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ON THE ASYMPTOTIC BEHAVIOR OF LARGE 
PRIME FACTORS OF INTEGERS 

K. ALLADI AND P. ERD& 

We prove results on the asymptotic behavior of large 
prime factors of the integers. The basic idea of the paper 
is that if k is any fixed integer, then the kth largest prime 
factor of n, denoted by P,(lz) is generally much bigger than 
CjJ’Jn). We give precise estimates of this phenomenon. 
This paper is a sequel to an earlier paper by the authors. 

1. Notations and definitions‘ Throughout this paper the letters 
p and q, with or without subscript will denote primes. 

Let 12 = IIrE1 p?, p, > p, > a.. > p, be the canonical decomposi- 
tion of an integer n > 1 into primes. We set 

and 

Cl*% Q(n) = 2 ai , o(n) = 7’ . 
*=I 

Let A(1) = A*(l) = Q(l) = o(l) = 0. 
We may define the lcth largest prime factor in two ways depending 

on whether we want to count prime factors according to multiplicity 
or not. To be more precise set 

(1.3) 
P:(n) = p, for k I o(n) 

= 0 for k > o(n) . 

We may also define 

MC = 24 

(1.4) pk(a) = ‘4 PI(n) .P,(n;“. . 0 Pk-l(n) ) ’ 
1 < k d Q(n) 

PJn) = 0 for k > Q(n) . 

Observe that P,(n) = P:(Iz). 
The terms “average order” and “normal order” will mean the 

following: Let f be an arithmetic function and set 

(1.5) 

Suppose g is a monotonic function such that 
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(l-6) 

where 

lim Wx) - 1 -- 
2-m F(x) 

then f has average order g. Next, we say that two functions f and 
g are “nearly the same almost always” if for each E > 0 

where 

If in (1.9) and (1.8), the function g is monotonic, we say that f has 
normal order g. 

Consider the sum 

(1.10) 

If a I 1 is a real number and 3 = @, it is well known (see [lo]) 
that 

(1.11) 
p(a) = lim ?Ip(‘P x1’a) 

2-m X 

exists. The limit in (1.11) is also defined if - 00 < a < 1 and 

(1.12) da> = 
i 

1 O,cCr<l 
0 --<a<O. 

The function p(a) is a monotonic decreasing continuous function of 
a for a 2 1. 

Finally we define the sums 

Sz(x, k) = c A*(n) - P:(n) - . . . - PL(%) , k > 1 - 
2insz 

(1.13) 
R(n) 

t&(x, k) = c G@L , 
256~ PI(n) 

k&l 
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The aim of this paper is to obtain estimates for these sums S&C, k), 
i = 1, 2, 3, 4. 

2. General background and main theorem. The results in 
this paper are in continuation of those in 9 2 of [2]. 

It is a well known theorem of Hardy and Ramanujan [6], [7] 
that the functions Q(n) and o(n) both have average and normal order 
log log 9% = g(n). This means that a number YL usually has log log n 
prime factors and most of them occur square free. Thus it is natural 
to expect the large prime factors to occur with multiplicity one, 
most of the time. So one should be able to show that the functions 
A and A* have the same average order. In an earlier paper [2] we 
showed this to be true and much more. 

Not only do A and A* have the same average order, but the 
function P1(rz) dominates the sums in (1.1) to such an extent that 
A, A* and P, have the same average order. More generally A(n) - 
P,(n) - +*a - P,-,(W) and PJn) have the same average order. It was 
observed in [l] that the functions P,*(n) and A*(n) - P:(n) - l .* - 
P,*_,(N) also have the same average order as Pk(n), since the asymptotic 
analysis in [2] remains unaffected if the weak inequalities are re- 
placed by strict ones. Thus we restate (without proof) the main 
theorem in [2] in a more complete form: 

THEOREM A. If k is a .fixed positive integer then 

where ak is a comtant depending o&v on k, alzd is a rational 
multiple of C(1 i- lJk) where t: is the Riemann zeta function. In 
addition for each k 2 1 

(2.2) ls&z{A(n) - A*(n)) = x log logx + Q(X) = o(15~zp~(n)) . - 

Theorem A says that the average order in (2.1) is g(n) = 
a,* .n’lk/(log n)’ where a,Y = a,‘(1 + l/k). An average is essentially 
influenced by two things-(i) the abnormally large values of a func- 
tion, which certainly contribute to (2.1) and (ii) the values a function 
takes most often. 

