
Aequationes Mathematicae 17 (1978) 311-321 
University of Waterloo 

Birkhtiuser Verlag, Base1 

On the largest prime factors of n and n + 1 

PAUL ERD~S AND CARL POMERANCE 

§l. Introduction 

If n 2 2 is an integer, let p(n) denote the largest prime factor of IZ. For every 
x>Oandevery t,O~ttl,letA(x,t)denotethenumberof nix withP(n)rx’. 
A well-known result due to Dickmaa [4] and others is 

THEOREM A. The function 

a(t) = lim x-’ A(x, tj x-x 

is defined and continuous on [0, 11. 

In fact it is even shown that u(t) is strictly decreasing and differentiable. Note that 
a(O)= 1 and a(l)=O. 

If 0~ f, ss 1, denote by B(x, r, s) the number of n~=x with Pox’ and 
P(n + lj L x’. One might guess that 

b(t, s) = lim x-‘B(x, t, S) I-= 

exists and is continuous on [O, 112. In fact, one could guess that 

E(t, s) = a(t 

that is, the largest prime factors of n and n + 1 are “independent events.“ We do 
not know how to prove the above guesses. In fact, we cannot even prove the 
almost certain truth that the density of integers n with P(n) > P(rt + 1) is :. 

However we can prove: 

THEOREM 1. For each E > 0, there is a 6 > 0 such that for suficiently large x, 
~~.- -.. 
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the number of n IX with 

x-S < P(n)/P(n + 1) <x6 

AEQ. MATH 

is less than EX. 

That is, P(n) and P(n f 1) are usually not close. We use Brun’s method in the 
proof. One corollary is that the lower density of integers n for which P(n) > 
P(n + 1) is positive (see §6). 

If the canonical prime factorization of n > 1 is fl p?, let f(n) = C aipi; and let 
f(l) = 0. Several authors have considered this function or the closely related 
g(n) = C pi or h(n) = C p?, among them Alladi and Erdijs [l], Chawla [2], Dane 
[3], Hall [7], La1 [lo], LeVan [12], and Nicolas [14]. In Nelson, Penney, and 
Pomerance [13] the following problem is raised: does the set of n for which 
f(n) = f(n + 1) h ave density O? If f(n) = f(n + l), we call n an Aaron number (see 
[13]). We prove here the Aaron numbers do indeed have density 0. The result 
follows as a corollary to Theorem 1 and 

THEOREM 2. For every E>O, there is a 6 >O such that for sufficiently large x 
there are at least (1 - E)X choices for yt 5 x such that 

P(n)<f(n)<(l+x-“)P(n). (2) 

Theorem 2 implies that usually f(n) =P(n) and f(n + l)-P(n + 1). But Theorem 1 
implies P(n) and P(n + 1) are usually not close. Hence f(n) and f(n + 1) are 
usually not close, and in particular, we usually have f(n)# f(n+ 1). This then 
establishes that the Aaron numbers have density 0. However we can prove a 
sharper result: 

THEOREM 3. For every E > 0, the number of n 5 x for which f(n) = f(n + 1) is 
O(x/(log x>‘-‘>. 

Actually we can prove the sharper estimate O(x/log x), but the proof is more 
difficult than the proof of Theorem 3 and we do not present it here. We suspect 
that the estimate O(x/(log x)‘) is true for every k, but we cannot prove this for 
any k > 1. In fact, we cannot even get o(x/log x). On the other hand, we cannot 
prove that there are infinitely many Aaron numbers (this would follow if Schinzel’s 
Conjecture H is true - see [13]). But by a consideration of those n for which P(n) 
and P(M + 1) are both relatively small, we believe the number of Aaron numbers 
up to x is 0(x I-‘) for every E > 0. 
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There are integers n for which f(n) = f(n + 1) = f(n + 2). The least example, 
kindly found for us by David E. Penney in a computer search, is n = 4 17162. We 
cannot prove that the number of such n %x is o(x/log x). We conjecture that for 
every k there are integers n with f(n) = f(n + 1) = * * a = f(n f k). 

