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Abstract

In this paper it is proved that (G, K,, ,) is Ramsey-infinite for any non-trivial two-connected
graph G and any star with k_ 2 edges . Also it is shown that (H, Kl ,,) is Ramsey-infinite if H is
a bridgeless connected graph.

Introduction

Let F, G and H be graphs (without loops or multiple edges) . We write F-(G, H)
if whenever each edge of F is colored either red or blue, then either the red subgraph
of F, denoted (F)R , contains a copy of G or the blue subgraph of F, denoted (F),,
contains a copy ofH. The graph F is (G, H)-minimal if F-(G, H) but F'±(G, H)
for any proper subgraphs F' of F . In particular if F, G and H have no isolated verti-
ces, F' can be replaced by F-e for any edge e of F. The class of all (G, H)-minimal
graphs will be denoted by R(G, H). The pair (G, H) will be called Rainsey-finite or
Ramsey-infinite depending upon whether R(G, H) is finite or infinite .

In [4] it was shown that if M is a disjoint union of edges (a matching), then
°, (M, H) is finite for any graph H. It was also conjectured that if G is any graph
such that !?(G, H) is finite for each graph H, then G must be a matching . There is
considerable support for this conjecture. NE§ETkIL and RöDL proved in [7] that if G
and H are both 3-connected, then W (G, H) is infinite . Also the results in [2], [3] and
[8] imply that the conjecture is true for graphs which are forests . In this paper we will
add to this evidence . We will show that . (K,,,,, H) is infinite if k-2 (K,, k is a star
with k edges) and H is a 2-connected graph . We will also show that ,R(Kr , 2 , H)
is infinite if H is any connected graph none of whose blocks are edges .

Notation

Before proving the main two results, some additional notation and terminology
will be introduced. Notation not specifically mentioned will generally follow that
of [1] and [7] . For a graph G, V(G) and E(G) will denote the vertex set and edge set
respectively, and H-G will denote that H is a subgraph of G. The degree of a vertex
v of G will be written dG (v) .

The word "coloring" will always refer to coloring each edge of some graph red
or blue. A coloring of a graph F with neither a red G or a blue H will be called a
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(G, H)-good coloring, or if G and H are obvious, simply a good coloring. A useful
concept introduced in [5] was a (G, H, y)-determiner, which is a graph that has a
(G, H)-good coloring but under all such good colorings the edge y must be colored
red. Normally one might call such a graph a "red" determiner, but since we will
only work with red determiners the word red will be dropped . In a (G, H, y)-deter-
miner, the edge y will be referred to as the determined edge .

Let {G,: aEA} be a non-empty finite family of graphs . Sometimes in a coloring
instead of requiring a red G it is only necessary to have one red Ga from some family,
that is the "or" of the family {G,,: aEA}. Thus we write F--( V Ga , H) if when F

aEA

is colored there is either a red Ga for some a in A or a blue H. Likewise the "and"
( A Ga) and the "disjoint union" ( U Ga) can be considered . These would require a
aEA

	

aEA

red Ga for each a in A and vertex disjoint red Ga for each a in A respectively. Concepts
such as minimal, Ramsey-finite, good coloring and determiner are defined in the same
way if G is replaced by the "or", "and" or "union" of a family of graphs . One can
also generalize H in the same fashion .

In many of the constructions in this paper a graph F will be enlarged to a graph
L by "attaching" a graph G onto F at vertex v and identifying the vertex v of F with
the vertex u of G. Anytime this "attaching" is done it will be asssumed in L that T -
and G are disjoint except for the identified vertices. Also if copies of G are "attached"
to several or all vertices of F it will be assumed that these distinct copies are pair-
wise disjoint .

For any real number x, [x] will denote the greatest integer less than or equal to
x and {x} will denote the least integer greater than or equal to x .

Star with 2-connected graph

We first state the main result of this section .

