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In this paper we investigate edge decomposition and 

imbedding of graphs. In a previous paper (1) we investigated 

vertex and edge decompositions of graphs, we solved nearly all the 

problems on vertex decomposition but left most of the problems on 

edge decompositions open. First we introduce sane notation, we 

found it convenient to use slightly different notations in (1). 

a(g) denotes the cardinal number of the vertices of g. Ka is the 

ccmtplete graph of d vertices, B(g) is the smallest cardinal number 

for which g does not contain a K . Cn is a circuit of n vertices. 
5 

Let g be a graph. A sequence gg, o ,< 5 ( y is said to be sn edge 

decomposition of type y if every edge of g belongs to one and 

only one of the g 's, 
5 

&El, a)+&. Y) means that every g with a(g) = a 

which does not contain a subgraph isomorphic to gl has an edge 

decomposition X of type y where no g 
5 

contains a subgrapb 

isamorphic to g,. In (1) we usually assumed g, = K 
8' 

632 = K 

6 

l 

B-63g): 
means that for every edge decomposition g , 

a 
osa<y of g oftype y foratleastone aey,g contains 

a 

a subgraphisomorphic g 
5' 

Thus Ku+(Ku, Kw)' is a restatement of 

the well known theorem of Remsey. 

In (1) we proved (among others) the following theorem. 

Assume G.C,H. (generalized hypothesis of the contin.iir:,l'then 

(p 3 01 (K w’ 
w~+++(K~, wp) for every n < w. 

115 
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We could not decide whether (Ku, w~)--)(K~, w) is true 

for i = 2 or i = 3 and for sane 3 ,< n < W. (KU, w,)+(K 
n 

, W) 

is true for every 3 I n < w  since according to an old result of 

E&s and Iukey K is the union of w  trees. 
w1 

One gets very interesting unsolved problems for edge 

deccmnosition of finite graphs. Denote by f(k,l , r), 

k ,,! 3 4, r 3 2, the smallest integer (if it exists) for which 

(Kk, f (k,f , r&J(Kl, r). In other words f(k,A, r) is the 

smallest integer for whioh there is a graph of f(k,l , r) vertices 

which does not contain a Kk but if we color its edges by r colors 

at least one of the colors contains a KJ- f. We conjectured that 

f(k,$. , r) exists for every k 3 R > 4, r 3 2. 

f(i’, 4, 2) = 6 is well known and easy to see. Tosa 

proved that f(5, 4, 2) exists (1) but he did not determine its 

value, Graham (7) proved f(6, 4, 2) = 8. Finally Folkman (6) 

proved that f(k, k, 2) exists for every k 3 4, but his proof 

probably gives a very poor upper bound for f(k, k, 2). Folkman 

probably had a proof that f(k&,3) exists. The general case is open, 

The principal lemma of Folkman is the following theorem 

which is of great interest in itself: For each positive integer n 

and each finite graph G there is a finite graph H(N, G) satisfying 

B(G) = B(H(N, G)) and if the vertices of G are partitioned into 

n disjoint sets C,, ..,,Cn then for sane i,l ,$ i 5 n there is 

a set S C C 
i 

such that the subgraph of H(N, G) spanned by S is 

isunorphic to G. 

It would be interesting to try to extend this theorem to 

infinite graphs G and when n can be any infinite cardinal number. 
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the proof of Folkman is by induction with respect to n and probably 

would have to be modified to work in this case. 

It is quite possible that for every infinite cardinal 

number f(k, k, m) = 2 
2m 

, 

Before we leave this subject we make the following 

remark: Assume that there is a A+(A, 3]* but Ae(A, 4)* 

(jhere denotes the usual arrow symbol of Erd& and Rado (2) and 

A is any ordinal or order type). Let g be the graph whose vertices 

form a set of type X and which does not contain a K, and which 
2 

does not contain an independent set of type 1. Using xj(h, 3) 

we obtain by a simple argument (the details of which we leave to the 

reader) that if we color the edges of g by n colors (n < w) then 

one of the colors contains a triangle. It then easily follows by 

well known arguments that g has a finite subgraph with the ssme 

property, or P(4, 4, n) exists for every n. 

The only trouble with this argument is that it is quite 

possible that such a k does not exist. Recently Chang proved 

2, h?, 312. uW--)(wW, 4J2 is still open but ksng believes 

that it probably holds. 

