
Acta Mathematics Acndemiae Scientiarum Hungaricae 
Tomus 21 (34), (1970)) pp. 369-392 

SOME RESULTS AND PROBLEMS ON CERTAIN 
POLARIZED PARTITIONS 

P. ERDBS, member of the Academy and A. HAJNAL (Budapest) 

6 1. Introduction. Notation 

1. 1. A short list of general notations 

CL, B, y, 6 denote cardinals. 5, [, q, P, v, (r, Q denote ordinals. IA 1 is the cardinality 
of the set A. c1+ is smallest cardinal greater than DI. wy is the sequence of infinite 
cardinals CO,, = CO. i, j, T, s, 1, k denote integers (cardinals CO). CC is a strong limit 
cardinal if 2s -K a for every /i -= CI. For x z CO cf (g) is the least cardinal cofinal with CI 

[A]” = {X: XCA A IX]= Lx}, [A]‘” = {X: XCA A 1x1 -=za}. 

For the convenience of the reader we recall the definition of some of the partition 
symbols defined in earlier papers [l], [2], [3]. 

DEFINITION 1. 1. 1. The ordinary partition symbol. CI + (&)t , y denotes that the 
following statement is true. 

Whenever [aI6 = lJ 1, then there are A c x, v -= y such that IA I = p,, , [A]” cl,. 
Y c y 

Here and for all other symbols to be defined CX+(PJ~~~ denotes the negations 
of the corresponding statements. M -@)$ denotes s1 -+(&)~cy where fi, = p for V-C y. 

We use some other self explanatory abbreviations which are defined in detail 
in [2]. 

Note that the ordinary partition symbol and some of the other symbols can 
be defined for types instead of ordinals in a natural way. If cx; &, V-C y are types, 
~-(,6,)~ means the following: 

Whenever A, < is an ordered set, tp (4) = CC and [AIs = IJ I,, , then there 
VCY 

are A’ c A, v c y such that tp A’(<) =/I, and [A’18 cly . 

Since we do not investigate these problems here, we will give all the definitions 
for cardinals. 

DEFINITION 1.1. 2. The polarized partition symbol. Let Y, s c CO ; Y = rO + -. . + P, _ 1. 
Let cli, pi, y be cardinals for i-es, V-Z y. 

(I!; ]+[;;yJyy+’ means that the following statement is true. 

Wkeiever 
[a,l’DX “. X[xs-Ilr,-’ = u I” 

V<Y 

then there exist sets A, c tli, i-= s and v -= y such that 

[Ao~X**-XIA,-,~-~~Iv and IAil = pi,, for i -= s. 
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DEFINITION 1. 1. 3. E -t(fl);‘-’ means that the following statement is true: 
Whenever 

[a]’ = IJ 1; for I -= 0 
,I< )’ 

then there are A ctr andfE”y such that IA’=/? and [A]‘cls,,, for i’cu. 

DEFINITION 1, 1. 4. %-[/3,,]{,, means that the following statement is true. 
Whenever [rid = U I,, then there are A c #Y, vu -= y such that 

,’ c y 
IAl = A, and AC IJ I,. 

If p, = /? for 1’ -c= y, we write (Y -L/3]:. 

DEFINITION 1. 1. 5. a -[#,,,, means that the following statement is true: 
Whenever [aId = U I,, then there are A CB and Cc yO such that IA ( =b, 

v-=yo 
/Cl 5 y1 and A c U I,, . The symbols defined in 1. 1. 4, 1. 1. 5 are the “square 

VEC 
bracket” symbols corresponding to the ordinary partition symbol. Quite similarly 
two square bracket symbols 

(lL,) - [~~l,J-rs-‘. [:‘_,) -f [;;?,1,1:“’ 

can be defined corresponding to the polarized partition symbol. 
The symbols defined in 1. 1, 1. 2, 1. 3 were defined in [2], where we gave a 

detailed discussion of the ordinary partition symbol and the special case. s = 2, r = 2, 
rO =rl = 1, y =2 of the polarized partition symbol. 

The aim of the present is to consider the special cases 

of the polarized partition symbol, mainly in case Y =2, y =2 and some related 
problems, 

1, 2 A new notation for the main problems considered 

l* 2* l* (z:) -g::j:: is obviously equivalent to the following statement: 

Let [a,]‘= U 1: for c<c+,. Then there are Ao~~co, A,crl,, v-=y such that 
ucg 

If B’, = {[A]*: A ccl1 A \A / = S,,,} then 1. 2. 1 can be expressed as follows: 
There are A, c z, v < y such that IA, I= &,,, and there is an XE 9” such that 

xc n 1;. 
tEEA0 

We will consider the more general problem when 98,, can be more general classes. 
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DEFINITION 1. 2. 2. Let CI*, a1 ; &, v K 7 be cardinals Y <CD, and let .&?;4,9 V-Z y 

be a sequence, where BY c EP([uJ). Then (1:) -(g,)::y means that the following 

statement is true. Whenever 

[a,]’ = U Z: for t -= a0 
V==Y 

then there are A, c ‘CQ, v -C y such that IA, / = b, and there is XC BV with 

Note that an Xc[a,]* can be considered as a graph (cr, X) whose vertices and 
edges are the elements of SI and the elements of X, respectively. We will sometimes 
use graph terminology for expressing certain properties of such classes. 

We will sometimes use the v (or) sign in the symbol; e.g. 

‘TO 

(1 r 

86 t% 8; P’; lyr 
- 

a1 
g;IVgg; &gA; 

1 

has the following self explanatory meaning. 
Whenever 

[a,]* = v&l,ZJ for 5 -= z. 

then there are A, c a, v -K 2 such that either jA, j = /?b and there is an XEL?& for 
which 

XC n z:, 
EEA0 

or /A, I= /?z and there is an XC $8: for which 

xc n 1:. 
‘ZEAO 

1. 3 About the results 

Though we have defined above a general symbol which can be used to express 
the results and problems we are going to state, it will be clear to everyone familiar 
with the subject that a systematical discussion of all the problems involved is 
hopeless presently (and perhaps would not even be worth while). We came across 
the special cases of these problems when working on ordinary partition problems. 
Some of the results are ten years old, some are new and give the solution of several 
porblems stated in our paper [3]. 

We will consider different instances in different chapters and we give short 
summaries there. 

Though most of the results will only interest those who know the basic results 
un partition relations in detail, there will be some simple unsolved problems which 
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seem to be fundamental. Trying to clear these problems up we will prove some 
obviously not final partial results too. 

We mention that Theorems 4. 1, 4. 3, 6. 1, 6. 3 give solution of Problems 
61, 59, 60 stated in [3], respectively. 

Q 2. A positive result for measurable E 

DEFINITION 2. 1. 91i.,+ will denote the class of complete y, 6 even graphs 
with set of vertices o! i.e. 

L?a a,y,* = {xc [El2 : 3 c, D(C canDcaACflD=O A ICI= 

=yA Io:=sn({~,Yt}EX~5ECnyED))). 

