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The subsets of a (finite) set form a lattice and in fact a

Boolean algebra . The following concepts are natural to them .

A .

	

Intersection

B .

	

Union

C .

	

Disjointness

D. Complement

E . Containment

F .

	

Rank (size)

In this paper we survey the present status of a number of

problems involving maximal or minimal sized families of subsets

subject to restrictions involving these concepts .

Problems of this kind arise in a large number of contexts in

many areas of mathematics . For example, the divisors of a square

free number correspond to the subsets of the prime divisors, so

that certain number theoretic problems involving divisors of

numbers are of this form . Efficient error correcting codes and

block designs can be considered as extremal collections of subsets

satisfying restrictions of thid kind .

Since the concept of set is as basic in mathematics as the

concept of number, one can also investigate the properties con-

sidered here for their own sake as one considers similar problems

in number theory . Thus we might ask, "What sort of limitations
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are imposed upon families of subjects of a set by simple

restrictions on intersection union, rank, and/or containment

among members of the family?"

Questions of this kind have one additional value . Since

the concepts involved are all easily understood by non-mathe-

maticians results and elegant proofs in this area have tutorial

value as illustrations of the power of mathematical method that

are accesible to the layman .

To facilitate reference, we divide the problems considered

here into five areas . These are

I .

	

non-intersection

ii .

	

size limited intersection

III .

	

intersection and rank limitations

IV .

	

containment limitations

V .

	

union and intersection restrictions

VI .

	

miscellany

Problems and results in these areas are described in the

corresponding section below .
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I .

	

Non-Disjoint Families

Let S be a finite set having n elements : (ISI = n .) .

Among the simplest restrictions that can be placed on families

of subsets of S is that no two are disjoint . Thus if F = (Ai )
i = 1, . . .,T with AicS we may require that A inAj#f6 for all

i, j .

With this one restriction there are several questions tha+

can be raised . Among these are :

a) How large can F be?

b) If F is "maximal" in that no subset of S can be

added to it without violating the restriction, how

small can F be?

C) How many maximal F's are there of any given size?

d) How many F's are there of any size?

These four kinds of questions can be raised not only about

families subsets restricted as is F above, but also about

families satisfying variants of the restriction .

Among possible variant restrictions of the same general

kind are :

1 1 Let F be as defined above, and let G consist of

the minimal members of F that is the members of F not con-

tained in others .

1 2 Let G2k be the union of k families each restricted

as was F above .

13 Let G3k be a family containing no k members that

are pairwise disjoint .
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14 Let G4k be a family such that the intersection of

every k members is non-empty .

We now describe some results .

No collection of non-disjoint subsets can contain a set and

its complement . Thus our family F can have at most half of the

subsets : IFJ<2n-l . A maximal family F contains every set

containing any member. Since every set disjoint from A is

contained in A's complement,if A cannot be added to a

maximal family F, Á is already in it . Thus all maximal

families consist of exactly 2n-1 subsets, exactly one of A

or A for each A .

Thus questions a) and b) are easily answered for families

satisfying the non-disjointness restriction satisfied by F above .

The number of maximal families satisfying this restriction on the

other hand has not as yet been determined very well .

There exist several levels of inaccuracy in estimates of

quantities of this kind . Some of these are listed here . one

can have :

1. An exact formula

2 . A convergent formula (convergent for large n to the

exact result)

3 .

	

An asymptotic formula (ratio to exact result is

convergent)

4 . An asymptotic formula for the logarithm

In addition, one can obtain bounds upon any of these levels,

one as well as any others .
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We can easily find a level 4 expression for the total

number of families F; it is n(F) = 22n-1(1+0(1)) .

The argument will be described below .

C

The analogous result for the number of maximal families is
n

[n
F

probably

	

2

	

but this has not

l+o

been proven . It is
/ nn)( 1+0(1) )

however a lower bound and an upper bound of 2

	

is

easily obtained .

To illustrate the kind of reasoning that can be employed to

obtain estimates of this kind we sketch the argument here .

A maximal F can be characterized by its minimal members .

That is, we can define G(F) to be the family consisting of

those members of F which contain no others, and G(F) deter-

mines F. The family G(F) is then what is sometimes called

a "Sperner family" or an "antichain'~ no member of G contains

another . (We discuss Sperner families in Section IV) .

