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It is shown that odd integers k such that k * 2” $ 1 is prime for some positive 
integer n have a positive lower density. More generally, for any primes p1 ,..., pI , 
the integers k such that k is relatively prime to each of p1 ,...,pr, and such 
that k * prlp:a *.*p:’ + 1 is prime for some n, ,..., II*, also have a positive lower 
density. 

1. INTRODUCTION 

The purpose of this note is to prove the following result, which answers 
a question raised by P. T. Bateman. 

THEOREM 1. There exists a positive, eflectively computable constant cl 
such that if N(x) is the number of odd positive integers k <x such that 
k * 2” + 1 is prime for some positive integer n, then 

N(x) 3 ClX for x31. 

On the other hand, Sierpiriski [9] {see also [IO, p. 414; 11, pp. 10, 641) 
has shown that there exist infinitely many odd k such that k - 2” + 1 is not 
prime for any n. His proof used covering congruences [3 1; that is, he showed 
that there is a finite set of primes q1 ,..., q9 such that if k belongs to a particular 
arithmetic progression modulo 29, **a qS , then for every n, k - 2% + 1 is 
divisible by at least one of q1 ,..-, qS . In particular, this also shows that for a 
positive constant c, , 

N(x) d (4 - c& 

1 Dedicated to the Memory of Paul Turin. 
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if x is large enough. It seems natural to conjecture that 

N(x) - c,x as x --+ co. (1) 

but we cannot prove this. We also do not see any way to ascertain whether 
all those odd k which are not representable as (p - 1) u 2-a actually fail to be 
of this form because of a covering congruence. 

The smallest odd k such that k * 2” -I- 1 is composite for all n is not known 
at present. However, it is known [6, 7, 81, that for all odd k < 381, there is 
an n such that k .2” + 1 is prime, while 383 .2” + 1 is composite for all 
n < 2313. The smallest k for which k * 2” + I is known to be composite for 
all n seems to be k = 78557 [El]; here k * 2” + 1 is always divisible by 3, 5, 
7, 13, 19, 37 or 73. 

In some cases the smallest n for which k * 2” + 1 is prime is quite large. 
For example, 47 .2” + 1 is prime for n = 583 but composite for all n < 582 
[7]. The proof of our result shows that odd integers k < x for which some 
k * 2fi + 1 < xlfr is prime are a positive proportion (depending on E) of 
all k < x, no matter how small an E > 0 we take. 

Theorem 1 is a special case of the following more general result. 

THEOREM 2. Let p1 ,...,p7 be any primes. Then there exist positive, 
efictively computable constants c4 = c4(p1 ,..., pr) and c5 = c6(p1 ,..., pr) 
such that if N(p, ,..., p+ ; x) is the number of positive integers k < x such that 
(k, pp1p2p .*.p,) = 1 and k * npyf -/- 1 is prime for some n, ,..., n, , then 

N(P 1 ,'..I ~7 ; 4 b c4x for x > c5 . 

Just as was the case with Theorem 1, we conjecture that N(p, ,...,p,. ; x) 
is asymptotic to a constant times x. If r 2 2, however, the situation could 
conceivably be quite different from that of Theorem 1 in that ail integers k 
which are relatively prime to p1 “.pr with p1 = 2 could conceivably be 
representable as k = (p - 1)p;“l *.*p;“l. The simplest case of this question 
is r = 2, p1 = 2, pz = 3. In this case all integers k < 50,000 for which 
(k, 6) = 1 have the property that k * 2” -3” + 1 is prime for some nonnegative 
integers a, b with a 4 b < 9. 

Before embarking on the proof of Theorem 2, let us note that the same 
method can be used for investigating k such that k b np:’ - 1 is prime, as 
well as many similar sequences. 

2. PROOF OF THEOREM 2 

The proof of our main result relies on the modern zero-density theorem 
used in proving Linnik’s estimate for the least prime in an arithmetic progres- 
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sion and on the upper bound sieve. First we introduce some notation. The 
constants c4, c6 ,..., as well as those implied by the < and O-notation will 
denote effectively computable constants which depend only on p1 ,..., pr . 
We will use a = (a, ,..., a,) to denote r-tuples of nonnegative integers, and 
we will write 

We will write 1 = (I,..., I), so that a -I- I = (al + I,..., a, + 1). As usual, 
n(x; m, b) denotes the number of primes p < x such that p = b(mod m). 

We now state our first auxiliary result, which will be proved in the last 
section. 

LEMMA 1, There existpositive constants c 6 and c, such that f(b, p1 *. - p,) = 
1, then 

.rr(x; P(a), b) > c6x 
P(a) log x 

for x 2 P(a)“‘. 

We now choose an integer N = N(x) such that 

We then have N - c8 log x as x + co. We define 

44 = Ka1 ,**., a,):o~izj <N, for 1 <j < t-1. 