THEOREM 1 . Let {G a : aEA} be a non-empty finite family of 2-connected graphs .
If k--2, then M( V G a , K,, k) is infinite .

aEA

Theorem I as stated will be needed to prove the main result of the next section .
As far as this section is concerned the special case in which A has precisely one ele-
ment is of interest .

COROLLARY 2 . If G is a 2-connected graph and k~2, then the pair (G, K1, k)
is Ramsey-infinite .

The main idea used in the proof of Theorem I is that of a determiner . Its power
is illustrated in the following theorem, which is a generalization of a result in [3] .
It is clear from the proof of the result that it can be stated in this more general form .

THEOREM 3 . Let {Ga : aEA} be a non-empty finite family of 2-connected graphs
and let T be a tree with at least 3 vertices . If there is a ( V Ga . T, y)-determiner with y

a free edge, then ( V Ga , T) is Ramsey-infinite.
aFA
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PROOF of Theorem 1 . To shorten the notation, V Ga will be denoted by W, and
aEA

since we will only be interested in the degree of vertices in the blue graph, d(F),,
will be written dF throughout this proof. In view of Theorem 3 it is sufficient to show
that there is an appropriate (W, K,, k , y)-determiner . Clearly, if a graph F can be
good colored but in any such good coloring a fixed vertex v has d,(v)=k-1, then
a 00(, k , y)-determiner is formed by attaching an edge y to v . We will assume that
this does not occur and show that this leads to a contradiction .

Let F be a graph in I(W, K,, k ) and e=ab an edge of F with endvertices a
and b . Consider the graph F'=F-e. The minimality of F implies that F' can be
good colored . Also either d, (a) or dF,(b)=k-1 since F has no good coloring . If
dF,(a)=k-1 (or equivalently dF,(b)=k-1) for each good coloring of F' then this
gives a contradiction . We thus have d,,(a)<k-1 for some good colorings of F'
and dF , (b) < k -1 for others. For all good colorings of F', let s be the minimum of
(IF, (a)+dF,(b)-(k-1) . With no loss of generality we can assume that there is a good
coloring of F' with dF , (a) =s and dF, (b)=k- l . Let F, (i- 1) be a countably
infinite family of disjoint copies of F' with corresponding vertices ai and b i .

The remainder of the proof will be broken into three cases depending upon s .
Also the third case will be split into two subcases .

Case t . s=0 .
Select an integer n strictly greater than the number of vertices in any Ga , aEA .

Construct a graph L from the graphs {Fi : 1--i n) by identifying a,+, and bi
(l-i-n-1) and finally by identifying a, and b,, . The graph L can be good colored
since there is a good coloring of F' with dF,(a)=0 and dF,(b)=k-1 . There is no
Gam (L)R for any aEA since each G a is 2-connected and n is large . Also in any good
coloring of L, dL(ai)=k-1 since dF,(a)+dF,(b)?k-1 in any good coloring of F' .
This gives a contradiction so we can assume s>0 .

Case IL 0<s-<k/2.
Let t=[(k-1)/s] . Let L be the graph formed by attaching each Fi to Fi by

identifying ai with a, for 2 : i = t . There is a good coloring of L since each Fi can be
good colored with dF.(a i)=s. Since t--2, dF;(a i)<k-1 for each i in any good
coloring of L . Thus dF;(bi)=k-1 in any good coloring of L, again a contradiction .

Case 111 . s=k/2.
Let L be the graph formed by attaching F, to F, by identifying a, and a, Since

s k/2, L- (W, K,, k ) . Let L' be a subgraph of L such that L' E M (W, K,, k) . Set
F=L, nFi (i=1, 2) ; then each of Fl and F', contains at least one edge . In any good
colorings of Fl and F2, dF~ ( aJ + dF2(a,)--k since there is no good coloring of L' .
The good colorings of F,' and F2 are independent of each other . Therefore we can
assume with no loss of generality that drJa 2) ;k/2 in any good coloring of F,' .