The question now arises whether A, A*, and Pl are nearly the 
same almost always. The main theorem stated below answers this 
question in the affirmative. 
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THEOREM B. If k is a Jixed positive integer then 

(2.3) Si(X, k) - &(x, k) - s&z, w - WC, k) - c& 
(log:)“-’ 

where a: = 1 and a; for k > 1 is a constant depending only on k, 
and is a ratiolzal multiple of er where Y is Euler’s constant. In 
addition for each k 2 1 

C2w4) ,&, 4%) - d*(n) = E(n) O( x ) = oL&$$f) e”Vlog x log log x 1 

where c is an absolute constant >O. 

3, Consequences and motivation. Statements (2.3) and (2.4) 
may be looked upon as analogues to (2.1) and (2.2). Theorem A said 
that A, A* and P, have the same average order, x%/6 log n, (a, = 
7?/12, see [2]). We can deduce from Theorem B the following, 

COROLLARY. The functions A, A* and P, are all nearly the 
same almost always. Also all three fumtions fail to possess a normal 
order. 

Proof. Consider two arithmetic functions f, g satisfying f(m) 2 
g(n) > 0. Suppose that 

(3.1) 

We rewrite (3.1) as 

,,FJgf - I} = 44 . 

Since f/g 2 1 we infer from (3.2) that 

(3.3) 
+&4 I--+~ -0 as x-w 

X . 

for each E > 0, where $,(x) is as in (1.8). So f and g are nearly 
the same almost always. (We can deduce (3.3) also if f(n) s g(n) for 
all 12). 

Setting k = 1 in (2.3) we see that (3.1) is true with f = d(n) 
and g(n) = PI(%). Therefore A and P, are nearly the same almost 
always. Since A 2 A* 2 P,, the same is true for all three functions. 

Now to show that these three functions do not have normal 
orders it suffices to show that one of them does not. It follows 
easily from a theorem of Elliott [5] on additive functions 
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(3.4) 

that A* does not have a normal order. That proves the corollary. 

REMARK. Since A(s) 2 log n, it follows from (2.2) that 

A(N) - A*(w) 
log n 

(3.5) 
ZZ 

From (3.2), (3.3) and (3.5) we can deduce that A and A* are nearly 
the same almost always. 

Let us look a little more closely at (2.3) which for f = A or A* 
and g = P, is a more accurate form of (3.1). We may rewrite (2.3) 
as 

(3.6) 

where 

We show in 0 5 that 

(3.8) a; = ys - k)sk-2ds 
1 

where p is defined in (1.11). We deduce from (3.8) in 56 that a; is 
a rational multiple of er for k > 1. The integral representation is 
investigated in 5 6 and this leads to pretty connections with some 
related problems. 

The next section is devoted to obtaining upper and lower bounds 
for S&r, k), i = 1, 2, 3, 4. This enables us to deduce the first four 
asymptotic relations in (2.3). It is only 8 5 that we prove (3.7) and 
(3.8). But the upper bound method in 8 4 is used in 5 5 to take care 
of the error terms arising out of (3.6) and (2.3). For the reader 
who does not want to go through the detailed proof, see [l], where 
some of the ideas of this paper and an earlier paper by the authors 
[2] are summarized. 

We now move on to the proofs of our results. 

4. Upper and lower bounds. In what follows, cl, cz, cB, a*- 
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denote absolute positive constants whose precise values will not be 
our concern. Also exp {z} = e”. We begin by proving 

THEOREM 1. There exists for each positive integer k a constant 
b, and a real number x0 = x,(k) such that if x 2 x0 the% SJx, k) > 
b,* x/(log x)A-f for i = 1, 2, 3, 4. 

To prove this we need 

LEMMA 1, Let s be a positive real number. Then 

c 1 1 
P>Z p(log p)” = s(log x)# 

+ O(expf -c,V&Gj) . 

Proof. We use the Prime Number Theorem [4], [9] in the form 

(4.1) 1 n(x) - h(x) 1 = 0(x exp { - c,VGjG}) . 

Now write 

(4.2) 

Lemma 1 follows from (4.1) and (4.2). 

Proof of Theorem 1. It suffices to prove Theorem 1 for the 
smallest of the four sums &(x, k). 