If =@c,,,.3 we write X=[C, D]. 

2.2. Let a SW and $8: = {XC [a]* : (c(, X) contains an odd circuit}. Then 

[:I -I+ [l?: 3 i&J”‘- 

PROOF. Put I,‘=({[, ~}E[cc]~:[s<-=Q} Ij=[d1]~-1,$ for <-=ao. Then I,$$@)’ 
IfXE&,QI i.e. X=[{&,}, D], JDI =E then Xf11$#0 for 5~5~. 

Note that if a’,’ = {Xc[c@: X contains tl edges} then one can prove e.g 

2. 3. 

vvrvtF shows that in 2.2 L?J~, & ~a’,) 1 cannot be replaced by &. We omit the routine 
. 

2.4. Let Z&CO. Put 9@={X~[ct]~: X$0}. We have 

PROOF. For { c a put I,$ = [Q2, If = [@I2 - 10. 
Then jI$j -K M, hence 1: 6 II,’ and if X# 0 then there is <,, -Z CC such that XfI&$ # 0 

for (&to. 
The above negative results suggest the formulation of the following property: 

& 
0 t ;dl,,,,&~: * 1 

192 
2. 5. P(a) * for every B, y ia, a + 

Our main result in this chapter is 

THEOREM 1, 1 b Let CI 20 be 0, I-measwable. Then for every /I, y -=a 
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As a corollary of this, P(R) holds for measurable CI. Before proving the theorem 
we mention 

PROBLEM 1. a) Can one prove Theorem 1.1 under some weaker hypothesis 
than the measurability of a? (E.g. a-(~)$ ?) 

b) Is P(U) true for the first strongly inaccessible cardinal? 
Note that we will prove that P(x) is false for cardinals not strongly inaccessible. 

PROOF OF THEOREM 1. 1. By the definitions 1. 2. 1, 1. 2. 2 it is obviously 
sufficient to prove the following statement. 

Let I,, c-=a be a sequence of type CI, where Icc[cx]2. Assume that the following 
conditions (l), (2) hold: 

(1) IfA,Bca,A(7B=O, jAj=y, IBl=cl then [A,B]Q&for tea. 

(2) If A, Bccw, jA I = p, lB1 = ct then [A]* c <vl1<. 

Then there are C, DCCI, ICI= IDI =a such that 

[C]2flIc=0 for 5~01. 

Let p denote a non-trivial cc-complete 0, l-valued measure on CI. For each 
P E [@ put 
(3) N(P)={(E!x: PHI,}. 

Put 
(4) I= {PE[cq: p(N(P)) = 1). 

‘z being strongly inaccessible we have CI -(fi, a)” (see [l]). Applying this for the 
partition [aI2 =IU([a12 -1) and using the assumption (2) we obtain that 

(5) There is an Aeccl, I&[ =a, [Q nI=O i.e. 

,u(N(P)) = 0 for each P E [A,$. 

Let now p’ be a non trivial cl-complete 0, l-valued measure on A,. 
Put 

(6) U&)={yE&: {x, y}E&} for every XC&, t-==:a 

M(x) = {t -= cx : p’( U&c)) = 1 } for every x E A, 

T= {x&4,: ,u(M(x))=l} 

Tc=‘{x~A,: <EM(x)} for every (-=a. 

We prove 

(7) \TJ-=y for every t-=a. In fact if T’cT{ IT’j=y then p’ n 
( 

U,(x) =l and 
XCT’ 1 

[ 

T’,xpT7 U,(x) - T ‘1 c I< which contradicts the assumption (1). 

It follows that 

(8) lTI-=y, for if T’cT, jT’l=y then thereis a SE l-j M(x) and T’cTr for 
XCT’ 

this 5. 
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Put A, = A, - T. By (5) and (6) and (8) 

p’(A1) = 1, p(N(P)) = 0 for every PC [AlIZ, p(M(x)) = 0 for every x EA, . 
We define the sequences {x,}~<~cA~, {&},ia CE by induction on Q as follows. 
Assume that Q -= CI, 1, and 5, are already defined and 5,$ M(rU,) for 7, g -= e. 
Then by (8) and (9) 

P’( u u q,cxJ> = 0 rep O-=Q 

hence by (7) there is an X, E A,, X’ f X, for (T K e such that 

(10) xe4 U U u,z(x,)U U TEE. r<e o-=e ?-=I2 
By (9) the set 

u q{x,> x0>) u u M(xJ 
rcnse 6S:Q 

has p measure 0, hence there is a 5, < a, &, f t, for z < p such that 

(11) 5,4 u wxv x,H u u Mxcr)* rcaz(i *Se 
By (10) and (11) {,BM(x,) holds for r, c, 5 Q f 1 as well. Thus the sequences are 
defined. Put C = {x~}~<~, D = {&,}e<oL. By the definition ICI = IDI = CI. Let o-e u -= CI, 
e-=cc. We prove {x,, xb}B&. We distinguish two cases: (i) e -=D, (ii) a~ 4. 
By (10) x, 6 U,&x,) if (i) holds. By (11) te @ N({x,, x,}) it (ii) holds. 

Hence by (3) and (6) {xt, x,}$ It;, in both cases. This proves that [Cl2 r‘l It; = 0 
for every c f D. 

Now we prove a number of negative results which show that P(a) is false for 
not strongly inaccessible cardinals. 

2.6. Assume cf(u) -= CI and a SO. Then 

u 

(1 t 

1 1 a 132 
-+ 

u cf(rx)“&‘a * I 
We give the (trivial) proof. in 5 7 (Theorem 7. 1) where we discuss singular 

cardinals. 

2.7. 

PROOF. For each 5 -=p+ let -+ be a well ordering of c such that tp c(-+) 5 p* 
Put 

G={{L s}t:[512:i-~w<:t5}, G=M+12-G* 
Obviously 12 does not contain a complete w  graph, and I,$( a,j+ . On the other hand 
if Xca, tpX(<)=p+l then there is a to -/I, Xc& and XnI$# 0 for 5Ztr,. 

With a similar idea one gets 

2, 8. Assume ix zw, P+-(y, 7)” for etiery /3 -= ~1, cf (M) # cf (y) then 
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PROOF. For each 5 cl x, let I$ c [(I2 be such that the partition [t]* = 10 v ([(I2 - 1,) 
establishes the negative partition relation 1s’ 1 -+(y, 7)“. Put If = [c(]* -12. Obviously 
l,j 4 B,’ and I,$ does not contain a complete y-graph. Assume XC a, IX/ = y. Then 
by the assumption cf(y) #cf(a), there are YcX, jYj=y and tO-zcc such that 
Yc &, . But then by the construction 18 fl [Y]* for r” 2 co. 

2. 9. COROLLARY. Assume x = (29’ SO. Then 

PROOF by 2. 8 considering that 2P + (P+)$ . 