Some information is available about the number of Sperner

families, from this an upper bound to the number of maximal F's

C(
n l(1+0(1))

)
can be obtained, the bound being 2

To obtain a lower bound we divide the n/2 element subsets

and the rest

o£ the former

of S into those containing a given element a 0,

(the rest here are the complements of the members
n

[,n)
collection) . There are

	

2

	

collections Q made up of
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n/2 element subsets containing ao . Each of these determines

a collection F, with
n elements, those n7

	

7
complements of the nF
The argument for n odd is similiar .

We expect that the kind of argument used to yield the estimate
n

[n,, (1+0(1) )
2 é

	

for the number of Sperner families can be applied

F consisting of all sets with more than

element sets containing ao in Q and

element sets containing ao not in Q .

to show that the number Sperner families which contain no disjoint

(~n ) (1+ 2 (1))

members is

	

2

	

Any maximal family having 2n-1

2n-1members has 2

	

subsets . The total member of subsets of

all maximal families hence, the total number of F's is no more

2n-l n I(l+o{1))
than 2

	

[7]/

	

which is of the form 22
n-1(1+0(1))

as stated above .

The other restrictions (I 1I . . . 1 14) have not all been

investigated in as much detail . We first present the existent

results on all these problems . Open problems are then listed .

11 The properties of G(F's) are essentially the properties
n-1\

-of maximal F's . They range in size from 1 to C[n 2 1)/ the

number of them can be estimated as discussed above . They are

all maximal .

12 The number of members [' ) in the union of k F's has

been shown to be no more than 2n-2n-k This bound can be
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acheived by letting the k families be all subsets containing

aj for 1<j<k .

13 Bounds [2] on the size of G3k (n) a family containing

no k disjoint members have been obtained . For n = mk-1

these bounds are realizable, for other values they seem to be

slightly higher then the best possible results . These results

can be obtained by noticing that for any partition of S into

k blocks, at least one block must be outside of any G 3k(n) .

This fact for any gives set of block sizes leads to limitation

on the number of members of G3k (n) of these sizes . Manipulation

of the limiting identities yields the results mentioned above .

Smallest size of a maximal G3k(n) is no more than

2n-2n-k . This might be conjectured to be the exact result .

1 4 Among the maximal F's are families consisting of all

subsets containing some single element . Such families have the

property that all intersections are non-empty . Thus the

restriction (on G4k (n)) that every ' k members have non-vanishing

intersection does not reduce the maximal size of G 4k(n) below

2n-1 There are two natural questions which arise here. What

is the maximal size of G4k(n)'s in which there exist (k+l)

members whose intersection vanishes? Also what is the minimal

size of.a maximal G4k(n)? E.C. Milnerf3,38 )has some results on

the first of these questions . The second is open .

We now list some open problem in this area .

lo . What is the number of maximal families no two members

of which are disjoint?



2° . How small can a family be that is maximal with respect

to the property that is the union of k different maximal families

no trio members of which are disjoint? It is asymptotic to 2n-1

for large nc .

03 . How many such families are there?

$° . Does the smallest maximal G3k have

5° .

6° . What is the minimal size of a maximal

70
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What are the exact upper bounds on G3k(n)?

of each type indicated?

2n-2n-k

Nk(n) ?

members?

What are more exact estimates on the number of families



II . In the problems described so far the basic restriction

was that intersections not vanish. Such restrictions can be

replaced by size limitation on intersections . Thus we could

instead require that no A e and Ai in F satisfy

IAinA1 I > k IAIUAi I-IAinA 1 1 > k

IAinA1 1 s k IA 1UA i I-IAinA j l s k

IA inA 1 1

	

k

IAinA1 I = k

The entire range of problems considered above can.be raised

about families defined by each of these restrictions . The

generalization which most retains the flavor of section I is the

first . A maximal sized family Fk(n) restricted by it, consists

of all subsets having n+k

	

or more elements, with (1/n(n+k-1))

other sets if n+k is odd . That this is the largest possible

size for Fk (n) was proven by Katona [ SJ . Few of the other

problems have been examined under this restriction .

The opposite restriction that subsets do not intersect

"too much" is vaguely related to packing and coding problems .