Assume first that k > 1. For x sufficiently large choose a prime 
p, in the interval 

(4.3) k! x1/k+1 5 p1 6 x’lk , 

Now choose primes pz, p,, . .., pk satisfying 

Consider any multiple m 5 x of p,p, l e. pk 

(4.5) m = n’p1p2 l 8 l pk .  

Because of (4.3) and (4.4) we have 

(4.6) P,$h ’ ’ ’ pk 5 x 
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and 

(4.7) 

By (4.7) and (4.4) 

(4.8) Pl(n’) 2 n’ < 2 uk+l r (k - l)! x”k+’ < p, * 

Thus by (4.5) and (4.8) we see that P,*(m) = pk. So any multiple 
5 x of p, ’ e . p& has p,$ as its kth largest prime factor (Pk*). So 

(4.9) &(x, k) = t: p,*(rt> 2 c PZ(n) 
2sd2 Pi(n) zs,?sss ?3=7&‘p1...p& -XT’ 

t.9,; mtisfying (4.4)) 

We can estimate the second sum in (4.9) by using the well known 
result [ll] 

(4.10) *Gk$- = log log x + c3 + O(exp { - c,y/logx}) . 

Observe that the second sum in (4.9) is 

by virtue of Lemma 1 and (4.10). Theorem 1 follows from (4.9) and 
(4.11), for k > 1. For k = 1, Theorem 1 is trivially true. 

Now for an upper bound. 

THEOREM 2. All four sums S&z, k), i = 1, 2, 3, 4 are O(x/(log x)“-I) 
where k is an 

We need a 

LEMMA 2. 

integer 2 1, and the O-constant depends only on k. 

few preliminary results before proving Theorem 2. 

Let k be a nonnegative integer and 

Sk*@) =&log log x - log log p)” . 

Then 
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Proof. If we write S:(x) as a Stieltjes integral, use the fact 
that 

ddy) = & + d{n$y) - WY)} 9 

integrate the second integral by parts and then use (4.1) we get 

(4.12) Sk*(x) = \I (log log xlo; 7 log Y)kdy + 0 (c10g”,,k+3) . 

Next 

(4.13) 
= (log log x - log log #Zi(y) / 1 

+ /( ~i(Y)(log ‘“~lo; ;” log dk-‘dy 

= @(log log X)k) + $ zi(?d(log ‘““,“1, ;” log VI>“-’ dy . 

But 

(4.14) G(y) = i&+“k&-~* 
So the integral in (4.13) becomes 

k z (log log 2 - log log Y)!+l 
s (4.15) 4 w Y + O(5 

* (log log $ - log log y)“-’ dy 
4 h3s Y > 

= I, + Is . 

We split I, into 

*/(log .9+3 

(4.16) I, = k Sk* 
4 s z/(log .)k+3 - 

Clearly in (4.16) 

(4.17) s z/(log.)k+” 
4 

=o( x(log log @-l = 0 
(log X)k+3 > ( (log~y ’ ) 

Regarding the second integral in (4.16) we observe that 

(4.18) 

s 

n 
X 

e/mg .)k+3 
(log log % - log log VY-’ dY , 

log Y 
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Now the last integral in (4.18) is 

(4.19) T!+-l(x) + O( 
x(log log)k-1 _ 

(log x)k+3 ) - Tdx) + O ((10g;)“+2) * 

From the definition of Tk we have 

(4.20) To(x) = x+0x. 
log x ( > lo& x 

Now make the induction hypothesis that for k 2_ 1 

(4.21) Trc--1(x) = (k - l)!x + 0 z(log log x) 
m- 2)” ( > (log x)k+’ l 

Then from equations (4.16) through (4.21) we deduce that 

(4.22) I1 = k!x + 0 xloglogx 
(log X)k+’ ( 1 (log Z)k+” m 

By analysis very similar to the above one can show that 

I, = 0 
( (log:)k+s - > 

So from (4.22), (4.23), (4.15) and (4.13) we see that (4.21) is true for 
Tk(x) and so by induction for all k 2 1. Lemma 2 follows from (4.12) 
and (4.21). 

LEMMA 3. Let x, g 2 4 be real numbers awi k 2 0 an integer. 
Then 

c (log log x - log log p)” _ (log log 2 - log log 7d)kfl - 
YdP$Z P lc+l 

+ O,((log log x - log log v))” exp { - c,7/log Y}) . 