Let L" be the graph L'-a,c, where c is a vertex of Fí, and let F,=Fí-a,c .
Thus L" can be good colored and hence there is a good coloring of F, with drl(a,)<
<k/2. Let s, be the minimum of dF~(a,) over all good colorings of F," . There is a
good coloring of r with dF-•(a,)<k-l, for otherwise there would be a determiner .
This implies that F2 has a good coloring with dFJa z)-k-1-s, . Therefore in any
good coloring of 1,i, dF;(c)=k-1 when dr,(a,)=s,, the minimum .
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Consider all graphs H' which can be good colored and have non-adjacent verti-
ces u and v such that in any good coloring in which dH, (v) is a minimum, dH , (u)=k-1 .
The graph Fl with vertices a, and c is an example of such a graph . If r is the minimum
of d,,, (v) over all possible colorings of all possible such graphs, let H with vertices u
and v be a graph in which this minimum r is attained . Clearly 0-r-s1 <k/2 .

Let {H, : i-l } be disjoint copies of H with corresponding vertices ui and vi .
Using the graphs (H i : i _ 1 } we will show that there is a determiner, which will give
a contradiction . The remaining argument will be broken into two cases depending
on r .

Subcase i . r>0 .
We will show that the case does not occur . Let t= {k/r} and let N be the graph

constructed by attaching H i to H, by identifying v i and v i for each 2-i-t. Since
rt-k, N-r(5, Kl ,,z) . In the same way that F, with vertices c and a, was obtained
from L, we get from N a graph H' with vertices iv and v, . The graph H, is a sub-
graph of H, and has the same properties as F' . In this case there is a good coloring
of H,' with dHJv,)-k/t. Since k/t-r, this contradicts the minimality of r . We
can thus assume r=0 .

Subcase ü. r=0.
Construct a graph LL from the graphs {H; : l-i-n} by identifying u; á_ 1 and v,

for I =i-n-1, and then identifying it, and v,, . Recall that n is strictly greater than
the order of any G,,, for aEA . This graph has a good coloring since H can be good
colored with d,(u)+d,(v)-k-1 . If dt,(u)+d,(v)=k-1 for every good coloring
of H then for every good coloring of L, dL(u;)=k-1 for each i . Therefore we can
assume that there is a good coloring of H with dH(u)+dH(v)~k-l . Let r' be the
minimum of d,(v) over all colorings in which d,(u)+d„(v)-<k-1 . By the defini-
tion of H, r' ~--l .

Let G be a copy of a graph in {G. : aEA} with a minimum number of vertices .
Construct a graph L.' from the graphs {Hi : 1-i-n} by identifying u ; + , and v,
for I =i-n-1 . To each vertex g of G except for a fixed vertex g o attach a copy
La of L' by identifying the copy of u, in L,' with g. Finally identify all of the copies of
v„ in each Lg and call this vertex x . Denote this graph by L. Let t'=[(k-1)lr'l .
Consider t' copies L,, L2, . . ., L t , of L with corresponding graphs G, and vertices
x,, (1-i-t') . Construct a graph by identifying all of the vertices x, from each
L, (1-i-t) . Denote this vertex by y . Attach H (actually a copy of H) to this graph
by identifying y and v and call this graph N .

We will show that N has a good coloring and in any such good coloring
(IN (u)=k-1 . Consider the graph L and select a vertex g, in G which is adjacent to
go. Color the edge g og, blue and the remaining edges of G red . For each g5- go , gl,
good color each copy of H in Lg such that d,, (u)=k-i and dH(v)=0 . Good color
each copy of H in L', such that d,(v)=r' . This is a good coloring of L with
dL(x)=r' . If each copy Li of L in N is colored as just described and His good colored
such that dH(v)=0 and d,(u)=k-1, then this gives a good coloring of N.

