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1. Let A = (al, a2, . ..> (where a, = 0 <a,< . . . -K a, < . ..) be an 
infinite sequence of non-negative integers. The sequence of numbers, 
which can be written in the form ai, + a,, +. . . + Qua, is denoted by hA 
(for h = 1, 2, . , ,). Furthermore, let Ak = (a:, a$, . . . , a:, . . .> (for 
k =L 1,2, . ..). 

If there exists a number k such that 

(1) kA = {O,l, 2, . . . . 12, . ..) 

holds then A is called a basis (more exactly : an additive basis of finite 
order), and the least k, satisfying (l), is called the order of the basis A. 

F. Dress raised the problem whether there existed sequences B, 
C such that B is a basis but B2 is not a basis, while on the other hand, 
C is not a basis but C2 is a basis? 

The purpose of this paper is to construct such sequences B, C. 
In the second section, we shall give two lemmas implying that a 

sequence is not a basis ; it should be noticed that the basic idea of the 
two criteria is the same one: if a sequence A is such that for some ir- 
rational number a (resp. for an infinity of convenient rationals a) the se- 
quence aA = (aa,,aa,, . . .) is badly distributed mod 1, then A is not 
a basis. Note that one can find a larger list of similar criteria in Stijhr [3]. 

Both criteria may be used to construct sequences B and C with 
the required properties, but we shall use the “analytic” criterion (Lemma 2) 
in the third section, in order to construct the sequence B since it gives 
a fairly explicit result, and the 6’arithmetic” criterion (Lemma 1) in the 
fourth section since the construction of the sequence C is altogether el- 
ementary. 

For a real number 8, we shall write: e ( 0) = exp (2ix0), (133 for the 
fractional part of 19, and l/e]] = inf((e}, 1 -{e)). 

One more notation: 
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Let ac, m be integers, m > 0. The integer v-, uniquely determined 
by the conditions 

a =r(modm), m r-1 m 
2 -m<rG z [ 1 

(i.e. the absolute least residue of r modulo m), will be denoted by ~(a, m). 
Clearly, for any non-negative integer a and any positive integer m 

(2) W, WI G a for a>0 

holds, furthermore, for any integers a, b, m (m > 0), 

(3) Ir(a+b, WI G Ha, m)I+ P(b, m)l 

and 

(4) If-la--b, m)l> lr(a, m)l- Ir(b, m)I. 

The last definition: let A be a sequence of non-negative integers, 
m be a positive integer, 9x2, E be non-negative real numbers. A is said to 
have property P (n, E, m) if ac A, a > 12 imply that Ir (a, m) 1 < Em. 

2. In this section, we are going to prove two lemmas that we need 
in the construction of both sequences B and 0. 

LEiIf3T.A 1. Let A be a given sequence of ?&on-negative integers. Let %s 
8uppose that there esists aa infinite sequence pl < p2 c . . . < pk < *. . of 
matural numbers greater than one, ad an infinite sequence cl, Ed, . . . , Q, . . . 
of positive real numbers with 

(5) lim Ek = 0 
k-e-co 

wch that, fw 8ome i!@hite mpi?%ce ml) m2, . *. ) nk) . . . of ~o?wbegative m%l 
numbers, A hi&8 property P(nk, Ek, pk) for k = 1, 2, . . . Then A iS ‘r&Ot CG basis. 

Pro of. Let us argue indirectly and suppose that there exists a positive 
integer E for which 

(6) lA=(O,1,2 ,..., rz,...>. 

By (a), clearly, there exists a subsequence pi1 < pit < . . . < p<,+i of 
the sequence pl, p,, . . . ) pk9 . . . suoh that 

1 

"ij ( 81 for j=l,2 , . ..) Z-/-l 

and 

(8) 
pij+l 
----> mStX{ni,, ?%iz, . . . . nij] for 

81 
j = 1,2, . . . . 1. 
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(To find such a subsequence pii, piz, . . . , pi,+l, all we have to do is to 
choose ii+l to be sufficiently large depending on i,, i,, . . . , ii, after begin- 
ning with an arbitrary i, such that &il < l/U.) 