The number of members of size > k of a family restricted so

that no two members satisfy JAinA
i
l > 1 is at most ( k) and

is achieved by choosing all subsets of size k . If we let fq

be the number of members of such a family having q elements .

We obtain
n

1Ekfq(q)
s (k)

1 54

as a size restriction .
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The coding problem can be described as the study of families

limited by the restriction that the "symmetric difference" between

any two members be no less than k . The symmetric difference

between Ai and Aj is AIUA i - AinA j . There are many results

on the maximal size of codes under these restrictions and on

constructions of optimal codes . Many of these are described in

for example, Berlekamp [6) .

Another problem of this general kind is : how large can a

family of subsets of S be if the symmetric difference between

members is always s q < n? For even q, it has been show that

maximal size families consist of any set a and all other whose
n-1

symmetric difference with it is s q/2 . For odd

	

of

the subsets differing from a by q

	

may also be included[7] .
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III . Another important class of problems involve families

of subsets of a given size subject to intersection restrictions

of the kinds already discussed .

P . Erdős, C. Ko, and R . Rado (81 showed that the maximal size

of a family of subsets of S satisfying

to all subsets are of size sksn/2 (with ISI = n) •

20 no two are disjoint, no one contains another,

is (k_i~the optimum being achieved by choosing all k elements

sets which contain a given element .
n-1`

If 2k = n there are a large number (2 ([n/2 y) of such

families . If 2k<n, however, the maximal sized family is

unique up to permutation of the elements .

The minimal size of maximal family here may or may not be

( 2k-1 ) .

Among the questions that have been raised in this area are :

to What is the largest family if one excludes families all

of whose members contain some element?

20 Given two families such that the members of one all

intersect the members of the other, and subject to the member

size limitation described above what can be said about their sizes?

The following somewhat more general result has been obtained

in this direction[ 91 :

Let F and G be two families of subsets of S, with

the members of F having k elements and the members of G q
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elements . Let k+q be no bigger than n ; if k is no more

than 7- then F can have k or fewer members as long as

no member contains another ; the same possibility for G is

allowed . Then, either

I F , s (k=1)

	

or

	

1w< (q-1 )

Milner [3.38] has certain results on the first problem above .

For sufficiently large n and given k the family con-

sisting of all k element subsets including one particular
k

element is far larger

	

(of the order of c n as opposed to
k-1

c , (k-1) , .) than any other. Under these circumstances it is

easy to answer many of the related questions that arise here .

Thus, for sufficiently large n for fixed k and q we

can show that

A . The number of members in the union of q sets of

k-element non-disjoint subsets of S with IS) = n, is no

greater than

(k-1) + (k-2) . . . + (n-q)

B .

	

The number of members of a set of k element subsets

of S under the restriction that no (q+l) are pairwise disjoint

is bounded in the same way [101 .
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C . The number of members of a set of k element subsets

of S under the restriction that the intersection of each pair

has at least q elements in it is at most (n-q ) [ lo] .
k-q

one might conjecture that similar results hold so long as

2ksn-q+l for A and B, and that the best result for C is
k-m

the maximum over m of E (m-p)(k-m-p-1)' Results of this
p=0

kind have not yet been obtained .

A related problem, also as yet unsolved, is due to Kneser [11] .

How many families of k-element subsets of S, each consisting

of subsets which are not disjoint from one another, are

necessary to cover all k-element subsets? The answer appears

to be n-2k+1 (if this number is at least one) .

Restrictions of the following kind

subset size = r

size of intersection s q

represent packing problems, or coding problems involving words

of "fixed weight" . Problems of the form

subset size = k

intersection size = q

describe such structures as projective planes (q=2) Steiner
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systems and designs . There exist a vast literature on such

questions . Neither class of problem will be considered here .

