Reprinted from Israel Journal of Mathematics Vol. 9, No. 1, 1971

ON THE SUM $\sum_{d|2^n-1} d^{-1}$

BY P. ERDÖS

To the memory of my friend, colleague and collaborator, Eri Jabotinsky

ABSTRACT

Let $\sigma(n)$ be the sum of divisors of n. In this paper we prove $\sigma(2^n - 1) < c(2^n - 1) \log \log n$.

Denote by $\sigma(n)$ the sum of divisors of n. Clearly

$$\sigma(n)/n = \sum_{d|n} \frac{1}{d}.$$

A well known result in number theory states that

(1)
$$\limsup_{n=\infty} \sigma(n)/n\log\log n = e^{\gamma}$$

where γ is Euler's constant. In the present note we prove the following

THEOREM.

(2)
$$\frac{\sigma(2^n-1)}{2^n-1} = \sum_{\substack{d \mid 2^n-1 \\ d \mid 2^n-1}} \frac{1}{d} < c_1 \ \log \log n.$$

Throughout this paper c_1, c_2, \cdots denote positive absolute constants. The theorem is perhaps somewhat surprising since in view of (1) one might have expected that $\sum_{d|2^n-1} 1/d$ can occasionally become as large as log *n*.

First of all observe that apart from the value of c_1 our Theorem is best possible. To see this let n_k be the product of the first k odd primes and let u_k ($u_k \leq \phi(n_k)$) be the smallest integer with $2^{u_k} \equiv 1 \pmod{n_k}$.

We evidently have by well known results in number theory (prime number theorem and the theorem of Mertens, the p_i 's run through the first k odd primes)

$$\sum_{d\mid 2^{n_k}-1} \frac{1}{d} \ge \prod \left(1 + \frac{1}{p_i}\right) > c_2 \operatorname{loglog} n_k > c_2 \operatorname{loglog} u_k.$$

Received January 22, 1970.

P. ERDÖS

Before we prove our Theorem we state a few problems and results. Put

$$\varepsilon_n = \sum \frac{1}{d}, d \mid 2^n - 1, d \not\mid 2^m - 1 \text{ for } m < n.$$

A well known result of Romanoff [1] states that $\sum_{n=1}^{\infty} \varepsilon_n/n$ converges. This follows easily from $\sum_{k=1}^{n} \varepsilon_k < c_3 \log n$. Probably

$$\sum_{k=1}^{n} \varepsilon_k = (c_4 + o(1))\log n$$

and

$$c_5 < \sum_{k=n}^{2n} \varepsilon_k < c_6.$$

It seems likely that

$$\limsup_{n=\infty} n \varepsilon_n = \infty, \ \liminf_{n=\infty} n \varepsilon_n = 0$$

and that $n\varepsilon_n$ has a distribution function. I can prove only that $\varepsilon_n \to 0$ and in fact I can even prove that

(3)
$$\sum_{\substack{d \mid 2^n - 1 \\ d > n}} \frac{1}{d} \to 0.$$

Very likely

$$\varepsilon_n = 0 \left(\frac{1}{n^{1-\delta}}\right)$$

for every $\delta > 0$ but I could not even prove $\varepsilon_n < 1/n^{c_7}$. I could not obtain a satisfactory estimation of the sum (3). I proved that

$$\sum_{d \mid 2^{n}-1} \frac{1}{d} = \frac{\sigma(2^{n}-1)}{2^{n}-1}$$

has a distribution function, but we do not discuss the proof here.

Now we prove our theorem. To prove (2) it will suffice to show that (p prime)

(4)
$$\sum_{p|2^{n-1}} \frac{1}{p} < \log \log \log n + c_8.$$

(4) implies (2) by $e^x > 1 + x$.