Proof. As in the beginning of the proof of Lemma 2 we convert 
the above sum into a Stieltjes integral and replace &c(g) by &/log v. 
Lemma 3 can be easily proved by making the substitution log log x - 
log log u = t. We do not go through the details. 

Proof of Theorem 2. It suffices to prove Theorem 2 for the 
largest of the four sums E&(x, k). That is we will show 

(4.24) f&(X, k) = c A(m) - “‘n&-n; ’ - - pk-1(n) = o( (log;)l-l) zsasz 1 

for lc 2 1 an integer. We claim that it s&lees to prove (4.24), for 
k 3 1 because for k = 1 we have 
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(4.25) 
A(n)pyn-cn) 

1 
=x - 1 + Sl(X, 2) 
= O(x) 

assuming that (4.24) is true for k = 2. So from now on we assume 
that k > 1. 

We write 

A(n) - PI(w) - Pz(a) - l . . - P.&n) - Pk(n) 

(4.27) P,(n) PI(n) 

+ pk+l(n) + . , . 
P,(n) * 

Let us denote a general nonzero term of (4.2’7) by pJp,. We would 
like to know how often this term occurs in &(x, k). The term p,Jp, 
occurs as often as we can find integers n = pip2 - l - pk.--l l pkrn =( x 
where the p, satisfy Pi r p,-, 5 l l . 5 p, and PI(m) d pkml. If we 
fix the primes pi to satisfy these conditions then the number of such 
n is given by 

(4.28) , Pk-1) 

where ?~p is defined in (1.10). 
Thus we may rewrite (4.27) as 

We first consider a subsum of (4.29) with a restriction on p,. That 
is we choose ,B with 0 < ,6 < 1, whose vaIue will be specified later, 
and consider p, in (4.29) satisfying $6 r p1 5 x. We shall get an 
upper bound for this sum. 

Observe that the sum in (4.29) with this extra condition on p, is 

(4.30) 

(Note: If FG = 2 in (4.30) we have only 

(4.31) XC dLPl’.$ P2Z, 1 1 
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and no other terms, For k > 2, there is no confusion in (4.30).) 
Because of this difference assume for the moment that k > 2. Then 
if we use Lemma 3 we infer 

(4.32) EL = O(log log p, - log log 1)s) . 
l+@PLp2 

Again by Lemma 3 and (4.32) 

(4.33) c 1 - c L = O((log log p, - log log pJ”) * 
P4SPSBBl p, PQBP~SB1 p, 

Iterating this process we get in (4.30) for k > 2 

c 1. c (loglogz 
&PlsZ p: Pks;Pl 

- log log &)‘-‘) 

by repeated use of Lemma 3. Now observe that because of (4.31) 
we see that (4.34) is true even for Fc = 2. Thus for Ic 2 2, we may 
replace (4.30) by (4.34). Thus from now on we drop the assumption 
k > 2, but of course still assume k > 1. 

To estimate (4.34) we use Lemma 2 which gives 

(4.35) 

Finally Lemma 1 and (4.35) impIy that the sum in (4.35) and hence 
in (4.30) is 

0 
( pk-‘& xy ) 

where the constant on the O-term in (4.36) depends only on k and 
not on 6. 

So (4.36) gives a bound for the sum in (4.29) with the condition 
xp S p, 5 x. For the sum corresponding to p1 (= zfl we write 

(4.37) 

To estimate (4.37) we use the following result of de Bruijn [3]; If 
II =x: lla then 

(4.38) 4-.(x, 21) = 0(x em I- wl> . 

In (4.37) consider the case 

(4.39) xBfi*+l < p1 5 xfilk” , - 

Then in (4.29) with the restriction (4.39) on p1 we have from (4.38) 
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the following: 

We choose p = ,8(k), depending on k, so small that 

(4.41) 
a > 2” - kp > 2”~’ -. 