Galvin asked us in a letter if 

(1) (C3, n)++(C5, 21 

holds for some n. We showed that for every k and 1 there is a 

smallest integer g(k,A ) such that 

(C Sk-1 g(r:SJP))-/+(c2k+I,i) 

but we did not even determine g(2, 2). We will outline the proof 

of (1) and (2) later. 
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Galvin also raised the following interesting question: 

A class of graphs has the GR (Calvin-Ramsey (this terminology is 

due to us)) property if for every graph gI of the class there is 

a graph 6, of the class so that gpd(gl, gl). The class has 

the unrestricted GR property if for every g1 of the class and to 

every y there is a g2 of the class so that gn--)(gl)y. 

k,+(g, + is a shorthand notation for g2--$(g1, g,---), 

written y times in the bracket). Ramsey's theorem and its 

generalizations show that the class of all finite graphs haa the 

G-R property and the class of all graphs has the unrestricted G-R 

property. Calvin in particular asked whether the class of all 

finite graphs not containing a triangle has the G-R property,(2). 

We cannot at present answer this question, but we will give some 

classes of graphs which have the G-R property. 

First of all it is known that the class of all finite 

bipartite graphs have the G-R property and the class of all 

bipartite graphs has the unrestricted GR property. Trivially the 

star has the G-R property. 

To get new non-trivial classes of graphs having the GR 

property we define some graphs which we considered in previous 

papers (3). Let b be an ordinal number, the graph gx is de- 

fined ss follows: The vertices of g 
h 

are the pairs of ordinals 

(a, B),os a < 6 c X. Two vertices (a, B) and (y, 6) are joined if 

a<B=y<6. Clearly pi contains no triangles but it contains a 

pentagon for every X 2 4. First we show 

(3) .+-4ku, Q' 
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To prove (3) observe that the splitting of the edges of 

Ef, 
into two classes corresponds to the splitting of the triangles 

(a, b, c), a<b<c<ti into tW0 ChSSeB. Ramsey's theorem now 

implies that there is an infinite sequence a, < l -a all whose 

triplets are in the same class. This proves (3). The same proof 

gives that for every k there is an n such that 

(4) P,d'gk* Q. 

(3) and (4) immediately implies that the class of finite 

graphs (and the class of all graphs) imbeddable in gW have property 

G-R. Also (4) immediately implies (1). 

Assuming G.C.H. the above proof gives, using the results 

of (4), that for every 6 and y there is an a such that 

(5) t3~kJy. 

(5) clearly implies that the class of graphs which can be imbedded 

into some g has the unrestricted G-R property. 
a 

Another theorem of (4) states 
3 

(6) wa+3+(w'w, 

and from (6) we obtain g 
w, t  j+wu l 

Thus the same argument 
a 

which we used in the proof (1) gives 

(7) (C3'Ua + 3rt--)(C5rWa) 

We cannot decide whether 

(8) (cg, ba + ,+-dc,, aa) 

holds. In fact (8) is open even for a = o. In (4) we showed 

WC1 + it)da 

thus (8) cannot be proved by this method. 

Define the graphs S+, (introduced by Specker (7)) as 

follows: The vertices of S? are the triplets of ordinals 
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(a, 5, Y), u < 8 < y < q.(a, 5, y) and (a: 5; y') are joined if 

B<a'<y<B! It is easy to see that .$, contsins no triangles 

and the method which proved (3) gives S,-(S,, s,). Thus the 

class of the finite graphs (and the class of all graphs)imbeddable 

in S, has the G-R property and the class of graphs imbeddable in 

S for some q has the unrestricted G-R property. 4 

In (3) we considered various graphs related to ga and 

5 a* In this way we obtain several other classes of graphs which have 

the G-R property, respectively the unrestricted G-R property, also 

with the help of these graphs we can prove (2). We supress the 

details. 

