rit3 YFO,O~ z . 
ZZ-(R~R~)~‘~Y:~,~~ s Y$3. Thus 

Applying Lemma 5 we obtain 

(5. 15) 2, -K Yf’4 + Y$’ -=x Y2/4. 

Combining this with (5. 14) we deduce 

(5. 16) Ts(.y,, Y, + Y,) = log, Y, * EC, + o( Y,(log, Y,)“QE). 

Now we estimate the sum Z:,. We have by (5. 15) 

(5. 17) c, = 2 l,+qY," 2 
YlarlYl+Yz Yl-=rsYl+Y* 

1) = ~,,+o(Y;z,) = z,,+o(Yp). 
LSY2 L>Y2 

Furthermore by (5. 2) 

(5.18) 

For CI1 we use Lemma 12 and deduce 

Further, by elementary calculation, 

(5.21) 

Combining our inequalities (5. 17)~(5. 21), (5. 5) follows and hence the lemma 
is proved. 

Putting S= 1 in Lemma 13 we obtain by a simple calculation 

D,(x) = 2 d2 (n) = cx log, x + 0 (xqlog, x). 
IILX 
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6. The proof of the theorem 

First we prove that 

6 1) c, kf Jy .z, << x, 
K>X$ 
KEX 

Indeed by (2. 3), (2.4) we have 

d‘&(n) 5 d,(n) = (E + 1 + cx(m))k, , aclog K, 

Let C, = I;, +C,, with w(m)5lOx, in C, and w(m) rlOx, in .X3. So by 
Lemma 8 we have 

Furthermore, using that w(m)-=~x,, we have 

by Lemma 8 and Lemma 2. 
Suppose now that Ke xj. Let 

(6.4) 

We prove that 

(6. 5) 

and that 

(6.6) .c+) =&i+) = U(x). 

KEX 

Since K~x: we have o(K)cx3 and so in the sums ,E&-) w(n)=x$x2. Furthermore 
we have d,(n) sG(s)&(n). So by the HGlder inequality 

dv-’ -=z “ZX d”(n) c { -;51 l}‘-“{Z Q(n)}” -zc x. x!-Yi/4fi-e) cc: x, 
3 

O(rr)S~ x2 
w(n&;r x2 

if E is small enough (see (3. 2)). The proof of (6. 6) is very similar. 

11 A 
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Finally we prove that 

(6. 7) Z’O’def 2 cp = c(l+o(l)).xx,. 
K-=.X2’ 

Since D&x) = ,UoJ+C(+)+P)+EC,, the theorem will immediately follow. 
By (2. 10) we have 

(6. 8) cp”’ = 2 d,(k,(x+l+r))Z 
x2 
? 

c-r-==2xz 

where in Ci’) Ir -x21 5g(x)]/x2 and in Zp) ir -x21 Sg(x)I/x, holds. Here g(x) 
is a sequence which tends to infinity with x monotonically and for which the 
Lemma 10 holds. 

Let A = [@I, A, = x2 -g(x)Ia<, B, = x2 +g(x)Y’xT and split the interval 
into consecutive subintervals with lengths A. Let 

Gj =[A,+(,j-l)A, A,+jA], j = 1,2, .-a, T; T = . 

Thus we have by (4.4) that 

By Lemma 10 we have 

Taking into account that a,(x/K> = (1+ ~(l))a,(x) for Ksx% r El(x, 2&)) and 
that a,,(x)/a,,(x) = 1 + o(l) for Ir, - r2! sA, rl, r2 EI(x, 2g(x)) we have 

zil,.i) = 

= $(l +o(l))$$ 7,,(A,+(~-1)4+a+l,A,fiA+r+l)~~~ja,(x). 

Observing that the conditions of Lemma 13 are satisfied, we deduce 

$%(k2);x,r~ja,(x)+0 
1 

Hence by (6. 9) using (3. 4) we have 

(6. 10) zp = (1+0(l)) 
2 i(K) 

-K”(k2>xx,+0 
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Now we consider the sum CfJ, From (3. 1) we 

for r-=2x2 and K-=x%. Hence we have 
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easily deduce 

-= c+&(x) 1 

+ r>>d-d f 

Let C, and C5 denote the first and-the second sum in the right hand side of (6. 11). 
Taking into account that a,(x) is monotonically increasing in .Z4 and decreasing 
in C, in r, we have 

x2 
c-1 

'4 s Jz oA,-iA(-~)A,-jA~r~~.+(j 
* + 

i,dfi2(k2(rf1+r)) 

and similarly 
x2 

C-l 2A 

'5 s lz uBx+jA(x) 2 
B.x+tj--1).4~rcBx+ jA 

d&z@+ 1 -i+))‘ 

Hence by Lemma 13 we have 
x2 

[--I 3A 

z4 e {.y~n(X-,)fO(x:“k~)}A 2 aA,-jA(vY)o 
j=O 

Since X2 C-J 
~4 2 aA,-jA(X) 5 r=Az+A&(X) = o(+yl), 

j=O -=x 
we have 
(6. 12) z; = o(x,){~~~A(k2)fx~~2k~‘2). 

Using similar arguments we can deduce for 2, the same inequality. 
Hence by (6. 11) and (6. 10) 

cp = o(l)zp i.e. zp’ = (1 +o(l))zp. 

Summing over K we have 

Observing that the sums are convergent we deduce (6. 7). 
This completes the proof of our theorem. 
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