2. 10. COROLLARY. P(r) is ,false if 3 SW is not strongly inaccessible. 

PROOF. By 2. 6 and 2, 7 we assume that a is regular, 28 &a for some p <c(, 
and p+ -=c(. Considering 20 t- (p+>; the statement follows from 2. 8. 

Without using G.C.H. we could not prove stronger negative results. Assum- 
ing G.C.H., much stronger negative results will be proved in 3 3. 

It is obvious that many quantitative questions can be asked here; we point 
out one. 

PROBLEM 2. Can one prove without assuming C.H. that 

This should be compared with 2. 7 and Theorems 3. 1 and 3. 2. 

0 3. Stronger counter examples for I’(%+), assuming G.C.H. 

DEFINITON 3. 1. Let g’,” = {Xc [a]*; (c(, X) contains a circuit}, 

B,“+ = {xc[a’]*: 1x1 =a}. 
THEOREM 3. 1. Assume G.C,H., C(SO. Then 

PROOF. First we prove 

(1) Assume {Y,),,, is a sequence of type c1 of elements of a),“+. Then there 
is a set Ic [~l+]~, 121 =CI, such that the graph (CL+, 1) does not contain a circuit, 
and lnYr,#O for ~<a. 

First we define a sequence {P,,,},<, of elements of [E+]~ by transfinite induction 
on p, Assume P, is defined for every v -=k for some p < c(. Then ) U P,/ K IX, hence 

v-=lr 
Y,- [ U Pv]* $0 and let P@ be an element of it. Put I= {Pp}a<;x. Then I obviously 

v-=lr 
satisfies the requirements 01 (1). 
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By G.C.H., there exists a well-ordering {Xr}r<or+ =g,“+ of type a+ of @$+. 
By (1) for each l -=u + there exists an I$ a&9,‘+ U a,“+ such that 1: fl Xi f0 for 
each {-=c. Put I$=[sl+12 -1: for te,+. 

If XEg:+, then X=Xc for some [-=a+ and Xn@$O for [iE-=a+. 

DEFXNITI~N 3.2. Let &$={Xc[~]~:Pn(z # for some PfQEX}. 
gig = {Xc[~l]~: X consists of CI disjoint edges}. Our next theorem is incomparable 
with Theorem 3. 1 since &%i+ U ~4?7$ c&9,1+ U LB:+ but a!p+ c @i+. 

THEOREM 3. 2. Assume G.C.H., a%w. Then 

PROOF. First we prove 

(1) If {y,~,<cx is a sequence of type c1 of elements of &?“g then there is an 
Ic [cPq2, III 5 a, which consists of disjoint pairs such that Yp n 1$0 for every 
p’a. 

To prove this we define a sequence {P,},,, ~[a+]~ by transfinite induction 
on ,u. Assume P,, is defined for every v -=p for some ,u (~1. Then 1 IJ P,] -= CL. 

V-=P 
Considering Y, ~%?‘,6+ there is a Pfl E Y* such that Pp 17 IJ P, =0, I= {Pp}p<tr 

satisfies the requirements of (1). By G.C.H., there exists a wej&dering {X,};,,+ = 
= 9:+ of type cz+ of a:+. Applying (1) for {Xr}r<c for each <<a+ we obtain that 
there exists an I$ c [a+12, I1$ = E 12 B. ai,‘+ U g:+ such that 

IjnX,#o for every 5-==& 

Put Ig=[cr+12--11, to lea+. If Xc99;3+ then X=X, for some [-=ct+ and 
Ij n Xf 0 for every 55 SC. 

Our next theorem shows that Theorems 3. 1 and 3.2 do not have a common 
generalisation. 

THEOREM 3. 3. Assume u 1 o, yf -=CL Then 

[:I + [i: 3 iLJ2- 
“’ PROOF. Let [aI2 =l$ U If for t (01. 

Assume 184 982 for every 5 -=a. Let Cccl, ICI = y. 
Put B = a-C. For each <-=a let 
(1) Br={yEB: there is an xEC such that {x,~}Elg}. 
Considering I,$$ &if:, we have ~B,$s y for every ( -KCI. 
By a theorem of G. FODOR [7] then there exist D c B, A c a such that lD[ = IA( = u 

and DflBc=O for SEA. 
Then [C, Dl E %,y,a and by (1) [C, D] elf for every t EA. 
As to the counterexamples in Theorem 3. 1, 3. 2, it is obvious that assuming 

G.C.H., neither of the classes a’,“+, ai,“, can be replaced by a class containing 
graphs with fewer than CI edges since then a+ graphs coincide on a set of power 
y (where y -=z) and the problems are reduced to ordinary partition problems. 
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$4. Further counterexamples (assuming G.C.H). 

In this 5 we consider problems of the type 

where the complement of B, consists of very small graphs and the graphs in a1 
have IX+ edges. 

Though most of the results are negative and technically complicated to prove, 
they are surprisingly sharp. That is why we think it is worth to give them in detail. 

DEFINITION 4. 1. 98: = {Xc [a12: (CI, X> contains an infinite path}. 

THEOREM 4. 1. Assume G.C.H., a S-O. Then 

u’ 

II t 

1 1 a 12 

u+ + cd:+ v 23s,‘, ) &, 1 

i.e. in a set ofpower Al+ we can de$ne u+ forests not containing injnite paths so that 
given cc+ edges all but less than a of the forests have an edge among the given edges. 

could technically much simpler be proved. 

PROOF. We will defme a sequence 15c [u+12, < -=~l+ with the intention that 
the partitions 
(1) I*=&$, I,r=[a+y-l& [u+]2=I,uII,r 

should establish the required counterexample. 
For each Q -= a+ we will define a function j, and its domain D, c p, /, E %Q 

and we will put 
(4 lr=({B,((), e}: ~ED,A ~<a+) for every S~-KCL+. 

We will define be, D, and a one-to-one mapping qPe of D, onto an ordinal 5~ 
by tram&rite induction on Q. 

By G.C.H., there exists a well-ordering {Ry}v<a+ =[afp of type a+ of [u+y. 
Assume Q -= SI + and p,, D,, 40, are already defined for every (7 -= Q. 
We want BP, D,, and (Pi to satisfy the following conditions (3) and (4) 

(3) For every G-K Q and for every v -= 4 R, c Q there is a l E R, such that 

P&s’) = a* 

(4) If WMD,, a-=~ and p,(5) =t~ then 

%(5) ’ rp,c3. 

We define q; I(,u) by transfinite induction on p. Let &‘= {R, : V-K e A R, c 4). 
If Z= 0 put D, = qe =/I, = 0. If &‘# 0, (pp ‘(,u) will be de&red for every ,U -r o(. 
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Let I!:# 7 %%ca be a sequence containing all elements of SX@ (may be with 
repetitions) and suppose that q; ‘(7) is defined for every z -= p for some p == a. 