To prove (4) write

(5)
$$\sum_{p|2^{n-1}} \frac{1}{p} = \sum_{d|n} \sum_{d|n} \sum_{d|n} \frac{1}{p} = \sum_{1} + \sum_{2} + \sum_{3}$$

Vol. 9, 1971 THE SUM
$$\sum_{d|2^n-1} d^{-1}$$
 45

where in $\Sigma_d p$ runs through the primes p satisfying $p | 2^d - 1, p \not\upharpoonright 2^{d'} - 1, d' < d$, d' | n, and in $\Sigma_1 d \leq (\log n)^{16}$, in $\Sigma_2 d > (\log n)^{16}$, p < n and in $\Sigma_3 p \geq n$. First we estimate Σ_1 . Clearly $2^d - 1$ has fewer than d prime factors, hence Σ_1 has fewer than $(\log n)^{32}$ summands. Thus Σ_1 is less than the sum of the reciprocals of the first $[(\log n)^{32}]$ primes. Hence from the prime number theorem (or a more elementary theorem)

(6)
$$\sum_{1} < \sum_{p < (\log n)^{33}} \frac{1}{p} < \log \log \log n + c_9.$$

Next we estimate Σ_2 , this will be considerably more difficult than the estimation of Σ_1 . First of all put

(7)
$$\Sigma_2 = \Sigma_2' + \Sigma_2''$$

where in

(8)
$$\Sigma'_{2} = \sum_{d > (\log n)^{16}} \Sigma_{2,d} \frac{1}{p}$$

only primes $p > d^3$ occur in the inner sum and in \sum_{2}^{n} are the primes d $<math>p \mid n p \equiv 1 \pmod{d}$ (all prime factors of $2^d - 1$ which do not divide any $2^{d'} - 1$, $d' \mid d$ are well known to be $\equiv 1 \pmod{d}$).

 $2^d - 1$ has fewer than d prime factors, thus

(9)
$$\sum_{2,d} \frac{1}{p} < \frac{1}{d^2}.$$

From (8) and (9) we have

(10)
$$\Sigma'_{2} = \sum_{d>(\log n)^{16}}^{\infty} \frac{1}{d^{2}} = o(1).$$

Hence we only have to estimate \sum_{1}^{n} and this will be the only difficult part of our note. Denote by $q_1 < q_2 < \cdots < q_s < n$ the sequence of primes which occur in $\sum_{i=1}^{n}$. In other words for every q_i there is a *d* satisfying

(11)
$$d > (\log n)^{16}, q_i \equiv 1 \pmod{d}, d^3 > q_i, q_i \mid 2^d - 1, q_i \nmid 2^d - 1 \text{ for } d_1 < d, d_1 \mid n,$$

(since $(2^a - 1, 2^b - 1) = 2^{(a,b)} - 1$, $d_1 | n$ could be replaced by $d_1 | d$).

Thus

(12)
$$\Sigma'' = \sum_{i} \frac{1}{q_i} = \sum_{k=4}^{\infty} \Sigma_k \frac{1}{q_i}$$

where in Σ_k

(13)
$$(\log n)^{2^k} < q_i \leq (\log n)^{2^{k+1}}.$$

Next we estimate $\sum_{k} 1/q_i$. If q_i occurs in \sum_k we have by (11) that there is a $d \mid n$ for which $q_i \equiv 1 \pmod{d}$, $d^3 > q_i$, or by (13)

(14)
$$(q_i - 1, n) > (\log n)^{2^{k-2}}.$$

Let $(\log n)^{2^k} < x < (\log n)^{2^{k+1}} (k \ge 4, x \le n)$. Denote by Q(x) the number of primes q < x which satisfy (14). Let r_1, \dots , be the prime factors of n. To estimate Q(x) from above, we first estimate from above $(p \text{ runs through all the primes} \le x)$

(15)
$$A(n,x) = \prod_{p < x} (p-1,n)$$

We evidently have

(16)
$$A(n,x) \leq \prod_{r \in [n]} \prod_{l=1}^{\infty} r_i^{\pi(x,r_i^l,1)} = \prod_1 \prod_2$$

where $\pi(x, d, 1)$ denotes the number of primes $p \leq x$ satisfying $p \equiv 1 \pmod{d}$ and in $\Pi_1, r_i^l \leq (\log n)^{10}$ and in $\Pi_2, r_i^l > (\log n)^{10}$.