In any good coloring of N each copy of G will have a blue edge . Let g be a vertex
of G incident to this blue edge. "Thus the good coloring induced on Lg must have
díg(v„)=dig(y)--r' . This implies d,(y)-t'r'+d,,(v) . Hence d" (v)=0 and
dH(u)=k-1 . This contradiction completes the proof .
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The following theorem was proved in [3] and applies to the results proved in this
section .

THEOREM 4 . Let (G a : uEA} and (HQ : PEB) be a non-empty finite family of
connected graphs. If (Ga , If,,) is Ramsey-infinite for each a and f3, then

gW(a/\ Ga ,
P
/\ H~) is infinite and

R((J Ga , U HQ) is infinite .
a(A

	

aCB

Let be a collection of 2-connected graphs and a collection of non-trivial
stars. Consider any expression E, (or Ez ) using graphs from « (or .,Y) and V, A and
U . Then Theorems 1 and 4 imply that the pair (E,, E,) is Ramsey-in finite .

THEOREM 5. Let G be a graph all of whose components are 2-connected and let H
be a star forest without isolated edges . Then (G, H) is Ramsey-infinite .

K,, 2 -connected graph

The main result to be proved in this section is the following :

THEOREM 6 . If G is 6 connected graph all of whose blocks are not edges, then
%l (G, K, . 2) is infinite .

Before we give the proof some additional notation and results must be introduced .
The Ramsey number r(G, K,, 2 ) for any arbitrary G will be used frequently in the
proof. This was calculated in [6] . In the following, /3,(G) will denote the edge inde-
pendence number of G .

THEOREM 7 . For any graph G with no isolated vertices,

r G K

	

_
f

IV(G)I

	

if G has a perfect matching,
(

	

1 ' 2)

	

2IV(G)I-2f,(G)-1 otherwise .

The location as well as the existence of monochromatic graphs in two-colored
graphs will be important . This is the motivation for the following concept. Assume
that I,'-(G, K,, 2 ) ; assume in addition that for any coloring of F in which there is
no blue K,,,, it is true that for every vE V (G) and wE V(F) there is a red copy of G
with rv corresponding to v . If this is true for every v in G we will write F-» (G, K,, 2 ) .
It is easily seen that if F-lief, where M is a perfect matching of F, is vertex-symmetric,
then h->(G, K,, 2 ) implies F---(G, K,, 2). For example if n is even, then K„--
--(G, K,, 2) implies K„---(G, K,, 2) . Also if min and K,,,---(G, K,, 2), then K„-•--
->-(G, K,, 2 ) . If r(G, K,,2)>IV(G)I then Theorem 7 implies that for any fixed maxi-
mal matching of G there are at least 2 vertices not on the matching . If K, (c . K 1, z)
is colored such that there is no blue K,, 2 then there are red copies ofG with any vertex
not on a maximal matching of G appearing at any vertex of the complete graph . The
following useful result is a consequence of the above observations .

LEMMA 8 . If K„--(G, K,, 2) then K„_,,---(G, K,, 2 ) . If K„-(G, K,, 2 ) and
n>JV(G)j then (K„,,-e)-w(G,K,,2) .

Stucdia Scienüarztan rvlathematicaz-um Hungarica 15 (1980)
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If H is a subgraph of a graph G then by G-H we will mean in what follows the
graph obtained from G by deleting the edges of H and then deleting any isolated
vertices .

The proof of Theorem 6 will be preceded by several lemmas .
One construction appears so frequently throughout the proofs of the lemmas

that we describe it now and merely refer to it later in the proofs . Let G be a connected
graph with no blocks which are edges and {H,, H2 , . . ., Hi } be a subset of the blocks

i
of G . By Theorem 1,

	