Erdős, Ko, and Rado im conjectured that if I S I = 4k and

F consists of subsets of size 2k of S which overlap by at

least two, then max JFJ _ ((2k )-( k )2 )~2 .
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IV Containment Restriction

In this section we consider families of subsets that

are subject to containment restrictions . The prototype of such

restriction is that satisfied by a "Sperner family" or antichain,

that no member contain another . Sperner (12) in 1927 showed that

such a family could have at most ( n ) members . Lubell [131
[7

in 1959 and independently Meshalkin [141 in 1963 obtained a

somewhat stronger restriction. If fk is the number of

k-element members of a Sperner family of subsets of S, with

JSJ = n then the inequality

n
E fk/(k) s 1

k=0

holds . Equality can only occur if fk = 1 for some value of

k . Spernér's result is a corollary of this inequality, since

it is trivial that

E f /( n ) s £ fk' (k ) 'k=o k [Z]

	

k=0

Lubell's argument is so simple that we

maximal chain is a set of n+l subsets of S totally ordered

by inclusion . Each k element subset occurs in the same

proportion (1/( k)) of maximal chains . Since no chain can contain

more than one member of a Sperner family, the sum of the

proportion of maximal chains containing each member cannot exceed

one, which is the Lubell-Meshalkin inequality .

repeat it here . A
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The same argument implies that the maximal number of members

in a family which has at most q member in common with any chain

is the sum of the largest q binomial coefficients . This result

follows from the inequality

E fk/(k) s q
k=0

which must be satisfied by such a family . Lubell's argument

can be applied in many other contexts . Thus, by its use,

along, with certain additional arguments the following general-

ization[15] has been obtained . Let f be any function defined

in the members of any partial order and let F be a family which

has at most k members in common with any chain in the partial

order . Let G be a permutation group defined on the partial

order which preserves f (for g in G,f(gA)=f(A)) and is a

symmetry of the partial order (AsB if and only if g A-g B

for every g in G) . Then the maximum value of the sum of f over

the members of F is acheived for some F which is the union of

orbits under G . That is, there is an F such that

E f(A) s E f(A)
AEF

	

A E P

with F the union of complete orbits under G. Lubell[16]] has

obtained still further generalizations of his result .

The following questions have also been raised about Sperner

families . Let F be a Sperner family, let G+ be the family

connecting of all subsets which contain at least one member of F,
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and let G1 be the family of all subsets ordered by inclusion

with respect to at least one of F .

How large can JFI be given JG+ J? Given IGI I? If
IF,,,.( n ), how many pairs A, B with AaB must there be in F?

[7 ]
The following results along these lines have been obtained

k
1 .

	

If IF ,.(n) for k< n/2, then IG+ I>

	

n[17]
k

	

(
9)g=G

2

	

BFI/IGII<(,n )/2n[18]

3 .

	

The number of "containment pairs" is minimized if F

consists of all subset having [n7 7], [ ] + 1, [n]_ 1, [n] + 2, .,,

elements and of the remaining members of F all have a number

of elements given by the next entry on this list[ l9] .

The minimal number of "containment triples" has not been

found as yet, although one could guess the same conclusion .

Sperner's conclusion can be obtained, when the restriction

of non-containment is relaxed considerably . Suppose, for example

that S is the union of two disjoint sets T 1 and T2

S = T1UT2

	

T1nT2 = ~

and suppose that F is restricted such that if AaB for

A, BEF then A-B T1 and A-B~T2 . Then IFI,( [n ] ), that is

Sperner's bound still applies with these weakened requirements

on F. An interesting unsolved problem is the analogue of this

for S = T1UT2UT3 all T's disjoint; under these circumstances

the analogous restriction on F is not sufficient to get the



163

same bound on jFI . One can ask, what is the best bound? Also,

what are the weakest additional restrictions necessary to impose

upon F to get back to the Sperner bound in this case? One can

also ask, what analogue of Lubell's inequality can be obtained

for the S = T1UT2 problem?

Katona[32] , Schönheim [21]. and Erdös [2` ] have obtained

further generalizations of Sperner's theorem .

The number of Sperner families of subsets of S has been

investigated by many authors beginning with Dedekind .

recent result [231 is that this number is greater than
/ n \
(~n~l(1+c n11 2 log n)

/~2

Katona[24] and KruskalL 25] have considered a related question .

Given an f member family F of k-element subsets of S . Let

G consist of the (k+l) element subsets which contain one or

more members of F . How small can IGI be given f? His result

is an exact one : f can be uniquely expressed as

(rll)+(k22)+(k33) . . .(kmm)

with rl>r2> . .,m. Then IG~-(k ) +(k32)+ . . . +(kmm) .

