EVOLUTION OF THE *n*-CUBE

PAUL ERDÖS and JOEL SPENCER

Nemetvolgyi ut 72c, Budapest

Dedicated to the memory of Yu. D. Burtin

(Received August 1978)

Abstract—Let C^n denote the graph with vertices $(\epsilon_1, \ldots, \epsilon_n)$, $\epsilon_i = 0, 1$ and vertices adjacent if they differ in exactly one coordinate. We call C^n the *n*-cube.

Let $G = G_{n,p}$ denote the random subgraph of C^n defined by letting

Prob $(\{i, j\} \in G) = p$

for all $i, j \in C^n$ and letting these probabilities be mutually independent. We wish to understand the "evolution" of G as a function of p. Section 1 consists of speculations, without proofs, involving this evolution. Set

 $f_n(p) = Prof(G_{n,p} \text{ is connected})$

We show in Section 2: Theorem

$$\lim_{n} f_n(p) = 0 \text{ if } p < 0.5$$
$$e^{-1} \text{ if } p = 0.5$$
$$1 \text{ if } p > 0.5.$$

The first and last parts were shown by Yu. Burtin[1]. For completeness, we show all three parts.

1. SPECULATIONS

We are guided by the fundamental results of A. Rényi and the senior author [2] on the evolution of random graphs. We think of p increasing (in time, perhaps) from p = 0 to p = 1 and $G_{n,p}$ evolving from the empty to the complete graph. Of course, G is not a particular graph but a random variable. We say that p = p(n), $G = G_{n,p(n)}$ has a property Γ if

Lim Prob (G satisfies Γ) = 1

and does not have property Γ if the above limit is zero. Erdős and Renyi noted that for many interesting monotone graph theoretical properties (e.g.; connectedness, planarity) there is a threshold function f(n) so that if p(n) = O(f(n)), G does not have Γ and if f(n) = O(p(n)), G does have Γ . We say, informally, that property Γ appears at p = f(n) if f(n) is a threshold function for Γ .

At first, G consists of nonadjacent edges. Threshold functions for the appearance of small subgraphs are relatively easy to compute. For e fixed, connected subgraphs with e edges appear at $p \sim 2^{-n/e+O(n)}$: For such p the largest component has (e + 1) points and consists of a path of length e. We are most intrigued by the sizes of the components of G when p reaches $0(n^{-1})$.

Let $p = \lambda/n$, $\lambda < 1$. The degree of a point is approximately Poisson with mean λ . The component containing a fixed point resembles a Galton-Watson process. In each generation, each active member (point) spawns (is adjacent to) X new members where X is Poisson with mean λ . For $\lambda < 1$ the Galton-Watson process "dies" with probability one and the size of the component containing a given point is, in expectation, $(1 - \lambda)^{-1}$. The size of the largest component is more difficult as one must consider 2^n not quite independent almost Galton-Watson processes.

With $\lambda > 1$ the nature of G changes dramatically. (This is the "double jump") of [12]). Now with probability $q(\lambda) > 0$ the Galton-Watson process does not stop. Then $(1 - q(\lambda))2^n$ points are in "small" components. What of the remainder? In particular, will there be a component with $(q(\lambda) + 0(1))2^n$ points? What is the size of the second largest component?

PAUL ERDÖS and JOEL SPENCER

As λ increases the number of small components decrease. Perhaps there is a giant component at $\lambda \neq 1 + \epsilon$ or perhaps the large components merge later. Somewhere between $p = (1 + \epsilon)/n$ and p = o(1) the medium size components disappear.

When p becomes constant, independent of n, there is one giant component and many small components of bounded size. As p increases the small components merge into the giant component until only isolated points remain unmerged. Total connectedness is achieved at p = 0.5, as shown in the next section. There is a precise result:

Set $p = 0.5 + \epsilon/2n$

Lim Prob (
$$G_{n,p}$$
 is connected) = $e^{-e^{-e}}$.