B P 

Then by (4.38), (4.39), and (4.41) we will have in (4.29) for the 
subsum corresponding to (4.39) 

(4.42) 

If we substitute (4.42) in (4.29) and analyze this sum just the way 
we derived (4.36) we get 

(4.42) 

But then 

(4.43) 

O( {log (xb:m ‘.‘)}“-’ exp { - ~~~“-1/4 

=o( X(2m+y/3)k-1 
(log x)“-l exp {c,2”-l/B} > * 

This means that (4.43), (4.42), and (4.36) imply that in (4.29) 

&(x, k) = O(x/(log X>k-l> 

for k > 1. That completes the proof of Theorem 2. 
It is interesting to note that Theorems 1 and 2 actually imply 

the first four asymptotic relations in Theorem B, as will be shown 
below. Before establishing this we prove the last part of Theorem 
B namely 

THEOREM 3. For each positive integer k we have 

c A(m) - A*(n) = 0 (x exp { - c,‘L/log 2 log log 2)) 
2s*sz PI(n) 

=o ( 
c Pk*(n) . 

z<fisz P,(a) > 

Proof. First let 1 s ?J 5 x and YJ = cP. N. G. de Bruijn [3] 

showed that if 3 < a < 4y”‘/log Y then 
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(4.44) $(x, y) = 0(x log2 y exp {-a log a - a log log a + ~,a}) , 

Take g = exp {-/log x log log 2). Then from (4.44) we have 

(4.45) +(x, y) = 0(x exp { - c,/log x log log x}) . 

Next observe that 

(4.46) A(N)p-@--*(n) 2 Q(n) = O(logPS) , 
1 

We now split 

(4.47) c A(n) - A”(n) = 
2snsz E(n) 22, + 2szL = F + F . Pl(n)std P1(“)>zI 

Clearly from (4.46) and (4.45) 

(4.48) J$ = O(log x*$(x, 76)) = 0(x exp { -cc,,‘l/log x log log x}) . 

But then by Theorem A, (2.2), we have 

(4.49) 2 C 5 exp {-‘L/log x log log x} C (A(n) - A*(a)) 
2srz 

= 0(x exp { - c,,tilog x log log x}) . 

The first equation in Theorem 3 folIows from (4.47), (4.48) and (4.49). 
The second equation is a consequence of Theorem 1. That proves 
Theorem 3. 

THEOREM 4. For every integer k 2 1 we have 

Sk& k) - S2(x, k) - ax, w - ax, k) * 

Proof. The smallest of the four sums is S&r, k). By Theorem 1 

(4.50) Sl(X, Ii) 2 S,(x, k) s b,x/(log xyl . 

The largest of the four sums is &(x, Ic). Consider the difference 

(4.51) 
= 25&z 

A(m) - PI(n) - . l m - P,(m) 
P,(n) 

By Theorem 2 
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(4.52) 

But then 

So by (4.53) and Theorem 3 we have 

= 0 (z exp { -c,z/log 2 log log x}) . 

Clearly from (4.51), (4.52) and (4.54) 

(4.55) s&E, k) - s&c, k) = O(z/(log 2y) . 

Thus from (4.55) and (4.50) we deduce 

(4.56) X(x, N -  S,(x, w l 

But since these are the smallest and largest sums, Theorem 4 follows 
from (4.56). 

While proving Theorem 2 we did not use Lemmas 1, 2, and 3 in 
the forms in which they were stated, but used only the upper bounds 
they implied. These lemmas will play a role in obtaining asymptotic 
estimates, which we take up in the next section. We refer to the 
method of proof of Theorem 2 (namely the choice of ,8 and the con- 
vergence of the series (4.43)), as the “upper bound method” and use 
this method to take care of the error terms arising out of the 
asymptotic estimates in what follows. 

5, Asymptotic estimates, Our goal in this section is to prove 

THEOREM 5. Let k be a positive irzteger. Then, all the four 
sums S&, k), i = 1, 2, 3, 4 are asymptotically equal to 

a:x/(log Z)k-’ 

a: = 
5 
r p(s - k)skm8ds . 

We need some lemmas before we go to the proof. 

LEMMA 4. If cx 2 1 and E > 0 then 



ASYMPTOTIC BEHAVIOR OF LARGE PRIME FACTORS 309 

Proof. It is well known (see [lo]) that p satisfies 

Furthermore (see [lo], [3]) 

Combining (5.1) and (5.2) we get 

0 5 p(a) - p(a + E) = 5,;’ f@ ; I) dt 5 lea ; UE = o( r(ae+ 1)) 

because p is monotonic decreasing. 

LEMMA 5. There exists constants c13, cl, and cl5 such that if 
a 2 1 and y = xlla, x 2 1, then 

( 
c,3xa 

3 
I 44x, x1’? - xp(a) I 2 2 max Cdf= 

exp {c,,z/log] ’ eaj4. log x > * 

Proof. Lemma 5 is obtained by combining certain results of de 
Bruijn [3]. For the function A(x, x’ia) defined by de Bruijn, it is 
known 

(5.3) 1 q-(x, xi/a) - d(x, xl/a) I < c13xa2 exp { - c,,m 

and 

(5.4) 1 d(x, x1/q - xp(a) / < c,,xa/(e”‘4.10g x) . 