Let m be any integer satisfying 

(9) p(m,pij)l = [?I for j = 1,2, **., 1$-l. 

(6) implies the existence of integers atI, U~,, . . . , a,, such that 

(10) m = atl+at,+...-l-atl and a CA % for j =I,2 ? “‘9 1. 

We may suppose that 

We shall prove by induction that, for j = 0, 1, 2, . . ., 1, 

(12) 
j 

W?/-- c 
at > Pil-3‘+1 . Y 

YCl 
8 

In this way, we obtain a contradiction. Namely, the difference on the 
left-hand side of (12) is positive also for j = E by (12), while, on the 
other hand, the same difference must be equal to 0 by (10). Thus to 
complete the proof, we have to prove (12). 

For j = 0, (12) asserts that 

P* w-1 
m>-. 

8 

Indeed, by (2) and (9), 

m > Ir(m,pit,,)l = + > J+-> *. [ 1 
Let us suppose now that (12) holds for some j (0 < j < 1: - 1) ; we 

have to show that this implies that (12) holds also for j + 1, i.e. 

(13) 
i+l 
2 

Pil- j 
m- a,“>------- 

s=1 8 

(10) and (12) imply that 

E 
c %, = m _ 3 c at > p+-j+l -. Y 

v=j+l v=l 8 
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Thus, by (Ill), 

(14) atj+l = rnibx a,” 2 
’ a” Pil-j+l Pi,-j+l v=j+l 

v=j+1,....2 Z-j ’ S(l-j) aT-m 

(S), (11) and (14) give that 

(J-5) 
%j+1 > n 

at,>at,>...>at. >---- 1-l-1 81 il.-j’ 

By our assumption, A has property P(nilbj, E++, pi,-,); thus (7) and (15) 
imply that 

W) 
Pil-j 

W(aty, Pilmj)I G Eil-jP~I-j < 8l 7 Y = 1, *..,j-1. 

We obtain from (2), (3), (4), (9), (10) and (16) that 

j+l i+l 

m--Cat.> \r(m-2 atvTPil+)l 
“Xl V=l 

j-?-l 

~ Ir(m,P,i,_j)l - C Ir(aty, Pi,_j)I > ~ 

v-1 [ 1 -(j+l) Z.S$ 
P,l_j 1 Pif-j Pi,-, 

>4----* 81 8 

Thus (13) and also Lemma 1 is proved. 

LEMXA 2. Let A be a sepuelzce of nownegathe integers, a?& let Us Szcp- 
pose that there ecists an irrational wumber a such that the set of fhe fraetiowal 

parts of the elemeMs aa (where a belortgs to A) has ody a fiwite lzumbev 
of limit pohts. 

Then A is Not a basis. 

Proof. Let m,, m,, .,,, IC, be the set of limit points of the set of the 
fractional parts of the aa’s, and l.et E be a positive real number; we write : 

(18) 

(19) 

A,j = (a CA I Ilaa -Sjll < E} for j = 1, . . . . 76, 

A, = ~Aj. 
1 

(i) By (17), (18) and (19) it is clear that A is the union of A: and A,. 
By hypothesis, A: is a finite set, and the sequence A, has upper asymptotic 
density 

aA, = limsup#(a < NJ acA,)/N 
N-X.2 
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which does not exceed 2.&, because the sequence (a~),,~ is equidistributed 
mod 1. This is true for all E, so that 

;ia=O. 

(ii) Suppose now that, for some positive integer h, &A = 0. Clearly, 
we have 

(20) (h+l)A = (A:+hA)u(h+l)A,. 

The sequence A: + hA is a finite union of sequences which are obtained 
by translating hA, and so we have 

(211 ;t(A:+h~) = 0. 

Let E, be the set of the fractional parts of all the sums zi:il +. . . + s++r ; 
Eh is a finite set with at most k @+I) elements. The sequence (h + 1) A, is 
included in the set of the integers m for which there exists a x: in E, such 
that : 

Ilam--II -G (h+l)E. 