By a theorem of Brun-Titchmarsh [2] we have for $q_i^1 < (\log n)^{10}$, $x > (\log n)^{16}$

(17)
$$\pi(x, q_i^l, 1) < c_{10} \frac{x}{q_i^l \log x}.$$

From (17) we obtain by the theorem of Mertens, $(\exp z = e^z)$

(18)
$$\Pi_{1} \leq \prod_{r_{i} \leq (\log n)^{10}} r_{i}^{c_{10}x/r_{i}^{i}\log x} \leq \exp \frac{c_{10}x}{\log x} \sum_{r_{i} \leq (\log n)^{10}} \sum_{l=1}^{\infty} \frac{\log r_{i}}{r_{i}^{l}}$$
$$\leq \exp \frac{c_{11}x \log \log n}{\log x}.$$

Next we estimate Π_2 . If $r^l > (\log n)^{10}$ we use the trivial estimate

(19)
$$\pi(x, r_i^l, 1) < \frac{x}{r_i^l} < \frac{x}{(\log n)^{10}}.$$

The number of prime factors of n (multiple factors counted multiply) is clearly at most $\log n / \log 2$, thus from (19) ($x \leq n$)

(20)
$$\Pi_2 < \prod_{\substack{r_i \mid n}} r_i^{x/(\log n)^{10}} < x^{2x/(\log n)^9} < x^{2x/(\log x)^9} = \exp \frac{2x}{(\log x)^8} .$$

From (16), (18) and (20) we have

46

Vol. 9, 1971

(21) $A(n,x) < \exp c_{12}(x \log \log n / \log x).$

From (20) and the definition of Q(x) we have

(22)
$$A(n,x) > (\log n)^{2^{k-2}Q(x)}$$

Thus finally from (21) and (22)

(23)
$$Q(x) < \frac{c_{12}x}{2^{k-2}\log x}.$$

From (23) we immediately obtain

(24)
$$\sum_{k} \frac{1}{q_{i}} < c_{13}/2^{k}$$

and thus from (23)

(25)
$$\sum_{k=4}^{\infty} \Sigma_k \frac{1}{q_i} < c_{13}.$$

From (6), (9), (11) and (24) we finally have

(26)
$$\Sigma_2 < c_{13} + o(1).$$

The estimation of Σ_3 is very simple. $2^n - 1$ clearly has fewer than *n* prime factors, thus

(27)
$$\Sigma_3 < 1$$

(6), (26) and (27) proves (3) which completes the proof of our Theorem.

Perhaps the following stronger result holds:

Let 3,5... $p_k \leq n < 3.5...p_{k+1}$. Then $(p_i \text{ runs through the consecutive odd primes})$

(28)
$$\max_{\substack{m \le n \\ p \mid 2^m - 1}} \sum_{p \mid 2^m - 1}^k \frac{1}{p} = \sum_{i=1}^k \frac{1}{p_i} + o(1),$$

but the methods used in this note are not strong enough to decide (28).

Clearly our proof gives that for every a

$$\sum_{d\mid a^n-1} \frac{1}{d} < c_a \log\log n,$$

but I cannot decide whether

$$\sum_{d\mid 2^n-3} \frac{1}{d} < c_{14} \log \log n$$

holds.

P. ERDÖS

References

1. N. P. Romanoff, Über einige Sätze der additiven Zahlentheorie, Math. Ann. 109 (1939), 668-678; see also P. Erdös and P. Turán, Ein zahlentheoretischer Satz, Mitt. Forsch. Inst. Math. u. Mech. Univ. 1 (1935), 101-103 and P. Erdös, On some problems of Bellman and a theorem of Romanoff, J. Chinese Math. Soc. (N.S.) 1 (1951), 409-421.

2. C. E. Titchmarch, On a divisor problem, Rend. Circ. Mat. Palermo 54 (1930), 414-419.

TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY

HAIFA