2. CONNECTEDNESS

In this section we prove the Theorem stated in the introduction. Let $g_n(p)$ be probability that G contains isolated points. For $i \in C^n$ we define a random variable

 $X_i = 1$ if *i* is an isolated point of G

0 if not

and set
$$X = \sum_{i \in C^n} X_i$$
,

the number of isolated point of G. As each $i \in C^n$ has degree n in C^n

 $E(\mathbf{X}_i) = (1-p)^n.$

We set

$$\mu = 2^n (1-p)^n$$

so that, by linearity of expected value, $E(X) = \mu$. We calculate the second moment applying the formula

$$\operatorname{Var} (X) = \sum_{i} \operatorname{Var} (X_{i}) + \sum_{i \neq j} \operatorname{Cov} (X_{i}, X_{J})$$

with values

Cov $(X_i, X_j) = 0$ if *i*, *j* not adjacent = $\mu^2 p/(1-p)$ if *i*, *j* adjacent

so that

Var
$$(X) = \mu + \mu (1-p)^n [(np/(1-p)) - 1].$$

For p < 0.5 we apply Kolmogoroff's Inequality:

$$1 - g_n(p) = \operatorname{Prob} \left[X = 0 \right] \le \operatorname{Prob} \left[|X - \mu| \ge \mu \right]$$
$$\le \operatorname{Var} (X)/\mu^2.$$

From our second moment calculation we use only

$$\operatorname{Lim}\operatorname{Var}(X)/\mu^2=0.$$

As $f_n(p) \leq 1 - g_n(p)$

$$\operatorname{Lim} f_n(p) = 0.$$

For p > 0.5

 $g_n(p) = \operatorname{Prob}\left[X > 0\right] < E(X) = \mu$

so

$$\operatorname{Lim} g_n(p) = 0.$$

For p = 0.5 more care is required. Set

$$s_k(n) = \sum E(X_{i_1} \cdots X_{i_k})$$

summed over all sets $\{i, \ldots, i_k\} \subseteq C^n$. For fixed k the above sum has $\binom{2n}{k} \sim 2^{nk}/k!$ terms. When none of the i_1, \ldots, i_k are the summand is precisely 2^{-nk} . There are at most $\binom{2n}{k-1}n(k-1)$ terms where some i_s , i_t are adjacent. There the summand lies between 2^{-nd} and $2^{-nk+(k/2)}$ (actually less, as K_k is not a subgraph of C^n). Thus

$$\binom{2^{n}}{k} 2^{-nk} \leq s_{k}(n) \leq \binom{2^{n}}{k} 2^{-nk} + \binom{2^{n}}{k-1} n(k-1) 2^{-nk+(k/2)}$$

so

 $\operatorname{Lim} s_k(n) = 1/k!$

For any t, by Inclusion-Exclusion,

Prob $[X = t] = s_t(n) - s_{t+1}(n) + \cdots$

and, critically, the sum alternates about Prob [X = t]. Hence

$$\lim_{n} \operatorname{Prob}\left[X=t\right] = e^{-1}/t!$$

(that is, X approaches a Poisson distribution with mean 1—as is to be expected as the X_i are nearly independent) so, in particular

$$\lim_{n} (1 - g_n(p)) = \lim_{n} \operatorname{Prob} [X = 0] = e^{-1}.$$

Let \mathscr{C}_s denote the family of connected sets $S \subseteq C^n$, |S| = s and

$$\mathscr{C} = \bigcup_{s=1}^{2^{n-1}} \mathscr{C}_s$$

For $s \in \mathscr{C}$ set

P(S) = Prob [S is a connected component of G].

Set

$$b(S) = |\{u, v\} \in C^n : u \in S, v \notin S\}|,$$

the cardinality of the edge boundary of S. Clearly

$$P(S) \le (1-p)^{b(S)} \le 2^{-b(S)}$$

for $p \ge 0.5$. Our objective shall be to show

$$\lim_{n} \sum_{s \in \mathcal{C}} 2^{-b(S)} = 0.$$
 (1)

Disconnected G without isolated points must contain a component $S \in \mathscr{C}$. Thus

$$0 \leq 1 - f_n(p) - g_n(p) \leq \sum_{S \in \mathscr{C}} P(S)$$

and hence (1) shall imply our Theorem. Set

$$g(s) = \sum_{S \in \mathscr{C}_s} 2^{-b(S)}.$$
 (2)

We shall bound g(s).