From the equidistribution mod 1 of the sequence (am),,, we get 

(22) z((h+l)A,) <27&h+1)(7~+1)~. 

From (20), (21) and (22) we deduce: 

(23) ~((h$-l)A),(2k('+')(h+l)~. 

Since (23) is true for all E, i!((h+l)A) equals 0. 

(iii) By induction, we see that for every positive integer h, the se 
quence hA has a zero upper asymptotic density, and so A cannot be 
a basis. 

(Note that we shall use only a special case of this lemma, where 
k = 1 and %I = 0, i.e. lim{aa) = 0.) 

ad 
a-WY2 

3. In this section, we shall construct a sequence B having the desired 

propertie@. From now on, we write Q = (1 +~‘%)/a. We need two more 
lemmas: 

LEMMA 3. Let 9 be a positive integer, h a rational integer with absolute 
salue iess tha/n O.?‘5P’I”, u and ~1 two arbitrary integers and a a real number; 
we have: 

(24) 

and 

(25) 

/ ~e(,&nz+an)/< 7P1’2(1+lh11’2) 
n=1 

2 - Acta Arithmetica XXX.2 
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Proof. (24) is obtained by combining the so-called fundamental 
inequality of van der Corput (cf. [l]), and Lemma 8a of Vinogradov 
(cf. [4], p. 24). 

(25) is a trivial corollary of Lemma lob of Vinogradov (cf. [a], p. 29). 

&~iaxA 4 (J. I?. Eoksma, cf. [2]). .&et a artd b be two positive ifintegers 
(a < b), and 0 a positive real lzumber not eaceedimg 1, M am &tiger greater 
than 200, fi, f2, f3 three functions from [a, b[ x [a, b[ into R; we write: 

S = S(a, b, 0) = *{( n1,n2)l a~:ni~h{fih,n2)~~~ (j =WJ)}, 

I 

30 1h-y if h f0, 
Ph= 2 

i.f h =o, 

b-1 b-1 3 

y = 2 1 2 2 e(zhj.&(%f %))1 PhlPhaPh3? 

hi,h2.h3 tt1=an2=a i=l 

where the first summation is taken over the triples (hl , h,, 7~s) such that: 

0 < lhjl < N (j = 1,2,3) a+zd hf + h,2 + h; ft 0. 

We have 

(26) 
1200 

I~-~3(b-a)2~ < T+(b-a)2r. 

We are now in a position to prove 

THEOREM 1. Let 

B = (n E N( { en2) < 193TF) , where @ = (lfI&)/2; 

the sequence B is a basis of order at most 3, w?blereas B2 is mot a basis. 

Proof. It is clear from Lemma 2 and from the definition of B that BZ 
is not a basis. 

Remark first that all the integers which are less than 3.19312 are 
in 3B; thus it suffices to prove that any integer N greater than 2.1601a 
is in 3B. Let 

(27) ifl = 1g3N-1f’2 

and 

cw P = [NT25 

It suffices to show that there exist two integers m, and n, satisfying 
the conditions : 

l<%<P, 1<‘12,<:p, 

ien;> G 0, (~43 G 0, w--l--a)2) G 0, 

since then n,, n2 and N-n, - %2 are elements of B. 



We shall use Lemma 4 with the following notations : 

Gc:=l, b : = Pfl, iK : = [PJ, 

f&h, 122) := &wh;, fi(%, 92) := e$, f2(fil, +b) := e(N-fil--J2 

We have to evaluate the sums 

(29) u(h,, h2, h3) = / jJ ~e(e(h,n:+h,lc:+il,(N-n,,)e))l. 
?Q=l lzyl 

Let us consider three cases: 
(i) h,+ h3 # 0; by (24), we have: 

(30) 17&, h2, h3) < 2 1 jJ) e(e@l+~3bG+8~l) ( < 7P(l + (2X)““). 
n2=l nl=l 

(ii) hz fh, # 0; we obtain the same majorization in the same way. 