62. Preliminaries 

In this section we record several lemmas which will be useful in our discussion. 
The letter p denotes a prime. 

LEMMA 1. There is an absolute constant C, such that if 3 < u < v, then 

This lemma is used when u is large compared with v/u. The proof follows easily 
from the classical result (see Hardy and Wright [8], Theorem 427 and its proof): 
there are absolute constants B, D such that if x 2 3, then 

D 
1 ;-loglopr-B <---- 

psx log x’ 

Lemma 1 easily follows with C = 20. 

LEMMA 2. 1 1-1 
pltplogp logt’ 

Proof. If pk denotes the k-th prime, then Pk k log k and 

LEMMA 3. If P(n)?S, then f(n)lP(n)logn/logP(n). 

Proof. We use the fact that t/log t is increasing for t L e and 2/1og 2 < 5/lag 5. 
Write n = n pPz where p1 = P(n). Then 
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03. Proof of Theorem 1 

Let E > 0. From Theorem ,4 it follows there is a So = SD(e) such that 4 > 6, > 0 
and for large x the number of n 5 x with 

is less than ex/3. We now consider the remaining n 5 x. There are 2 cases: 

(i) xsct 5 p(n) < :c1’2-sc1, 
(ii) x l’-+%, P(n). 

For each pair of primes p, q, the number of n I x for which P(n) = p, 
P(n + 1) = q is at most 1+ [x/pq]* Then for large x, the number of )z I x in case (i) 
for which (1) holds is at most (assume 0 < 6 < &,/4) 

c x%,p<*“~-4, 1+ [x/pq] < x’-2~5~‘+s “t x c j I$ 
px “<q<px” 

<x 
1 1-2S~~+s +- 36x log x 1 - 

P 1% P 

< x1-260+8+ 48x/& (Lemma 2) (3) 

Hence if we choose S so that 

then (3) implies there are fewer than EX/~ choices of such n. 
Suppose now n 5 x is in case (ii) and (1) holds. Let a = n/P(nj, b = 

(n + l)/P(n + 1). Then n I x1’2-s0, b < x1’2-60+6, and x-‘/2< a/b <2x’. On the 
other hand, given integers a, b, the number of n IX for which n = up(n) and 
n + 1 = bP(n + 1) is at most the number of primes psx/a such that (ap + 1)/b is 
prime, (Note that ,there is at most one such prime p unless (a, b) = 1 and 2 1 ab.) 
All such primes p are in a fixed residue class mod b, say p = kb + c for some k =r 0. 
Let d = (ac + 1)/b. Then we are counting integers k with 0 I k C xlab such that 
kb + c an.d ka + d are simultaneously prime. By Brun’s method (see Halberstam 
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and Richert [6], Theorem 2.3, p. 70), we have the number of such k is at most 

AX 

= &)cp(b) log’ (x/ah) 

where A is an absolute constant (independent of the choice of a, 6) and (o is 
Euler’s function. Hence for sufficiently large x, the number of n I x in case (ii) for 
which (1) holds is at most 

Ax c llcp(a)cp(b) log* (dab) 
l/2-& 

L(ix 

ap "2<hc2ax" 

2Ax 
<(2S,- q2 log2 x 

We now use the result of Landau [ll], that if E = <(2)5(3j/{(6), then 

1 l/qY(n)=Elogx+o(l). 
nzzx 

Hence for large x the quantity in (5) is less than 

3EAx 
c 

log (x2s) 
(280 - a2 log2 x ul(a) 

- 6SEA.x T 1 
- (2s”- S)’ log x L q(a) 

7 SE2Ax 

< (260 - S)’ log x 
log (x1’2Ps”) 

46E’Ax 

<(26,- 6)I’ 

(5) 

(6) 

If we now choose 6 so that 

0 < 6 < S&i4E2A and S < &/4, (7) 

then (6) implies there are fewer than EX/~ choices for such it. Hence if we choose S 
so that (4) and (7) hold, it follows that the number of 12 1 x for which (1) holds is 
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less than EX for every sufficiently large value of x (depending. of course, on E). 
This completes our proof. 