For 6% p1 .*.pr) = 1, we let R(k, x) denote the number of primes q such that 
q = k * P(a) + 1 for some a E A(x). Note that such a prime q necessarily 
satisfies q < x1+1/c7 . If C’ denotes summation over only those k for which 
(k, p1 .*-p,) = 1, then we obtain 

But by Lemma 1 and the choice of N, the right side above is (for x large 
enough) 

&3!5 c’ 1 2 c,,x(log x)T--1. 
‘og x aPA 

Thus R(k, x) is large on the average. We wish to show that it is non-zero 
often. 

If M(x) is the number of k < x such that (k, p1 m.1 pr) = 1, and R(k, x) > 0, 
then by the Cauchy-Schwarz inequality 

(3) 
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We now apply our next auxiliary result, which will also be proved in the 
next section. 

LEMMA 2. There exists a constant cl1 such that 

g; RZ(k, x) < c,,x(log x)2,-2. 
\ 

To conclude the proof of our theorem we now need only combine (2), 
(3), and Lemma 2. 

3. PROOFS OF THE AUXILIARY RESULTS 

Proof of Lemma 1. This result follows from recent proofs of Linnik’s 
theorem about the least prime in an arithmetic progression, such as that in 
[l, Section 61. The main result we need is that the exceptional zero & of 
[l, Section 61 does not occur for any modulus of the form P(a). If the excep- 
tional zero fll exists, it comes from a Dirichlet &-function L(s, x) with a real 
character x. But the nontrivial zeros of L(s, x) are the same as those of 
L(s, x*), where x* is the primitive character that induces x. However, there 
are only a finite number of primitive real characters modulo the P(a), since 
p1 ,..., pr are fixed [2, Section 51. Hence if we take the constant c1 in [l, p. 391 
to be small enough, the exceptional zero & , even if it exists, will not come 
from any character modulo P(a) for any a, and the proof of our lemma 
will follow from the arguments used in [l, Section 61. 

Proof of Lemma 2. For k relatively prime to p1 -a- pp’ , let 

4% a) = I 1 k - P(a) + 1 = prime, 
o otherwise. 

Then 

and 

W, 4 = c r(k, a), 
aoA(r) 

RW, 4 < c r(k, a> + 2 dk, a) r(k, b). (4) 
8E‘4W, a.bcA(x) 

n#b 

Let a, b E A(x), a # b. Then by the upper bound sieve method [4, Theorem 
5.71, [5, Theorem 4.21, 

zi r(k 4 4% b) 
. 

< #in: 1 < n < x, P(a) n + 1 and P(b) n + 1 both prime} 
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where q is restricted to primes different from p1 ,..., p,. . Hence 

c rI (1 +i) 
n.bEAW nl(PCa-P(b)) 

a#b 

= ii&c* A .,,;,,, l9 
m 

afb 

(5) 

m[U’W-P(b)) 

where C* means that we are summing over those m that are relatively prime 
to Pl ***p,. and are square-free. We wish to show that 

c* ; * ,Z(,) 1 < N2’. (6) 
m 

e#b 
nzl(P(a)--P(b)) 

Certainly if LV = 1, the inner sum is < (N + l)z+’ < NZr. Consider m 2 2. 
Let Q(m) denote the largest prime divisor of m, and let e(Q(m)) denote the 
multiplicative order ofp, modulo Q(m). If m 1 (P(a) - P{b)), then certainly 
P(a) = P(b) (mod Q(m)). We wish to show that P(a) = P(b) (mod q) does not 
occur very often for a prime q. Now if a2, a3 ,..., a, and bl , bz ,..., b, are 
fixed, then P(a) = P(b) (mod q) holds only for one in every e(q) values of a, . 
Hence for ti > 1, 

c ’ d cN + ‘)- 
a,bcA(r) 

afb 
P(a) =-P(b)(modm) 

Therefore the quantity on the left side of (5) is 

We now need to prove that the sum on the right side above is <l. But 

Evidently we need to show that e(q) is not small too often. But if e(q,) = a-- = 
e(qt) = n, then 2t < q1 a-+ qt <p, n - 1, and so t < n. Therefore there are 
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at most clzn values of q with e(q) = n. Hence the last sum above is bounded 
above by a similar sum in which the first c,, primes q have e(q) = 1, the next 
2c,, primes have e(q) = 2, and so on. Therefore 

which proves (6). 
To complete the proof of the lemma it thus remains only to show that the 

first sum on the right’side of (4) does not contribute much. But by the upper 
bound sieve, 

(7) 

If we now combine (4)-(7), we obtain 

< x(log xy*-*. Q.E.D. 

Remark. The last part of the proof of Lemma 2 can also be handled by 
using Romanoff’s result [5] that 

m) 1 
m=l ml(m) < 03’ c- 

where l(m) denotes the multiplicative order of b modulo m, and we sum over 
m with (m, b) = 1. Our proof of the lemma yields, in fact, still another proof 
of Romanoff’s result. 
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