(5) If iv, n w  < c( then let qp I&) be an element of P, - Dgw - {qo;l(z): t -= ,u}. 

(6) If IP, n DgGl =x then pbp being one?to-one P, n Doll - (4”; ‘(7): z cp} has 

an element 5 such that ~~,({)=-p. Put ~o,~(P) = 4 for this 5. Thus ~;‘(~c> is defined 
for every p <SI. Put 

Then if Sf 0, (Do is a one-to-one mapping of D, onto my. 
Put 

(8) P,(t>=o if 5ED,, <=cp,‘h), LS;=~. 

This defines B,(t) for 5 ED,. 
Assume D-K@, VKQ, R,- 7 Q. Then R,, E 2, hence there is ,LL -zu such that 

P, = R,, (r, = cr. Put 5 = q; ‘01). Then by (7) and (8) 5 ED,, p,(5) = Q. By (5) and (6) 
s’cR,=P,. Thus (3) is satisfied. Assume r E Do r) D@, p,(t) = (r. Then by (5) and (6) 
5 = q,o ‘(,u), (T = gp, (~~~(5) =-p = cp,(Sy). Thus be, D, and ‘pp satisfy (4) as well. 

It remains to show that the It defined by (2) and the Z$, 10, defined by (1) satisfy 
the feqtiirements of our theorem. 

By (2) for every pair 5 -= cl+, Q -=cl+ there is at most one G< Q for which 
{a, Q} E I,. This means that the I< are forests, i.e. I,‘6 9$,“+ for 5 -=a+. Using the 
above property of the I<, if it contains an infinite path, then there is an increasing 
sequence ten L w  of type o of ordinals KCY+ such that {Q,, Q,+~} E I, for every 
n -CT co. Then by (2) 5 E Dp,,+l, P,,,,(S) = en for n -= 0. Hence by (4) (~~~(5) =, qQ,+1(5) 
for II 10, a contradiction. It follows by (1) that I86 g:+. 

LetnowXEB,‘+i.e.Xc[c(+]2,iXi=a+.PutT={Q~cc+:3cr(~.-=~{(a,@)fX)}. 
Then lTj=a’. Let Cccc +, ICI =z. Then there is a V<CI+ such that C=R,. There 
is a @-=a+ such that v -= Q, R, c Q and Q E T. There is cr -= Q such that {a, Q} E X. 
By (3) there is a 5 ED, such that l E C, p,( 5) = G. By (2) that means {c, Q} E&, 
hence 

XflI,#O for CEC. 

By (1) that means Ccl+, !CI=C~+, XEB,‘, imply 

This proves the theorem. 
Our next theorem shows that the forests defined in Theorem 4. 1 can not be 

edge disjoint. 

THEOREM 4.2. Let x s w, p -= a. Then 

PROOF. Let [&I” =Z$ UIf for e -=u+ be arbitrary. Put briefly 10 = Is. We 
assume that the 1, are disjoint. 
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Let Bcx+,IBI=/3 be arbitrary. For each [Ex+--B put V,={~KU’: 
I< fl [II, {[}I #O}. By the assumption I ?‘;I s p for each c E c(+ -B. By the result of 
G. FODOR [7] already mentioned there are Cc&+, Dcx+-B, jCI=jDI=a+ 
such that V,flC=O for every [ED. Put X=[B, D]. Then XE~z+~,,z+ and 
Xr71E=0 for 5EC i.e. 

xc n If. 
<EC 

However one can prove a theorem corresponding to Theorem 4. 1 for edge 
disjoint forests as well. 

THEOREM 4. 3. Assume G.C.H., c( Z-w. Then 

1 2 x+ I,2 

B’,“- v &, : 8,* ,J,[lt . 

We postpone the proof to p. 384, where we are going to state two more 
general Theorems. 

DEFINITION 4 2 
for lS;k-=w. ’ ’ 

Let &I;a”,k = {XC[CC]~: (c(, X) contains a path of length kj 

Note that g8 x,1 ==@‘g, e,, = S?:. Forests not contained in at, 3, are usually 
called stars. 

We will briefly write g,” for gi, 3. Obviously &Yg,” c .SY,“. 
We turn back to the problem considered in Theorem 4. 1. 
A very strong negative result holds still if we assume that the forests defined 

in Theorem 4. 1 are even smaller. 
THEOREM 4. 4. Assume G.C.H., a z-co. Tf?et? 

We mention 
PROBLEM 3. Assume G.C.H. Let SI=O,,,. Does 

1 cx 12 

BP+ ‘Ba+,u,,*+ 
hold? 

PROOF OF THEOREM 4. 4. Theorems of [2] say that if G.C.H. is assumed 
then the following relations hold: 
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Note that we do not know if w2 can be replaced by CL), in the second negative relation 
(see [2]). This explains why we have Problem 3 unsolved. 

By definitions the above results mean the following: 

(1) There exists a sequence (S,},,,, of subsets of a+, IS,/ =CL for ~-=cl satisfying 
the following conditions : 

(a) If ECCI+, IEl = u+ then Iti+ - U S,l -= x 
eEE 

08 If Fc u then le$sUl -K tl provided one of the following conditions holds. 

(i) \Fl=or\ cf(ol)=-w, (ii) jF[=c~~ncf(a)=o,Aas-o, 
(iii) IFI = Co1 AU=fll. 

Let W\I<cI + = [a+]” be a well-ordering of type czf of [%$I”. 
We will define a sequence I<, t -c CI +, I, c [a+]” with the intention that 

(2) I, = I,, If = [a’]“-I, 

should establish the required counterexample. 
Similarly as in the proof of Theorem 4. 1 we will define a function p, for every 

Q<~+(~~~EDQQ, DecS,J and we will put 

(3) 1, = {{,8,(r), Q}: for Q K Al+, (ED,} for every 5: e tif. 

We want p, to satisfy the following condition: 
(4) For each 0 -= Q and for each v< Q for which jR, n S, - S,l = CI there is a 
5 E (& n S.J - S,, such that B =p,(Q. To do this we need the following lemma. 
Let H be a set, HO ZT < e, j pi z SI be a sequence of subsets of H, and let %” c [H,]“, 
~2&l~u for oie. Then there exists a sequence T, c H,, G-= Q such that the T, 
are disjoint and each To meets each element of Xc. This is an easy generalization 
of a well-known theorem of F. BERNSTEIN. The proof is left to the reader. 

Put H=S,, H, = S,-S, 

xc = {CR, n s,) - sb: v-=e~I@YnsQ~-&l = u> for O<Q. 

We obtain the existence of T, and we put p,(l) = (7 for t E T, (hence D, = D(pJ = LJ TJ. 
eta 

Then the /?, satisfy (4). The 1, $ @+ since by (3) for each e there is at most one 
O-K Q for {o, Q} ~1~. Using this property it is easy to see that if an 1, contained a 
path of length 3 then there were z -K B in: Q such that both (2,~) and {g, Q} would 
belong to I,. By (3) then /3,(t) = (r, B,(5) = z hence by (4) t E (S, - S,) 1’7 (Se - So) 
a contradiction. Thus 1, $9:+, Hence the I< are stars. 