Lemma 5 follows from (5.3) and (5.4). 

Proof of Theorem 5. Because of Theorem 4 it suffices to prove 
Theorem 5 for one of sums S,(x, k). We consider &(x, k). So we 
start with (4.29). (We assume k > 1 since Theorem 5 is trivially true 
for lc = 1. (See (5.1), (5.2) and Theorem 4.) 

In (4.29) we first look at the contribution due to numbers for 
which 

We will get an upper bound for the contribution due to such numbers. 
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Let 0 < p < 1 be a real number whose value will be specified later. 
Then write 

In the interval xfilzmfl 5 p, < xb/2m one has an upper bound for + given 
in (4.42), while for xB 5 p, d x we use the trivial upper bound 

Then for numbers satisfying (5.5) together with $8 5 p, B 2, we have 
the following bound in (4.29) 

Analysis similar to (4.32), (4.33) and (4.34) yields 

6% 
c ii- (log log p, - log log 2)k)‘-‘) &log p,)k+’ Pk$Pt p, 

using Lemma 1. To estimate the contribution due to integers satis- 
fying (5.5) for the case p, = z ( 8, we use the decomposition of the last 
sum of (5.6). Then the upper bound method yields 

(5.10) 

provided ,B is suitably chosen. Thus from (5.9) and (5.10) we conclude 
that the contribution due to terms satisfying (5.5) is given by (5.10), 
and is smaller than the asymptotic term we are seeking. 

Next we observe that the contribution due to terms for which 
p1 = pi(n) is small is negligible, For that purpose set 

(5.11) y = (exp {(log x>~/~}) . 

With g as in (5.11) we have by (4.38) 

(5.12) +-(x, 21) = 0(x exp I-cdlw xY31) . 

So, if p, = P,(n) 2 21, then 

c A(m) - PI(n) - ..a - P,-,(n) 
(5.13) zdnSz P,(n) 

= O(log xg(z, 21)) = 0(x exp { - c,,(log x)~/~}) . 
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Because of (5.13) and (&lo), we assume from now on that 

(5.14) (log?)bJk+l - 
I pk S p,; Pl(lz) = p, > exp {(log xY3} . 

Once we assume (5.14) we can rewrite Lemma 5 as 

(5.15) 

‘k( p,p, “. . pk t Pk-1 ) = xP ( ‘““‘;;;;;-: jpk’ ) 

4-O 
x.pN4.a 

Pl ’ ’ ’ Pk log Pk--l > 

where a = log (z/p1 0 0 l pJlog pk-1. 

The idea is to substitute (5.15) in (4.29). It is then easy to take 
care of the contribution due to the error term in (5.15) in (4.29) by 
observing that (5.14) 

(5.16) log Pk-, 2 log Pk - log Pl > $ log Pl , x 2 x, . 

This means if we substitute the O-term of (5.15) in (4.29), and use 
the upper bound method we get 

(5.17) wm% Xlkl - 

The convergence of a series like (4.43) is ensured this time by the 
e-@ term in (5.15). Since (5.17) is smaller than the asymptotic term 
we are seeking, we may forget the contribution of the O-term in 
(5.15), in the sum (4.29). 

As to the leading term of (5.15) we observe that 

(5.18) log (xh ’ ’ * pk) 

log Pk-, 

log % - xt, log p, 

log Pk--l * 

By (5.14) we have 

(5.19) log Pi = log Pl + om log PJ , 1~iIk. 

Substituting (5.19) in (5.18) we get 

(5.20) p( log EFpi:,’ “) ) = p {s - k + 0 (log ‘iJTjrg ‘l)} . 