(iii) h, = -kh, = -h,; by (25), we have 

(31) U(h,, h,, &) = 12 2 e(2eh,(~,-N)(r,-N))j,( 7P3’“(1+(2N)‘/“). 
n1=1712=1 

In order to apply Lemma 4, we require also the inequality 

(32) c ’ phl’Phz’Phg = ’ 

hl,hg,hg 

<8~+~;) < 250000(L0g X)3. 

With the notations of Lemma 3, (26) becomes, in view of (29), (30), 
(31) and (32), 

(33) IS - @PI < 7P’” (1 +v5P1’2) 250000 - 4-yLogPy + 12OlP7/4‘ 

Since P is greater than 160 12, LogP is less than 4.82P11”4, and (33) 
becomes 

(34) IH - e3Pz1 < 6.16 ‘106P2-1’4 < 7.34.106N-“4P2. 

By (27) and (28), we have 

(35) e3P2 > 7.34*106N-“4P2. 

Comparing (34) and (35), we see that 8 is positive, and the proof of 
Theorem 1 is now complete. 
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4. In this section, we will construct a sequence C such that 0 is 
not a basis but 02 is a basis (of order at most 6). We need one more lemma. 

LEW 5. Act p be atiy odd p,rime number, a a+ay Cnteger. Then. there 
twist ir;tegers m, y, x such that 

(36) s2+ y2+x2 = a (modp2) 

ma 

(37) W(~;, P)I -c J6c MY, P)l -z 6% b-(x, P)I < 6. 

Proof. If p = 3, the lemma is trivial, so we suppose p > 3. Since 
pz is congruent to 1 mod 8, we may write 

(33) a E rp+s (modp2), 

where r, s are integers, such that 

IW O<rcp 

and 

(40) 1<.9<3p, and s not congruent to 0 or 7mod8. 

By Legendre’s theorem, there exist non-negative integers b, c, d such that 

(41) 62+8+a2 = S. 

(40) and (41) imply that 

By (40), at least one of the numbers b, c, d is positive; we may suppose 
that b > 0. Then 

which implies that (b, p) = 1. Thus also (2b, p) = 1 (p is odd); therefore 
there exists an integer 9 such that 

(43) 
holds. 

Let 

2vb = r (mod p) 

Ic = vp+b, y =o, x =a. 

Then we obtain from (38), (41) and (43) that 

.z+ya+# = (vp+b)2-+-@+a2 = v2p2+2vbp+b2+c2+d2 

= v2p2+2vbp+s 3 rp+s = a (modp2), 

whence (36) holds. 
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Furthermore, by (2) and (42), 

Mm, P)l = lr(v+b, P)l = WP, P)l G b < 6. 

The other three inequalities in (37) follow immediately from (2) and 
(42). (Clearly we need not put equality signs in (37)). 

THMREM 2. There emists a sequence C szccn that C is not a basis but 0’ 
is a basis (of order at most 6). 

Proof. Let p, (k = 1,2, . . .) denote the kth odd prime number: 
p, =3, p, =5, p, =7,... Let 

(44) %k = I2 @I%* * *PkJ4 for k =l,2, . . . 

Let us define the sequence C in the following way: let 

cfqo, rz,] = (0, 1, 2, ..‘) n,). 

If ?I > ?I~, then for some positive integer k, !nk < ?z < %%k+l. Then K?c~? 
holds if and only if 

- 
(45) lr(12,pi)1<i3pi for i =1,2 ,..., k. 

By our construction, the sequence C has property P ti ( k, j/$k) 

for k = 1,2, . . . . thus C is not a basis by Lemma 1. 
Thus we have to prove only that (? is a basis. We will show that 

C2 is a basis of order at most 6, i.e., for any given non-negative integer 
m, . there exist integers C1, OS, . . . , C, such that 

(46) 

and 

(47) 

6 
m= 0; c j=l 

CicC for j =1,2, . ...6. 

For m < rt,, the existence of such numbers C,, Cz, . , . , C, is trivial. 
Assume next m > 12,. Then 

(48) 

for some integer k. 
Let us apply Lemma 5 with a = m, p = p, where i - 1,2, . . ., k. 