Let now X=[F,E]E~Z?~+,~,~+ where 8=w, 6=oz, 6=0,, if cf(a)=-w 
cf(a)=Or\a>o,, a = o1 respectively, and let Cc a+‘, ICI = a. Then there is a 
VKCI+ such that C= Rv. By the assumption (l),b we have 

(5) iKflopF,Xl -= 2 

for every F’c F, IF’] =S. Using cf(6) #cf(a) and the theorem: 
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for cf (6) = cf (a) of [2] it results from (5) that there is a (T E F for which IR, - S,l = a. 

Applying (t’) -+(~‘,~)“’ again it follows that there is a Q EE, Q 2-max [v, o] 

such that 
~(~Yns,)-s,I = X. 

By (4) there is a 5 E R, such that 0 =/3,(t). By (3) that means {o, Q} E [F, E] flI<. 
By (2) this means 

XQ f-j 1:. 
EEC 

Our next theorem shows that except for the case stated in Problem 3,. 
Theorem 4. 4 is best possible of its kind. 

DEFINITION 4. 3. Let $9z,k = {Xc [a12: there are e. -Z ... -K ,ok -=~l+ such that 
I&, @i+l}EX for i -ok} for 1~ k -=o, i.e <CI, X} contains an increasing path of 
length k. Obviously gz, k c 9,“, k and we have 

THEOREM 4. 5. Assume G.C.H., CI zw. Then 

for every k -c= co 

and for 6 -C w or S = o if cf (a) =-CO or cf (E) = CO respectively. 

PROOF. We prove the statement by induction on k. For k = 1 it is trivia1 
Assume k =- 1 and the statement is true for k - 1. 

Let [ol+]” =1,-j U 1: for i” -= x. Put briefly 12 = It for 5 -= a. Put 
(1) Tc=([-=a+: 5 is the greatest point of an increasing path of length k - k 
contained in 1,). Theorems of [2] say that 

and 

[I+) -+ (~+,~)i’l for S -= 0 

[:+) + [:+q’l for S 5 0 if cf(E) = w. 

It results that one of the following conditions hold: 

(2) There are CCCI, DC@+, /Cl = ~1, jDI = CL+ such that D 17 Tc = 0 for every t E Cr.. 

(3) There are Cca, Dc(x+, IC/=a such that 

and ID/=6 or jDj= o if cf(a) fw or cf(oi) = o respectively. If (2) holds then 
I,$ = [Dlz n I,, 1; = [Dlz -I$, 5 E C are c1 2-partitions of a set of power a+, and by (1) 
15 4 9&- 1 ; hence the result follows from the induction hypothesis. 

Assume (3) holds. Let E be an arbitrary subset of u+ such that D <E, IEl = IX+. 
Then again by (1) [D, E] (7 I, = 0 for every t E C; hence [D, E] c fl I;. Note 

CCC 
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that in case o[ =o G.C.II. is not used since (zl) + (E,,E)l’l can be proved 
without any hypothesis. 

DEFINITION 4 . . 4 3:” = Is~emBf,k. 

Note that a’, is a proper subset of gz . j lo Assuming G.C.H. Theorem 4.5 implies 
trivially for xsw that 

and 

132 
for 6~0 

1 u I,.7 

ago 7 97&+.6,z’ for 6-=w if cf(cl) f w. 

However the following improvement of Theorem 4. 1 is still possible. 

THEOREM 4. 6. Assume G.C.H. cf(cc) =cL). Then 

PROOF. We will define a sequence Zi =ZJ c [tl+12, Zf = [a+]” -I& [ -rc( with 
the intention that the partitions 

(1) [xf]2=Z$UZf, [<czz 

should establish the required counterexample. For each [ cr~l+ we will define 
a function p, and its domain D, c u, /I, E Deb and we will put 

(2) Z~={{~,(~), e}:(CD,, Q<u+} for every <~a. 

Similarly as in the proof of Theorem 4. 1, we will define /IQ, D, and a one-to-one 
mapping (pr, of D, onto an ordinal SU, by transfinite induction on p. 

By G.C.H. there exists a well-ordering {R,,},,,,, =[a]” of type tlf of [cry. 
Considering that cf (E) = o we may assume that 

(3) LY = IJ A, where I& -=c( and the A, are disjoint, lAoi c= . . . -= lAk] c= . . . . 
kiw 

PLlt k([)=k if [Ei!ik. 
Assume Q c x + and /3,, D,, qp, are defined for every cr < Q. We want &, D, 

and qe to satisfy the following conditions (4) and (5): 

(4) For every d < Q and for every v < e, there is a {E R, such that /I,([) = g. 

(5) I,if DL fi D,, B,(i) = TV for c e e then k(rp,tO)=-~(cp,(i), and k(v&l)) -=HO 
-== . 

We define q,p l(p) by transfinite induction on ,u. Let X= {R,,: v -= Q}. If 
X=0 or Q=O put D,=Pe=pe=O. If X#O, Q=-0, cp;l(/~) willbe defined for 
every 11 -r= c(. 
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Let R&7 %Hp<<a be a sequence containing all the 
be with repetitions) and suppose that q;l(r) is defined 
p -=z a. 

elements of 2X p (may 
for every z -=p for some 

It follows from (3) that (6) lf /pflnDOpl <xx, then /P,-D,,, - {v;~(T)},<~J =01. 
there exists a 5 E Pfl - D,# - {qp, l(z)},+ such that k(c) 1-k&). Put 5 = rp;‘(p) for 
this [. 

(7) If \P, nDgwI =c(, then (pblr being one-to-one by (3) Pp fl D,,* - {IJI~~(T)}~~~ 
has an element c such that k(q,,a([)) =-k(p). Put p;‘&) =[ for this c. Thus p;l(p) 
is defined for every 11 ~CI. Put 

(8) W(q; ‘) = D,. Then if Z# 0, Q >O (Pi is a one-to-one mapping of D, onto K 
Put 

(9) &,lO=a if CED,,~=Y~,W ap = (T. This defines &,([) for c ED,. Assume 
C-E Q, v< Q. Then R, ES hence there is a ~-=a such that Pp=R,, ~,=a. Put 
<= (P; l(cL). Then by (8) and (9) i’ ED,, P,K) = 6. By (6) and (7) 5 E R, = Pp. 