Hi , K,, ,) is infinite. Let {F, : i --1 } be an infinite family

in R(V Hi , K,, 2 ) and let D be a fixed graph with a specified vertex v . For each
-L

i-1 attach to each vertex u of F, a copy of D by identifying u and v . Denote this
graph by Fí . In many cases one can show, for an appropriate choice of D, that
Fi --(G, K,,2) and moreover, that if Fi'--Fi and F,°--(G, K,, 2) then F,-F,•"
for all i-1 . In particular one can usually show that F,'-e-i-(G, K,, 2) for any
edge e of Fi . The usual conditions on D are that D-C for any component C of
G-H; for i-j--1 and that there is a (G, K,, 2)-good coloring of D such that no blue
edge is incident to the specified vertex v . This would imply that (G, K,, 2) is Ramsey-

i
infinite . If this is true we will say that M (G, K,, 2 ) is infinite by a (V Hi , D)-construc-

tion .
Throughout the remainder of this section G will denote a connected graph with

blocks B,, B 2i . . ., B,, such that each Bi has at least 3 vertices .
As mentioned above, the graph D attached at each vertex of a graph F i generally

satisfies D-aC for any component C of G-B; (1 ~j--l) . There is one special case
where the attached graph does not "double arrow" . This special case is covered by
the conditions given in Lemma 9 (ü) .

LEMMA 9 . (i) If' r(G-Bi , K,,2)-r(G, K,, 2)-2 for each endblock B i of G, then
(G, K,,,) is Ramsey-infinite .

(ü) Let r(G, K,,,)=V(G)j . For any component C of G-B, (1-j_1) let
u=u(B;, C) be the vertex common to both C and G-B j . If each good coloring of
Kr(G, K,, z) _, has a copy of C with vertex u at any of its vertices, then (G, K,, 2) is
Ramsey-infinite .

PROOF . Let t=r(G, K,, 2) . IfC is any component of G-Bj for an arbitrary block
B,, then C is a subgraph of G-Bi for some endblock B i . Therefore r(C, K,, 2)-- t-2
if r(G-B,,K,,2)-_t-2 for each endblock B i .

If t=jV(G)j let D=K,_, and v be any vertex of D. If t>JV(G)j then let
D=K,_,-e for some edge e and let v be an endvertex of e . If (i) is satisfied then
Lemma 8 implies D-a (C, K,, 2) for any component C of G-Bj for any j. The
corresponding hypothesis is built into (ü) . Also, there clearly is a (G, K,, 2)-good
coloring of D with no blue edge incident to v . Therefore in both cases (G, K,,2) is

i
Ramsey-infinite by a (V Bi , D)-construction .

r=t

Failure of the conditions of Lemma 9 to hold places severe restrictions on the
structure of G as the following lemma indicates .
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LEMMA 10. Assume the conditions of Lemma 9 are not satisfied .
(i) If r(G, K1,2) is odd then G has a block B such that B_-K, with

s-IV(G)I-IV(B)j .
(ü) If' r(G, K1 , 2) is even then G has a block B such that B_-K, with

s~! JV(G)j-IV(B)I .

PROOF of (i) . Let B, bean endblock of G such that r (G-B,, K,, 2)-r(G, K,,,) - l .
Let b be the number of vertices in B, not in G-B1 . Theorem 7 implies

2(V(G)I -b)-2/f1(G-B1)-1- 2lV(G)1-2p,(G)-1-1 .

This can only occur if fl,(G)-fl 1 (G-Br)+b . Clearly /i,(G)-/i,(G-B,)+b,
so we have equality .

Let M be a maximal matching in G and M' be the matching of G-B, induced
by M. Results in the previous paragraph imply that M' is a maximal matching in
G-B, and that there are b edges in M with one endvertex in B, and the other end-
vertex in G-B, . Since M is not a perfect matching for G, there is a vertex u of
G-B, which is not incident to M, hence not incident to M' . Let R be the vertices of
G-B, which are not on any edge of M'. Thus R includes those b vertices of G-B,
which were matched via M with vertices of B, together with the vertex u . Hence
IRI-b+1-3 . The maximality of M' implies that the vertices of R form a complete
graph in G-B, . Let B be the block of G containing R .