Hart[3] has found the minimal b(S), $S \in \mathscr{C}_s$. It is achieved by letting

$$S = \{(\epsilon_1,\ldots,\epsilon_n); \sum_{i=1}^n \epsilon_i 2^{i-1} < s\}$$

In particular, if $s = 2^k$, S is a k-cube. In general

$$b(S) \ge s[n - \{\lg(s)\}] \tag{3}$$

 $(\lg = \log base 2, \{x\} = \min integer y \ge x)$. (In [3] the problem stated is to find S with the maximal number of edges. By (5) the problems are equivalent.) We bound

 $|\mathscr{C}_s| \leq 2^n (n)(2n) \cdots ((s-1)n) \leq 2^n (ns)^s$

as we may count ordered (x_1, \ldots, x_s) each x_i adjacent to some previous x_i . Hence

$$g(s) \le |\mathscr{C}_s|(\max 2^{-b(S)})| \le 2^n (ns)^s 2^{-s(n-\{\lg s\})}$$

which is small for $2 \le s \le 2^{0.49n}$. (We may assume *n* is sufficiently large as our theorem concerns a limit in *n*.) For larger *s* set

 $s=2^{n(1-\beta)}$

and bound

$$|\mathscr{C}_{s}| \leq {\binom{2^{n}}{s}} \leq 2^{ns}/s! < (e2^{\beta n})^{s}, \tag{4}$$

bounding s! by $(s/e)^s$. Equations (2), (3), (4) do not quite yield a small bound on g(s) (if p > 0.5 they do and the proof is considerably simpler) so we require more detailed refinements.

Call
$$S \in \mathscr{C}_{n}$$
, $s = 2^{n(1-\beta)}$, dense if $b(S) \leq \beta sn + 10s$

Let v(s) be the number of dense S. We shall bound v(s). We assume $\beta \le 0.51$ throughout. Fix $S \in \mathscr{C}_s$, dense. For $x \in S$ we define the degree of x,

$$d(x) = [\{y \in S : \{x, y\} \in C^n\}]$$

We call n - d(x) the outdegree of x. Then b(S) is (for any S) the sum of the outdegrees. That is

$$\sum_{x \in S} d(x) + b(S) = |S|n \tag{5}$$

so that, as S is dense,

$$\sum_{x\in S} d(x) \ge sn(1-\beta) - 10s \ge 0.48sn.$$

As the average degree is $\ge 0.48n$ and the maximal degree is *n*, at least (0.48-0.1)/(1-0.1) of the points have degree $\ge 0.1n$. Set

$$T = \{x \in S: d(x) \ge 0.1n\}$$
 so $|T| > 0.4s$

(i.e.: a positive proportion of points have high degree.) For $U \subseteq S$ set

$$a(U) = \{x \in S: \{u, x\} \in \mathscr{C}^n \text{ for some } u \in U\},\$$

the neighborhood of U in S. We now use the probabilistic method to find a small set U with a large number of neighbors. Let U be a random subset of S defined by

$$\operatorname{Prob}\left[s \in U\right] = \alpha = (\ln n)/n$$

and requiring the events $s \in U$ to be mutually independent. For each $x \in T$

Prob $[x \notin a(U)] = (1 - \alpha)^{d(x)} \le (1 - \alpha)^{0.1n} = o(1).$

Then

$$E(|a(U)| \ge E(|a(U)nT|) = \sum_{x \in T} \operatorname{Prob} [x \in a(U)] \ge |T|(1-0(1)) \ge 0.19s.$$

As $a(U) \le s$ always, $|a(U)| \ge 0.1s$ with probability at least 0.0. As |U| has binomial distribution $B(s, \alpha)$, $|U| \le 2s\alpha$ with probability 1-0(1). Hence the above two events occur simultaneously with positive probability. That is, there exists a specific $U \subseteq S$ such that

(i)
$$|U| \le 2s\alpha$$

(ii) $|s(U)| \ge 0.1s$.

(Note the above statement is not a probability result. For all S such a U exists.) We set $u = 2s\alpha = 2s(\ln n)/n$ for convenience.