Thus (4) is satisfied. 
Assume 5 ED, ll D, for some r~ -= Q, and P,(c) = V. Then by (8) and (9) 5 = y,&) 

for a ~-=a, (T = gp for this p and by (6) ]P, fl D,I = 6, hence by (7) k(q,(Q) Z= 
z k(r;o,([) = k&). This proves the first statement of (5). To prove the second statement 
we use transfinite induction on Q. Assume that k(cp,(i)) -=k(i) for every i E D, for 
every g < Q. Let 5 ED,. Then by (8) and (9) there is a p -= CI such that I = 4p;Q) 
and p,(c) = up. If IF’, n DopI e CI then by (6) k(r) =-k(p) = k(cp,(i)). If IP, i7 DogI = u 
then by (7) 5 E Dmp and by the first statement of (5) already proved we have 

hence the statement follows from the induction hypothesis. 
It remains to show that the 1, defined by (2) and the 12, Zi, defined by (1) 

satisfy the requirements of our theorem. 
By (2) for every pair [ -Z a, Q -Z a+ there is at most one B -= @ for which {a, Q} E Ir; 

this means that the I, are forests, i.e. 10s 4 B,3+ for % -= TV. 
Using the above property of the I, if it contains a path of length 2k- 1 then 

it contains an increasing path of length k. We will show that if k(c) = k, then I< 
does not contain an increasing path of length k. Assume &, i .a. -=&-=cI+ and 
{@i> @ii- 1) E1( for i-= k. Then by (8) and (9) we have Qi =peS+l(ZJ for i-=k and 
[ED,~~D,~+, for O-=i-;k. Then by (5) k=-k(cp7po(i))>... >k(cpQk(lJ)pO a contra- 
diction, Hence I$# gz+, k and then by the above remark Z$ E gq+ .2k- 1 for k = k(c), 
hence I,$cfBi,O for every [-=a. 

Let now XC W,‘, Cc z, jCj =CI the statement that Xe lJ 1; follows from (4) 
ccc 

literally the same way as in the proof of Theorem 4. 1. 
Now we turn to the investigation of the case of edge disjoint forests 

THEOREM 4. 7. Assume G.C.H. Let azo. Then 
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THEOREM 4, 8. Assume G.C.H. and SIXO. Then 

Both theorems are generalizations of Theorem 4. 3. Theorem 4.2 shows that 
on the right hand side in B,,, DI,oL + a can not be replaced by anything smaller. 
Theorem 4. 8 is sharper than Theorem 4. 7 but for CI = o it is false by Theorem 4. 5. 

We describe here the proof of Theorem 4. 3. The proofs of Theorems 4. 7 and 
4. 8 can be obtained from this proof with a sligth modification using the tricks 
of Theorem 4. 1 and 4. 4 respectively. We will omit this. 

PROOF OF THEOREM 4.3. As in the preceeding proofs we will define a sequence 
I,, 5 -c= a+; I, c [%+I” with the intention that the partitions 

(1) Z$JZf=[a+]2, Z,r=Z,, Zf=[a+]2-Z, [ia+ 

should establish the required counterexample. 
For each tl~ Q iti+ we will define a function /3, E Q@ and we put 

(2) I,={{fi,(<), Q}: t-:Q, asSq-e:ac+} for every tea+. 

Let I& L co + = [cY+]~ be a well-ordering of type OI+ of [N+]~. For every fixed Q, 
LYS@-CCX+ we will define /3, so that it should satisfy the following requirements (3) 
and (4): 

(3) Assume v, p < Q, R, c Q, R, c g. Then there is a < -= Q such that fi,(r) E R, , ?j E R, 

(4) /?, is one-to-one. 

To do this we need the following lemma. If H is a set of power a SO, &‘e , &@I c [H]“; 
13Ea01, I*11 SE then there is an .fc HH such that f is one-to-one and for every 
Ho E s&‘~, H, E yi” there are h, E H,, , h, E Hl such that f(Zz,) = h, . The proof can 
be carried out by an easy transfinite induction; we omit it. 

Applying this for H= Q, P,, -x1 = {R,: R, c Q A v -= e} we obtain an f and 
put f= p,. We prove that Z& Zf satisfy the requirements of our theorem. If cr -= Q, 
by (4), there is at most one < -= a + for which D = p (5) hence by (2) the It; are disjoint, 
i.e. there is no XcP@+, XcZ5, II Z5, for e, # ci <of. By (2) for each e, Q -=N+. 
There is at most one cr -= Q for which B,(E) = 0. It follows that the It are forests, i.e. 
Z,$ g’,“+. 

Let now X= [B, D] E zS+,.,~+, Cc&, ICI=a. Then there are v,P-=E+ such 
that B = R,, C= R,u. There 1s a Q =-max [v, p, a] such that Q ED, R,, R, c Q. Then 
by (3) there is a 5 E Rp such that p,(c) E R,. Hence there is a 5 EC such that 
{P,(t)5 e> cm 9 i.e. by (2) XflZ,$O. 

By (1) this means 

XC n zf. 
SEC 
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8 5. A remark on matrices of sets of Ulam type 

385 

Whenever we have a negative relation (~~)+-(&, !01)1’2 there are at least 

three natural ways to obtain matrices of sets having cer’tain Froperties. 
We give one example. As a corollary of Theorem 4. 1 we have 

(1) Assume G.C.H. a 20. There exists a sequence Is, 5 -= x+ ; 1, c [E+]” satisfying 
the following conditions. 

(2) For each Q, l< a+ there is at most one C-E Q for which (0, Q} E Is. 

(3) Whenever Xc [aflz, Ccct+, /XI =a+, /Cl =c1 then there is a 5 EC such that 

xnr, #O. 

We define a matrix {Ac,g}E<a-,$<.cc- of subsets of E* by the following stipulation: 

(4) Ag,,={C vl<r-=a+ A {% OEI,h 

We obtain 

COROLLARY 5. 1, Assume G.C.H., x z o. There exists a matrix 

vt;,&“+,v~a+ of subsets of TX+ 

satisfying the following conditions. 

(5) For every 5 -K a+ the sets A,,,, II-= cz+ are disjoint. 

(6) For every Ccaf, jCI=c(, fEcuf 

In fact if I,, c<s1+ satisfies (2) and (3) then {AT,q}r<or+,q<b+ defined by (4) 
satisfies (5) and (6), respectively. 

Corollary 5. 1 has been stated and proved in a paper of P. ERD& and S. ULAM [4] 
independently. 

(2) 

$7. Positive results and some further counterexamples 

In [3], Problem 59, we stated in an other notation the following problems: 

We mentioned that if 4 is replaced by 3 we can prove a positive result. 
Both problems are solved now. 
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As to (2) one can prove the following: 

THEOREM 6. 1. Assume M: SW and a is 0, I-measurable, b < cx. Then 

In fact one can prove the following slightly stronger result: 

THEOREM 6. 2. Assume c1 ZW, u is 0, l-measurable. Let I[, [ -=cI. be an arbitrary 
sequence Isc [u+]~, c (2. Then one of the following conditions (3), (4), (5) holds. 

(3) There are XCS(+, CCZU, jXj=j, jCl=cc such that 

Fv c g. 

i.e. rhere are tl I< whose intersection contains a complete p. 