We obtain that, for i = 1, 2 , . . . , k, there exist integers Q , yi, xi such 
that 
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Let us denote the least non-negative solution of the congruence system 

s E si (mod& (i = 1, 2, . . . . k); 

y E yi (mod pi) (i = 1,2, “‘) k); 

resp. 

x = xi (mod p:) (i = J_,2, ..‘, k); 

by Cl, Ci, resp. C;. 
We may now choose Ai, &, h, belonging to (0, l}, such that: 

3 

2 (Cj+3yp,p,...pk)2 zm-1 (mod4). 
j=l 

Let Cj = 0;+/2jp,... p, (j = 1, 2, 3). Then clearly, 

(49) 0 < Cj < 2(plP~**~Pk)z for j =1,2,3. 

By the definition of the mi)s, yi’s, ~2s and Cj’S (i = 1, 2, . . . , k, 

j = 1,2,3), 

(50) C,” + G f Ci = m (mod (P,P,. . . p,d2) 

and 

(51) Ir(Cj,p,)1(~ for j =1,2,3, i =1,2,...,k. 

(44) and (49) give that 

(52) 0 < c* < r, for j =l,2,3. 

By the construction of the sequence 0, (51) and (52) imply that 

Cjt-C for j =1,2,3. 

To complete the proof that Cz is a basis of order at most 6, we have 
to show that the number 

(53) t = m-(C~+C~+Q 

can be written in form 

(54) t = c:+c:+c: 

where 

(55) Cj~C (j =4, 5, 6). 

we obtain from (44), (48) and (52) that 

t =m-(C~+C~+Ci)<m<nk,, 

and 

t = m-(Cf+C~$C~) > “n,-12(pip2...pk)4> 0, 
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thus 

(56) 

Furthermore, it follows from (50) and the definition of t that t 
G 0 (mod (pl.. .p,)‘). Let 

(57) t = P(PlP2‘ * .PkY. 

By Legendre’s theorem, there exist non-negative integers &, q2, q9 
such that 

(58) 4 = 4: + 4; + 4: 

since t = 1 (mod 4), and so 4 z 1 (mod 4). 
Let 

cj = !&-3P,p2*+‘$% (j = 4, 5, 6). 

Then (57) and (58) give that 

(59) &; =i (!&3PlP2. - *PJ2 = (PlP2. - .Pk)Yd +a; + 43 
i=4 j=4 

= !l(P,P,.‘.Pk)2 = t; 

thus (54) holds. 
Furthermore, by (56) and (59), 

(60) O<Cj<?5dt<m,+, 0 =4,5,6) 

and clearly, 

C-61) Iv& Pi)1 = IP(!&-3PlP2...Pk, Pill = 0 

(j = 4, 5, 6; i = 1, 2, . . ., k). 

By the construction of the sequence C, (60) and (61) imply (55), and 
thus we have proved that C2 is a basis of order at most 6. 

5. It can be proved by a similar construction that, for any given 
positive integer 7G, there exist sequences D, E such that D is a basis but Dk 
is not a basis, while E is not a basis but Ek is a basis (only the compu- 
tation becomes slightly longer). The same idea even could be applied 

-I- 03 
to construct a sequence P such that P is a basis but 2 S” is not a basis 

k=2 

(but the construction would be even more complicated). 
Furthermore, we remark that the sequence B constructed by us 

was a basis of order at most 3, while C2 was a basis of order at most 6 
(but neither B” nor C is a basis). Ve guess that there exist also sequences 
G, H such that G is a basis of order 2 but G2 is not a basis, while H is not 
a basis but H” is a basis of order 4. 
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Finally let I; be a set of positive integers ; is it true that there exists 
a sequence A such that A” is a basis if and only if n. belongs to L? The 
answer is yes if there is only a finite number of integers which do not 
lie in L. 

Added in proof. The first named author and E. Fouvry proved in a paper 
which will appear in the J. London Math. Soo. that for any set L of positive in- 

tegers there does exist a sequence A such that A$& is a basis if and only if n. belongs 
to L; it is clear from -their proof that there exists also a sequence H which is not 
a basis such that Hz is a basis of order at most 5. 
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