All of the edges of M' must have one endvertex in V(B) . Assume that this is not
true. Then there is an edge xy in M' with x, y j V (B) . The edge xy can be replaced
by two edges r jx and r,y for appropriate r, and r 2 in R, yielding a matching of G-B,
larger than M', a contradiction . Also, any vertex y not in B is incident to some edge
of M', for otherwise M' can be enlarged by adding the edge yr for an appropriate
rE R .

Let R' be the vertices of B which are incident to some edge of M' with one end-
vertex not in B . Thus IR'l is the same as the number of vertices of G-B, not in B .
Hence s= jR U R'j> jV(G) j - (V (B) j . Any two vertices of R' can be interchanged
with an appropriate pair of vertices of R, still leaving a matching of G-B, the same
size as M' . Therefore, since the vertices of R form a complete graph, the vertices of
R U R' also form a complete graph in B . This completes the proof of (i) .

PROOF of (ü) . Let 2t=r(G, K,,,)= V(G) j . For any i, any component C of G-B,
has at most 2t-2 vertices and hence r(C, K,,2)-2t-1 . We first consider the case
where Lemma 9 (ü) fails to hold for some endblock, which we will denote by B, .
Therefore r(G-B,, K,,2)=2t-1 ; and there is a gocd coloring of K2t_ 1 which does
not have a red copy of G-B, appropriately placed on a vertex v cf K2,-I . Let u be
the vertex of G-B, which is also in B, . If M is a fixed maximal matching in G-B,
and w is a vertex not on M, then r(G-B1 ,K, 2)>jV(G-B,)j . Moreover the dis-
cussion preceding Lemma 8 implies that any good coloring of K2t _ 1 will contain a
red copy of G-B, with the vertex w at any given vertex of the K2t_, . Therefore, in
this case any maximal matching of G -B, must contain u . In addition the good color-
ing of K 2t _, which does not contain an appropriate red G-B, is the one with a maxi-
mal blue matching avoiding the specified vertex v .

Studia Scientiarum Mathematicarum Hungarica 15 (1950)
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Let B, b, R and R' be defined just as in (i) of this lemma. In this case IRU (u}l-3
where in (i) we knew that IRS-3. Using the fact that u must be in every maximal
matching of G-B, as well as the fact that M' is a maximal matching of G-B,,
one can mimic the proof of (i) of this lemma to obtain that IR1-b,s=IRUR'I,-

IV (Q -1 V (B),, and that the vertices of R U R' form a complete subgraph K,
of the block B.

The case where the conditions of Lemma 9 (ü) fail for some block B; which is
not an endblock is similar . In this case the proof parallels exactly the argument given
for the endblock B„ except that instead of working with G-B, and B, one must
work with C and G -C where C is a component of G -B; for which the conditions
of Lemma 9 (ü) fail to hold . This completes the proof of Lemma 10 .

A special graph with two blocks occurs which has to be dealt with differently .
This graph is obtained by attaching a K„ onto a K„ by identifying a vertex from each
graph. This gives a graph with 2n - l vertices which we will denote by K„ • K" .

LEMMA 11 . For s-3, the pair (K, •K,,K.,,2) is Rarnsey-infinite .
PROOF . Consider the graph F=K2s_,-e for some edge e . Note that

F+- (K, • K„ K,,,) since F can be colored with no blue K,,, such that every vertex
has red degree at most 2s-3 . In fact, this is the only good coloring of F . If v is a ver-
tex of F not incident to e, then there must be a blue edge incident to v in any good
coloring of F. Also, in any good coloring of F there is a red K, containing the vertex u .

Let u, and v, be two vertices of a copy of K, . For each vertex w of K, other than
u, and v, attach a copy of F by identifying w and v . This graph can be good colored
but in any such coloring the edge u,v, must be colored blue. Therefore if we attach
an edge y, to v, we have a (K, -,k,, K,, 2 , y,)-determiner . Let D, be a subgraph of this
graph which is a minimal (tC, • K„ K,, 2 , y,)-determiner. Also note that there is a
good coloring of D, such that there is no red K, containing v, .