The best

Meshalkin [14] has obtained a result on families of partitions

of an n element sets into k labelled blocks restricted so

that no blocks properly contains a block with the same label .

The result, the largest k-nomial coefficient, is really a

corollary of the Lubell-Meshalkin identity .



V . There are a number of problems that have been studied

which involve intersection restriction involving three or more

subsets . The following set of limitations have been considered

a)

	

F, is limited in that no three members A,B,C satisfy

AUB = C (AnB = C would be equivalent)

b)

	

F2 obeys the restriction that no four members A, B, C, D

satisfy AUB = C, AnB = D

C) No three members of A, B, C of F 3 satisfy AUB = C

or AnB = C

d) No three members of F4 satisfy AUB-DC (equivalently

Anpc:C )

e) No three members of F5 satisfy AUBCC

f) No 2k members of Fők form a Boolean algebra under

union and intersection

g) Given any k members A 1 . . .A k of F7k the intersection

A1nA2nA3 . . .nAk is nonempty and the same restriction holds of any

or all A j 's are replaced by their complements .

h) Given two disjoint members of F8 their union

is a nonmember : AUB = C, AnB = 0 i . ; excluded .

Results on these areas have b ees . a s follows :

a)

	

The restriction AUB / C i.ould seem to limit F,

to

	

n 1(1+cn-1 ) members . The best limitation [261 obtained hasj7]
been) (rn))(l+c/n-1/2) .

7

1 6 4



b)

	

Under the restriction AUB / C or ACB / D, F2

can have c 2 n n-1/4 members . Upper and lower bounds of this

form have been obtained; they may or may not be equal [271 .

C)

	

The restriction stated above probably requires that

F3 can have at most n

	

members for n even . Clements[l0]( ,n,)+'

has found examples having this many members .

d)

	

The number of members of F4 is exponentially small -

compared to 2n . Little is know about this limitation .

e)

	

Under AUB C the size of F5 cannot exceed

(n p 1 + n) which bound can be achieved .
7

f)

	

Little is known beyond the case (b) above for this

restriction .

g)

	

This problem has been considered by Joel Spencer.L10]

For k = 2 it is resolved : the bound is
(

n_i)~ . For k = 3

upper and lower bounds of the form a with it-.c!-2 have

been obtained . They are not close to one another. This

restriction includes that of (d) namely A 1nA2
~'A

3 for k>3 .

h) Roughly speaking, under these restriction the family

G can contain all sets having n to

	

elements . Best:7

	

T
results have been obtained for n = 3k+1 . For n = 3k, 3k +2

there is a slight gap between the best bound and best existing

results .

Another set of related problems are due to P . Erdős and

L . MoserE29] . Rewards for their solution are available from the

1 6 5

former author .



"Find bounds for f(n) = the least number of subsets of a

set A of n elements such that every subset of A is the

union of two of the f(n) subsets . It is easy to prove that

"Find bounds on

A,,A2 , . . .Af(n)

AiUA,, 1<isf(n),

of a

16 6

,/2 2n < f(2n) s 2 211 .

We offer $25, deciding (with proof) whether f(2n) is > or

< (1 .75)2" for sufficiently large n ."

f(n) = the largest number of subsets

set of n elements such that the (f2 (n))

are distinct . We can prove that for large n

(1 + E 1 ) n < f(n) < (1 + E2 )n,

where 0<E 1 <F2<1, and offer $25 . for finding E l,E2 with

E21E1-- 1 .01 ."

sets
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VI . Another kind of problem involves families of sets of a

specified size out of a not necessarily specified set .

Two problems of this kind are :

to Suppose that no three subsets have pairwise the same

intersection, and they are of size k . How many can there be?

20 Suppose that any subset which interests all members

of the family contains at least one member . How few members can

the family have?

The property mentioned in 2 0 called "Property B", has been

extensively studied . For n = 3 one can find a 7 member family

with this property . For n = 4 the smallest family size is

unknown but probably around 20 . Erdös[301],[4] has an upper

bound of c n 22n and Schmidt[31] a lower bound of 2 n(1 + 4/n)-1 .

These results have recently been improved slightly by Herzog

and Schonheim[l0]

The best bound for problem t o here is probably of the form

ck . The best result obtained so far for an upper bound has been

of the form k! ek[34,37) .
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