Note that using a known explicit estimate for the upper bound sieve result we 
may take A=g+o,(l). 

(14. The proof of Theorem 2 

Sinsce any integer n IX is divisible by at most log x/log 2 primes, we have for 
large .Y and composite n %x 

f(K!,= P(n)i-f(n/P(n))-=P(n)+P(n/p(n))logx/log2 

-K P(n) + P(n/P(n))P. (8) 

If (2) fails, then, but for o(x) choices of n 5 x, we have 

f(n) 2 (1 f x -“)P(n), (9) 

so that from (8) and (9) we have 

Let E >O. From Theorem A there is a S,= &(E) >O such that for large x, the 
number of n I .r with P(n) < xs” is at most 6x/3. For each pair of primes p, q the 
number of n 5 x with P(n) = p and P(n/P(a)) = q is at most [xlpq]. Hence from 
(lo), for large x the number of n 5x for which (2). fails is at most (assume 
0 <6<:6,/7) 

(Lemma 1) 

(Lemma 2) 

if we take 6 = Q/8. This completes the proof. 
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P5. Aaron numbers 

In this section we prove Theorem 3. Let x be large, n IX, and f(n) = f(~2 + 1). 
We distinguish two cases: 

(i) P(n) > x1”, 
l/2 (ii) P(n)5 x . 

Let n be in case (i). We first show that 

P(n+l)>P(n)/3. 

Indeed we have 

x”2 < P(n) 5 f(n) = f(n t 1) 5 P(n + 1) log (x -t l)/log 2 

so that P(n + 1) > x1” log 2/lag (X + 1). Hence Lemma 3 implies 

P(nKP(n+l)l0g(xt l)/log(x”210g2/log(x+1))<3P(n+1) 

for large x, which proves (11). We next show that 

IP(n)-P(n+1)1<4x/P(n). 

Indeed, f(n) = f( n + 1) implies 

P(n+l)-P(n),~f(n/P(n))-f((nt l)/P(n+1))1n/P(n), 

P(+P(~+ i)qei)/P(n+i), 

so that using (11) we have (12). We next show that 

P(n)<3x2'? 

We use the congruence 

(P(n + l)- P(n)) & =l(mod P(n)). 

(11) 

(12) 

(13 

(14) 

From (11) we have P(n) and P(n + 1) both odd primes so the left side of (14) is 
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not 1. Then (ll), (l;.), and (14) imply 

P(n) I ]I’( n) - P(V! + 1)) 
n+1 4x ----+1<--- X+1 

P(n + 1) 
--------+1 

P(n) P(n + 1) 

<12X(X + 1) + 1 < 14x2 
P(n)’ Pln12 

for large x. so that (13) follows. 
If P, q are primes with xl’2 < P, q > p/3, then there are at most 3 integers n 5 x 

with P(n)== p and P(n+ l)= q. Hence from (ll), (12), (13) we have for large x 
that the number of n IX in case (i) for which f(n) = f(n + 1) is at most 

where we use the well-known result of Hardy and Littlewood (see [9], p. 66) for 
lhe number of primes in an interval and Lemma 1. 

We now turn our attention to case (ii). We have (see Erdiis [5], proof of 
Lemma 1 or Rankin [15], Lemma II) the number of n 5x for which we do not 
nave 

is O(x/log x). So we may assume (16) holds. Then using Lemma 3 and the 
argument which establishes (ll), we have from the equation f(n) = f(n + 1) that 

P(n)/4 log log x < P(n i- 1) < 3P(n) log log x. (17) 

For each pair of primes p, q, there are at most 1 + [x/pq] integers n 5 x with 
P(n) = P and P(n + 1) = q. Hence from (16) and (17), for large x the number of 
n IX in case (ii) for which f(n) = f(n + 1) is at most 

c 1+ [x/pq] < 7T(x1’2)7r(3x”2 log log x)+ xc 111 
XL,lIn.l‘~pr<p~II~~ P 4 
pi4 log log x -= q < 3p log log x 

1 <<AxI;. log log log x 
log x 1% P 

(Lemma 1) 
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<< x log log x log log log x 
logx . 