Consider a copy of K, .,k, and select an edge f which is not incident to the cut-
vertex of K, • K, . Let v2 be an endvertex off. To each vertex w of K, • K, not incident
to f attach a copy of D,-y, by identifying v, and w . This graph can be good colored
but in any such coloring the edge f must be colored blue. Thus if we attach an edge
y2 onto v 2 we have a (K, • K„ K,, 2 , y 2)-determiner . Let D 2 be a subgraph which is a
minimal (K, • K„ K,, 2 , y2)-determiner . Clearly D2 has more edges than D, since at
least one copy of D, -y, must remain intact in D 2 . Repetition of this gives an infinite
sequence (D i : i-1} of (K,-K,, K,, 2 , y)-determiners which are minimal .

If one attaches a copy of D,-y i to each vertex u of a K, • K, by identifying a and
v„ one obtains a graph Fi such that Fi -(K,. -,k, . K,,,) . Also, there is a subgraph
Fi' of Fi such that Fi(I(K, •Ks,K,,2) and F, has at least as many vertices as D i .
Thus . (K, • K„ K, . 2) is infinite .

PROOF of Theorem 6. If G is 2-connected then Theorem I implies that (G, Kt .2 )
is Ramsey-infinite . Thus G has at least two blocks . By Lemma 9 and 10 we can assume
that G has a block B_K, with s, JV(G)J-JV(B)1 if r(G, K,. 2 ) is odd and s-

1V(G)~-iV(B) ; if r(G,K,, 2) is even . Let r=r(B,K,,2) . Hence r--2s-1 . If
r>JV(B)i, let D=K	for some edge e of Kr _, and let v be a vertex of K,_,
incident to e . If r= ~V(B)! let D=K,_, and r be any vertex of K,_, . If r(C, Ká, 2 )
:E~r-2 for every component C of G-B, then just as before, (G, K,, 2) is infinite by
a (B, D)-construction . We can thus assume that there is a component C of G-B such
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that r(C,Ki,2)--r-1~2s-2 . Since JV(G)i-JV(B)J-s in both cases, G-B has
precisely one such component C, which must be a block . In our previous notation
C=B, and G has precisely two blocks B and Bl .

First consider the case when r(G, K,, 2 ) is odd . In this case Bl has at most s
vertices. Hence Bl is isomorphic to K, and r(B I , KI , 2)=2s-1 . Thus r=2s-1 or
r=2s. If r=2s then M(G, K,, 2 ) is infinite by a (B, K25_1)-construction, so we as-
sume thatr(B, KI , 2)=2s-l . Note that B=G-a l so r(B, Kz , 2)-r(G, K,, 2)-1 . Hence
r(G, K1, 2) = 2s- 1, also. This implies B has precisely s vertices and G=K S •K, for
s-_3 . The proof of this case is complete by Lemma 11 .

We now consider the case when r(G, K1 , 2 ) is even. Let 2t=r(G, K,, 2 ) . Since
B=G-Bl , r(B, KI , 2)~2t-1 . Thus r=r(B, K,, 2)=2t-1 since B does not have 2t
vertices . Also r(B,, KI,2)_-r-1-_2t-1 and thus r(B1 ,K1, 2)=2t-1 . With no
loss of generality we can assume that ~ V(B) J - 1 V(BJJ. Thus B l has t vertices and
BI--K,. The block B has t-1-1 vertices and thus is isomorphic to a Kí , l with some
edges incident to the cutvertex a of G deleted . Let D=K2í_1 . In this case R(G, K1,2)
is infinite by a (B, G)-construction . This completes the proof of the theorem .

One question of interest that this paper leaves unanswered is the following . Is
(G, K l , z,) Ramsey-infinite for any connected graph G which is not an edge? This

would of course settle the conjecture mentioned in the introduction .
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