It does not seem easy to characterise those finite graphs 

which can be imbedded into S, or gw. It is easy to see that if g 

can be imbedded in 5, or gw we must have B(g) = 3, but not every 

finite graph with B(g) = 3 (i.e. not containing a triangle) can be 

imbedded into SW or gw. The simplest graph with B(g) = 3 and not 

imbeddable in g 
w  

has the vertices x1, xp, x3; yl, y2, yg; Z. 

z is joined to x3 and yg, x3 snd yg are not joined but all other 

8 edges (xi, Y 
3) 

occur in our graph. This graph can easily be 

imbedded in $,. To show that there are finite graphs with 

g (g) = 3 which cannot be imbedded in $, we observe that it is 

not hard to show that the chrcmatic number of every subgraph 

g of S, with a(g) 5 n is less than (log n)e and it is known 

(5) that there are graphs with B(g) = 3, a(g) = n whose chromatic 

number is greater than n S-6 . We have not determined the smallest 

a(g) with B(g) = 3, not imbeddable in s,,~. Finally it is easy to 

see that 6; can be imbedded into s W' 
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It would be interesting to find a graph g satisfying 

(9) B(g) = 3, a(g) = w  

so that every graph which satisfies (9) can be imbedded into g. It 

is not clear if such a g exists. It is easy to see that there is 

a g satisfying (9) into which every g with f3 (g) = 3,a(g) < u can be 

imbedded, it would be very useful to have a simple construction for 

such a graph, it seems doubtful if this is possible. 

Define the graph Tr (a) as follows: The vertices of 

Tr (a) are r-tuples of ordinals (tl,a*;tr), 0 6 ti < a, 1 _( i 5 r. 

(tl, '-•,t,) and Ctl; .**,t,') are joined if there are two indices 

i and j, 1~ i \' r; 1\' j 6 r so that t. < t' and t' > t , 1 i 3 5 
It easily follows from Ramsey's theorem that B(Tr(a)) = w. T,(a) 

has been extensively studied in (1). It is not hard to prove that 

the graphs imbeddable in some T,(a) (r fixed a variable) have 

the unrestricted G-R property. At first we thought that perhaps 

every graph g with B(g) = w  can be imbedded into some T2(a), but 

Galvin showed that g Assume w  cannot be imbedded into any Tr(a). 

that gm could be imbedded into T,(a). This would imply that 

the edges of gw are split into r(r-1) classes where two edges 

belong to the sane class if in the imbedding the sane pair 

Ii, j) (in t i < t' i t; > tj) corresponds to them, From (3) we 

obtain that there is a whole g u all whose edges are in the same 

class and this would imply an infinite descending sequence of ordinal 

numbers - an evident contradiction. 

We do not know whether all the graphs which can be imbedded 

into some Tr(a) can also be imbedded into some T2(a'). Also we 

do not know if the class of graphs with B(g)' = w  form a G-R 

class or an unrestricted G-R class. 
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Let g be any graph, x a vertex of g, yl, y2, l ** the 

vertices joined to x. g(x) is the subgraph of g spanned by 

YlS '*‘v We define by transfinite induction for every a ) 0 the 

class of graphs of rank a. The graphs of ra& 0 are the finite 

graphs. The graphs of rark one are the graphs each vertex of which 

has finite valency. Assume that we have defined for every B < a 

the graphs of rank B. The graphs of rank a are the graphs g such 

that for every vertex x of g, g(x) has rank B (x) < a. 

We can prove that 5 (g) = w  if and only if g has rank 

a POP scsne ordinal a. We supress the details. 

It would be interesting to decide whether the class of 

graphs not containing a rectangle has the G-R property. In (1) it is 

proved that every graph which contains no rectangle has sn edge 

decomposition into countably many trees, thus this class certainly 

does not have the unrestricted GR property, We have not found any 

non-trivial class of graphs which has the GR property but does not 

have the unrestricted GR property. 

Let gI be any finite graph. Does the class of graphs 

which do not have a subgraph isomorphic to gl have the GR 

property? If the answer is affirmative then for every g2 which 

does not contain g1 as a subgraph and for every sufficiently large 

n (gl, n)*h32, 2). 

Many generalizations of all these questions are possible 

but we leave these for the reader, we just state for the time being 

one more problem: 

It would be of interest to investigate the graphs for which 

(10) g-63, a;) 
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holds. In this note we found a large class of graphs which satis* 

(10). First of all we want to define another graph g, a (g) = w  

which satisfies (10). The vertices of g are x1, x2, a-*) 

Y1, Yp, I** . xi is joined to yj if j>i. It is easy to show 

that g satisfies (10). It seems very hard to characterize all 

graphs with CI (g) = w  which satise (10). The only connected 

graph knoun to us with a (g) = w1 which satisfies (10) is the 

star, perhaps non -trivial graphs satisfying (10) only exist if 

2 (g) is a Ramsey cardinal." 
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