(4) There are XCN+, Ccr, jXj=z+, ]C/-=u such that 

i.e. there are fewer than a It; whose union contains a complete ol+ (and as a corollary 
one of them contains a complete u) (‘note rhat a -(a); for y < CI if a is measurable) ~ 

(5) There are Xca+, CCU, jXI=[CI=cc such fhat 

[X-p fi u I< = 0, 
CEC 

i.e. there are u I, such that the intersection of the complement of them contains a 
complete a. 

As to the problem (1) we proved 

(6) Assume CXZO, cx is 0, l-measurable, /?<cx, then 

F. Galvin proved the following generalization of (6) for 01 = w  : 

THEOREM OF GALVIN. 

for every k, r -= o ; 

but this method of proof breaks down for a =-w u 0, l-measurable. 
One can prove the following generalization of Galvin’s theorem. 

THEOREM 6. 3. Assume a SW, CI is 0, l-measurable. Then 



ON CERTAIN POLARIZED PARTITIOKS 387 

DEFINITION 6. 1. Let a,, zl, PO, PI, y cardinals. (i:) + (5°),“c” denotes that 

the following statement is true. Assume that for every r<c~ c&[&J = U I;. Then 
VCY 

thereare Aoc6, A,cr,f~“~suchthat [Ao(=flo, (A,j=fl, and 

AoXIAl]‘cljr,, for p-=0. 

The symbol defined above is a common generalization of the symbols defined 
in 1. 1. 2 and 1. 1. 3. 

Galvin conjectured that as a generalization of the author’s results [5] that for 
CI =-CD, CI 0, l-measurable a +(cI)~~ (p ‘= U) .the following result will hold. 

THEQREM 6.4. Assume CI =-co, cy is 0, l-measurable. Then 

This was proved by the second author. The proofs of the theorems 6. 1, 6.2, 
6. 3, 6.4 will appear in a forthcoming paper [6] in the Fundamenta Mathematicae 
containing the results of the lecture given by the second author on the symposium 
held in Warsaw August 27-September 2, 1968. 

We now give some counterexamples to show that Theorems 6. 1, 6. 3 can- 
not be improved in certain directions. 

THEOREM 6. 5. Assume CI go, u is a strong limit cardinal. Then 

PROOF. We define a sequence I<, 5 -=a; Ii c[2212 as follows. 
(7) Assume f #gE “2. Put 

{.L g}EI< iff min {t:f(t)~g(t)}4. 

Assume [Xl2 c I, for some Xc “2, 5 -K c(. Then, by (7), for fE X f : -ft 5 is a one-to-one 
mapping of X into [2. Hence, CI being strong limit, IX! ~2lcl -KM. That means 
none of the I, contains a complete rx. 

Assume now that {f, g} E[“212, Then f(c) #g(t) for some t -=SI and by (7) 
{f, g} EI, for every < -=c -=cI, This proves the theorem. 

Assuming G.C.H., Theorem 6. 5 says that (~+)*(~,~j”’ if a is a limit 

cardinal. 
Strangely enough this very weak counter-example cannot be proved if a is 

a successor cardinal; 

THEOREM 6. 7. Assume G.C.H., in SW, Then 

[:I+) + [l+ ‘;jl;2 

and E++-+[x+]~ ,ra are equivalent. 
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Note that X+ + --t [a+],2+ GL is known to be independent of the axioms of set 
theory and the G.C.H. (see’e.g.[‘l]). 

PROOF OF THEOREM 6. 7. Assume LX++ + [cl+]:+,, and let It<[~++12, <<ols. 
be a sequence establishing this negative relation. Put I,$ = lJ I,, If = [a+ +I2 - 1, 

CC5 
for t -K a+. Then Ii obviously does not contain a complete X+ and n 1f = 0 for 

Cccl’, jCj =u+ since i-<q- 
{EC 

1<=[,++12. Hence the partitions [cx++]~=I,$UII,’ <-~a+ 

establish 

On the other hand let [sl+ +I2 =I$ U Z:, c <x+ be a sequence of partitions 
establishing the negative polarized partition relation. 

Then for each XE[cl++12 there is a {(X)<a+ such that Xc1,$ for <(X)5 
GSt-=Cf+. Put It= {XE[X++]~, <(X)S<} for ~-=Lx’. Then &c1$ and the I< 
obviously establish CI+ + + [x+1,2+ E. 

We think it is relevant to mention here the following negative result. 

THEOREM 6. 8. Assume G. C.H., x =-co. Then 

This is a trivial reformation of Theorem 17/A of [2] saying u+ +[@O+,n,a+]z+ 
where this is a self explanatory modification of the symbol defined in 1. 1. 4. 

The following theorem shows that assuming G.C.H. in Theorem 6. 1 the i 
cannot be replaced by gA,1,,,,,+ even if /I = 2. 

THEOREM 6. 9. Assume G.C.H., CISW, ~-(a)$. Then 

M: 0 ( u 1 2 I,2 

Cl+ + 2”B,+,,,,+‘cc 1 a 

PROOF. By the assumption (x is a (strong) limit cardinal. Hence by Theorem 6. 5 

there exists a sequence $35, 1:,{ 5 -= a establishing (~+)-(~,~)“‘. By Theorem 

6. 8 there exists a sequence IAgE, Ii,“, t cu establishing L 

Put I$=@~f’I$~, If = [&+I2 -4. It is obvious from the const&&\ that each 
is contained only in less than CI 12, and that none of the 10 contain 

Ass&?~‘~~ X: 1x1 =CI and let < $[ -KCL Considering that 1:‘r II I:,< = 0 
it follows from the assumption M -(rl)$, that there exists a Yc X, 1 Yl = E such that 
either [ Y12 c Ii*r or [Y12 c I$c. Hence [Xl2 c 1f n If would imply either [ Y12 c Zp*c 
or [Y12 cc*c, a contradiction. Thus Xc a, 1x1 = rx implies [X] 2 Q 1: n li for every 
pair t #c -= M: and the theorem is proved. 
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0 7. A result for singular strong limit cardinals 

DEFINITION 7. 1. Let ~4 = (A&.+ be a sequence of disjoint sets. Put A = lJ A,. 

Let X, YcA. Put Xl-lsY if [XflA<l =lYnArl for each c-=,!?. Let H=‘GtA). 
H is said to be canonical with respect to d if for every X, YcA we have 

Let I= (Iv)v~<r be an r-partition of A. I is said to be canonical with respect to .4 if 
1, is canonical with respect to d for every v my. 

CANONIZATION LEMMA. Let CI be a singulur strong limit cardinal. Put /3 = cf (a). 
Let r <u, y <a and let [cI]’ = U I, be an r-partition of type y of CI. Let further (Bs)s<8 

Vi? 
be a sequence of disjoint subsets of u such that the cardinality of BE increase rapidly 
enough e.g. satisfies the following conditions. 

where exp *(cI) = SI, exp,, 1(~) =, 7~9 (a) s r: co. Then there exists a Sequence d = (A<)< < B 
of subsets of c1 such that 

A,cBc, !A,l~lA~l for E-=(<P, iAl=d for A= IJ A, 
5<S 

and the r-partition is canonical with respect to &. 