Using Lemma 4 to estimate (5.20) we get 

(5.21) 

where a is as in (5.15). 
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Thus the factor p in the leading term of (5.15) is equal to the 
quantity in (5.21). Recall that our idea is to substitute (5.15) in 
(4.29) and estimate the sum, The contribution of the O-terms in 
(5.21) can be obtained by the upper bound method. There is a log II: 
in the numerator, but a log” p, in the denominator. This time the 
presence of r(a) in the denominator ensures convergence in a series 
like (4.43). Thus the upper bound method yields 

(5.22) 0(x log log z/(log X)k> 

as the contribution due to the O-term of (5.21). Thus we deduce 
that the main contribution from (4.29) comes by assuming (5.14) and 
replacing +(x/P~ - -. P,, P~-J by 

(5.23) 

So we replace (4.29) by 

(5.24) 

To estimate (5.24) we use Lemma 3. First we get 

(5.25) p,5gsp, k = (log log P, - log log p3) + O(exp I- W%x P3H . 

The contribution due to the O-term in (5.25) in (5.24) is taken care 
of by the upper bound method. This time the presence of p in (5.24) 
ensures convergence of a series like (4.43), because of (5.2). Actually 
every error term that arises in (5.24) by repeated use of Lemma 3 
can be estimated by the upper bound method, yielding 

(5.26) 

So we need only 
in (5.24). After 

0(x exp { - c,,tilog x}) . 

look at the leading terms arising out of Lemma 3 
k-2 applications of the lemma we are left with 

X 

(5.27) 

c P((lW xmg PJ - k) 
expl(log~Ptspt5z P; 

X c (log log Pl - lofir log Pkjk+ . 
Pi\ (1% PI) kflXPkSP1 (k - a! 

In (5.27) we use Lemma 2 to get 
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X c 
P((lw- x)/m Pl>> - w 

exp~~log 2)*/31s-Pl% P: 

x 

C (log;1)k-L + O( 

Pl(lW log PJ 

(log Pd” >I* 
As before, the O-term in (5.28) contributes 

(5.29) 0(x log log x/(log z)k> 

by use of the upper bound method. Finally the leading term in 
(5.28) is estimated by writing it as a Stieltjes integral, That is 

X c P(UW xmg Pl) - k) 
expl(logz)~~3l$P1s% P,(lW PP 

zf epx((log z) ,3 _ .PNlW xmg 24 - NW& 
2 : ?dlw 2/Y-’ 

(5.30) 
s 

2: 
=x e9p( (lo 21)‘ ,3~ P((lW x)lOw II) - k) (-jy 

c 2 zluw 7dY Z+ +x s P((lW Mlw ?I) - k) exp, (log z) 2 ,3~- 
vex 2/Y-’ 

x 4eY) - Zi(rj/)} = I3 + I, . 
We can bound I, rather easily. First observe that 1 p 1 5 1. Ignoring 
o, we integrate by parts, and use (4.1) to deduce 

(5.31) I4 = O((x exp {-&log x)lf3}) . 

To estimate & write g = xl/‘. Then 

s 

(log Z) ‘/3 

13 = 
(lo&& 1 

p(s - k)&“ds 

(5.32) = (log$’ K - Lg.,1 31 

= a; (logs)“-’ + O( (lo[x)n > 

because of (5.2). So Theorem 5 follows from (5.32) and the preceding 
estimates. 

REMARKS. Note that we have actually shown that 

(5.33) &(x, k) = a; 
(log& 

+ 0 xloglogx 
( > (log x)” - 

Observe that S(z, k) is the largest of the four sums and S,(x, k) is 
the smallest. Therefore, because of (4.55), we deduce a stronger 
form of Theorem 5, namely 
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(5.34) E&(x, k) = a: x 
(log X)k-l 

+ 0 xloglogX 
( (log 2y > 

for i = 1, 2, 3, 4. 
Thus we have proved all the statements of Theorem B, except 

the relation between ub and e7. We do this in the next section. 

6. The constants a:+ It is obvious from Theorem 4 or (5.1) 
and (5.2) that a: = 1. So we suppose k 2 2. For k 2 2 write 

(6.2) a: = 
s 
y-p& - k)s”-‘ds = 

s 
Ip p(s - k)sk-2ds = 1; p(t>(t + k)k-2dt 

where 

In a recent paper, Knuth and Pardo [8], have studied the behavior of 

In the course of their investigations they show 

(6.5) fj = ergi 

where r is Euler’s constant and the gj are. recursively defined by 

(6.6) go = g1 = 1 , gj=-lc J‘ 

j 1SiSj 
0 

gj-i fr J’ZO. 
i 

Combining (6.2), (6.5), and (6.6) we infer that ah is a rational 
multiple of er for k 2 2. For instance 

ai = f, = erg, = e’ . 

That completes the proof of Theorem B. 
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