Now we bound v(s). We count triples (U, a(U), S - U - a(U)) satisfying (i), (ii). There are at most $\binom{2^n}{u}$ choice for U. (Notation; $\binom{m}{i} = \sum_{j \le i} \binom{m}{j}$.) There are (and this is the critical saving) at most 2^{nu} choices of a(U) for, having chosen U, we select for each $x \in U$ the points of a(U) adjacent to x in at most 2^n ways. Finally, there are at most $\binom{2n}{0.9s}$ choices of S - U - a(U). Thus,

$$v(s) \le \left(\binom{2^n}{u} \right) 2^{nu} \left(\binom{2^n}{0.9s} \right) \le 2^{2nu} \left(\binom{2^n}{0.9s} \right)$$
(6)

We split the sum (2) into dense and nondense S.

$$g(s) \le v(s)2^{-s(n-\{\lg s\})} + (|\mathscr{C}_s| - v(s))2^{-\beta sn-10s}.$$
(7)

By (4)

$$|\mathscr{C}_{s}|^{2-\beta sn-10s} < (e2^{-10})^{s}$$

is negligible. (This was why $\beta sn + 10s$ was chosen as the cut off point for denseness.) The first summand of (7) is very small if $s \le c2^n/n$. (We omit the calculations.)

For $c2^n/n \le s \le 2^{n-1}$ we must further refine our methods. (Here we are considering the possibility that G consists of several large components.) Set $s = 2^{n-\gamma}$, $1 \le \gamma \le k \lg n$. ($\gamma = n\beta$). As before $S \in \mathscr{C}_s$ is dense if $b(S) \le (\gamma + 10)s$. Fix a dense S. The average outdegree is $\le \gamma + 10$ so all but 0(s) points have outdegree $\le (\ln n)^2$. We set

$$R = \{x \in S: n - d(x) \le (\ln n)^2\} \text{ so } |S - R| = o(s)$$

and for $x \in S$ define a restricted degree

$$d'(x) = |\{y \in R; \{x, y\} \in C^n\}|.$$

Now

$$\sum_{x \in S} d'(x) = \sum_{y \in R} d(y) \ge |R|(n - (\ln n)^2) = sn(1 - 0(1))$$

so the average d'(x) is n(1-0(1)), the maximum d'(x) is n. Set

$$T' = \{x \in S: d'(x) \ge 0.1n\}.$$

Then

|S-T'|=o(s).

Let U be a random subset of R with independent probabilities

$$\operatorname{Prob}\left[x \in U\right] = \alpha = (\ln n)/n.$$

On average, all but o(s) points of S are adjacent to U. Thus there exists a triple (U, a(U), S - U - a(U)) where

(i) $|U| \le 2\alpha s = o(s)$. (ii) all $x \in a(U)$ are adjacent to some $y \in U$. (iii) |S - U - a(U)| = o(s)

and critically

(iv) $U \subseteq R$.

In counting triples there is now a critical savings with a(U). For each $u \in U$ there are at most $n^{(\ln n)^2}$ choices (vs a factor of 2^n before) of the $x \in S$ adjacent to u—as there will be all but at most $(\ln n)^2$ of the neighbors of u in C^n . Thus (with $u = 2s\alpha$ as before)

$$v(s) \leq \binom{\binom{2^n}{u}}{n^{(\ln n)^2 u}} \binom{\binom{2n}{o(s)}}{}.$$
(8)

With this bound, g(s) is small, $c2^n/n \le s \le 2^{n-1}$. Finally, one requires not only that all g(s) are small but also their sum. This follows immediately from examining the arguments which yield

exponentially small bounds on g(s). Given that:

$$\lim_{n} \sum_{S \in \mathscr{C}} 2^{-b(S)} = \lim_{n} \sum_{s=2}^{2^{n-1}} g(s) = 0$$

completing our theorem.

REFERENCES

- 1. Yu. D. Burtin, On the probability of connectedness of a random subgraph of the n-cube, Problemy pered. inf. 13, Russian-English summary) (1977).
 P. Erdös, A. Rényi, On the evolution of random graphs, *Mat. Kutato Int. Kozl* 5, 17-60 (1960).
 S. Hart, A note on the edges of the *n*-cube, *Discrete Math.* 14, 157-163 (1976).