The canonization lemma is proved in [2] assuming C.C.H. for every singular a, 
but the proof yields the result as stated above. A detailed proof will appear in a 
forthcoming book of the three of us. As a corollary we will prove the following 

LEMMA. Let x be a singular strong limit cardinal. Put fi = cf(a). Let r < co and 
I,, Y -Z c( be a sequence such that I, c [cI]’ for v -= c[. Then there are sequences d= 
=@&<a> $9 = (C,);,<, of disjoint subsets of CI satisfying the ,following conditions: 
For A= UAr, C= U C,, lArl~lA,l, lC,l~~C,i for t-=[-=a, jA\=lCl’=a. I, is 

canonical ‘Gzh respec:;: & for every v E C and I, fl [A]’ = Ifi 17 [A]’ for ,u, v E Cz for 
every 5 -=/I. 

PROOF. Considering that CI is strong limit there is a sequence (Bt,Jtis of type 
p of disjoint subsets of a satisfying the cardinality condition (1) of the canonization 
lemma. Put B = lJ Bc. Then jBI = SI. We define an r + 1 partition J of type 2 of 

s+ 
B as follows. 

Let XE [B]‘+ I. Assume first that the following condition (2) holds: 

(21 X = Y U {v}, YE [ U BJ’, vE B,, and <, is odd. 
e=t,ceven 

Put X E J,, iff YE 1,. If (2) is false we put XE JO. J, = [B12 -JO. By the canonization 
lemma there is a sequence &’ = {A;),,, of disjoint subsets of d satisfying the follow- 
ing conditions: / U A;1 = ~1, \A;\ s IA;\ and Ai c Bz for 5 -=[ KCI, and the partition 

J is canonical wiil?respect to d’. Put A, = A;.2, C, = A;,, 1, A= UAr,C= UC,. 
E-=8 5-=B 
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Considering that the cardinality of the A; increase we have IAi = jCj =cx. 
Assume X, YE [A]*, XI-+Y and let v, ,IJ E Cc for a 5 -= j3. Then XU {v}, Y U {p} E 
EIATfl, XU {v}I-I~, Y U {p} and XU {v}, Y U {PC> both satisfy (2). By the canonicity 
of J we have XU {v} E JO iff Y U {p} E JO. Hence by the definition of .Z XE Z, iff 
YEZ,. Applying this for v =p we get that Z, is canonical with respect to ~2 for 
v E C. Applying the above result for X= Y we get that Z, fI [A]’ = Iv fl [A]’ for every 
v, p E C, for every c -= /3. 

Using the Lemma we can reduce a number of problems concerning singular 
strong limit cardinals to problems for regular cardinals already discussed. Before 
doing this as a converse of the Lemma we describe a construction for definings 
partition canonically. 

DEFINITION 8. 2. Let tl be a singular limit cardinal p = cf (z) -= IY. Let (cQcB 
be a sequence of cardinals less than a tending to ct, E= U A, is a disjoint partition 

E-4 
of CI where lArl =cq for <-=/I?. 

Let further [PI2 =I, Ulf be a sequence of type p of 2-partitions of j3. We define 
two sequences of canonical partitions of 1 as follows: 

(1) The sequence [M]~ = Zg*c U Zf.5, 5 <p of type /? is defined by the following 
stipulation. For every c, Q -=cI, 5 -E p {o, Q} EZ,*,c iff aE A,, Q E A, and {r, r} EZ,$ 
{a, e}EZ,**e iff oEA i PEA, and {v,~}EZ$ or 5=+ 

(2) The sequence [&I2 =g*Vv U IT*,” v -=CL of type SI is defined by the stipulation 

Z5*~Y=I?~~ for ii& , VEA,. 
THEOREM 7. 1. Let CI be a singular limit cardinal, cf (x) = /?. Assume that 

(;)A+(; v&;)1’2 holds for some y. Then 

(3 + [;&~)“’ 
holds as well. 

PROOF. Let @I2 =Z$ U Zf 5 < p be a sequence of 2-partitions of /I establishing 
the assumed negative relation. Then the second canonical sequence I;**“, IT*,” 
defined in 8, 2 satisfies the requirement of the theorem. 

Considering that (&(b&$) 
Theorem 7. 1 yields a proof of !!. 6. 

holds trivially e.g. by 2. 4 for every p SO. 

The following theorem is the main result of this 6. 

THEOREM 7. 2. Let a be a singular strong limit cardinal. Put cf (rx) = j?. Let 
y K cf (a), 6 ix. Assume 

Then 
(3 - I: v~,,t,,41”~ 

holds as well. 
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PROOF. Let [aI2 =I; U I;, v =c:dl be a sequence of type a of 2-partitions of 01. 
We may assume IOynl;=O for V<CI. By the Lemma there exist sequences 
-01=&h?9 c=m<p satisfying the requirements of the Lemma. Put A = IJ d,, 

&=B 
C= IJ C,. Considering that the cardinality of A, is increasing and tends to a we 

may’z:sume that 1&J =-max [y, 51 for every 5 </3. Assume that 

(1) X~E, IX/ = y implies [Xl2 cI; and Ycloy implies that Y$ B3,a,a for Y -G a. 

By the canonicity for every v E C, 5 -= fi we have either [AtI2 cl,” or [AJ2 cI;, 
hence by (1) we have 

(2) [AtI cIp for every v E C. 

Using again the canonicity we define a sequence [/II2 = f$ U I$, L: -= p of type /3 of 
disjoint 2-partitions of fi by the following stipulation. For every [, q, 5 -=/3 i-=2 

(3) {(, y}Eff iff [As, A,]cI; for every /“EC<. 

Considering that IA,/ ~6 it follows from (1) that XEB,,,,, implies XGf, for c<B. 
On the other hand (1) and (2) obviously imply that 12 does not contain a complete 
y for <-zp. 

132 
Thus it follows from the assumption 

0 I ; - bk3,l,D~i 1 
that there are 

U, Vc/?, 1 UI = I VI= p such that 

(4) [VIZ c if for every 5 E V. 
Put 

X= u A,, Y= u C,. 
5E L’ <CV 

Then 1x1~ j Y/ =01, (2) and (4) imply that [Xl” cl; for every v E Y. This proves the 
theorem. 

We obtain from Theorem 1. 1 and 7.2 the following 

COROLLARY 7. 3, Assume cf(u) is 0, l-measurable and SI is a singular strong 
limit cardinal, y K cf (a), 6 r 01. Then 

We mention one more (very easy) positive result 

THEOREM 7, 4. Let CI be a singular strong limit cardinal, y =Z t(. Then 

Using the same as in the proof of Theorem 7.2, Theorem 7.4 follows trivially 
from the lemma. We omit the details. 
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