This completes the proof of Theorem 3. 
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(Lemma 2) 

86. The probability that P(n) > P(n + 1). 

Using some computer estimates of the function a(t) made with the generous 
assistance of Don R. Wilhelmsen, it can be shown that the number of integers 
nsx such that 

x 
0.31 5 ptn) < xO.46 

(18) 

is more than 0.2002x for sufficiently large x. By an elementary argument similar 
to the proof of case (i) in Theorem 1 (see §3) one can show the number of n IX 
for which (18) holds and for which 

P(n) -=c P(n + 1) i P(n)x”.“8 (19) 

is less than 0.0763x for sufficiently large x. Hence the number of n %x for which 
(19) fails is more than 

0.2002x-0.0763x = 0.1239x 

for sufficiently large x. Now for every k choices of n sx for which P(n+ l)k 
P(n)x’.“, there must be at least [O.O8k] integers it in the same interval for which 
P(n) > P(n -k 1). Hence the lower density of integers n for which P(n) > P(n -t 1) is 
at least 

(0.08) . (0.1239)> 0.0099. 

Note that the same is true for integers n for which P(n) < P(n -t 1). Undoubtedly 
improvements in this type of result are possible. 

§7. Comments on three or more consecutive numbers. 

It is easy to show that the patterns 

P(n) < P(n + I), P(n f 1) > P(n + 2); 

P(n)>P(rt+l), P(n+l)<P(n+2), 
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both occur infinitely often. However we cannot prove either of these two patterns 
occurs for a positive density of n, although this certainly must be the case. 
Suppose now p is an odd prime and 

k. = inf {k : P(pzk + 1) > p} 

(note that P(p”“cj+ 1) z 1 (mod 2k~+‘), SO ko cm>. Then 

P(p2L” - 1) <: p(p’*“) < P(p2k”s 1). 

On the other hand, we cannot find infinitely many n for which 

P(n)>P(n+ l)>P(n+2), 120) 

but perhaps we overlook a simple proof. 
Suppose now 

i 

1, 
en = 

if P(Pz)> P(n+ l), 
0, if P(n)< P(nf1). 

Then CL2 ~,/2” is irrational. Indeed, suppose not, so that {E,} is eventually 
periodic with period length K. Let p > K be a fixed prime. An old and well-known 
result of Polya imp!ies that there are only finitely many pairs of consecutive 
integers in the set M = {n : P(n) I p}. (In fact, from the work of Baker, the largest 
consecutive pair in M is effectively computable.) Note that pi, 2p’, . . . , Kp’ are all 
in M for every i. Hence for large i, none of pi + 1, 2p’ f 1, . . . , Kp’ + 1 is in M, so 
that E, = 0 for m = p’, 2p’, . . . , Kp’. But these numbers form a complete residue 
system mod K: Hence E, = 0 for every large it, an absurdity. 

For each k., let h(k) denote the number of different patterns of k consecutive 
terms of {E,,} which occur infinitely often. Surely we must have h(k) = 2*. This is 
easy for k = 1, but already for k = 2, all we can prove is h(2) 2 3. (If there are 
infinitely many n for which (20) holds, then h(2)= 4.) It follows from the 
non-periodicity of (E,} that for every k, 

h(k)kk+l. 

To see this, it is sufficient to show h(k) is strictly increasing (since h(l) =,2). But if 
h(k) = h(k + 1) (clearly h(k)> h(k + 1) is impossible), then sufficiently far out in 
the sequence {en} we have each term determined by the previous k terms. Then as 
soon as a k-tuple repeats, the sequence repeats and hence is periodic. 
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We remark that h(k) = 2k can be seen to follow from the prime k-tuples 
conjecture. 
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