
COMBINATORKA 2(3) (1982) 289-295 

ON RAMSEY-TURAN TYPE THEOREMS FOR 
HYPERGRAPHS 

P. ERDBS and Vera T. 3% 

Dedicated to Tibor Gallai on his seventieth birthday 

Received 3 June 1982 

Let H’ be an r-uniform hypergraph. Let g=g(n; F) be the minimal integer so that any 
r-uniform hypergraph on n vertices and more than g edges contains a subgraph isomorphic to 
H’. Let e=f(n; H’, en) denote the minimal integer such that every r-uniform hypergraph on n 
vertices with more than e edges and with no independent set of .sn vertices contains a subgraph 
isomorphic to H’. 

We show that if r=-2 and H’ is e.g. a complete graph then 

lim lirn 
E-r0 n-=-a 0 

a -If@; H’, en) = lim (:)-‘g(n; HP) r n-00 

while for some H’ with lim 

-‘f(n; H’, m) = 0. 

This is in strong contrast with the situation in case r=2. Some other theorems and many unsolved 
problems are stated. 

Let H’(v; E) be an r-uniform hypergraph and f(n; H’) be the smallest inte- 
ger for which every r-uniform hypergraph of n vertices and more than f (n ; H’) edges 
contains a subgraph isomorphic to H’. A G; (V; E) is called an extremal graph belong- 
ing to H’, if IV]= n, e(G’,)=f(n; IF) and G; does not contain a subgraph iso- 
morphic to H’ (e(. . .) denotes the number of hyperedges). 

The determination (or estimation) of f(n; H’) is the fundamental problem of 
extremal graph theory which was started by Turin [9]. As a generalization of Turan’s 
theorem, the well-known Erd&-Stone theorem [6] states the following. 

For an arbitrary H2: 

f(n; H2) = (; ;;;:;I: +o(l))n2 if n -03 

where x(H) is the chromatic number of H. 

AMS subject classification (1980): 05 C 65; 05 C 35, 05 C 55. 
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First of all, we remark that for 1-22 almost nothing is known about f(n; II’). 
E.g. for the simplest graphs Ki (the complete 3-uniform hypergraph on 4 vertices) or 
H3(4; 3) (three triples on four vertices) not even the asymptotic value of f(n; H3) is 
known. Turan’s classical conjecture is, that 

and it is very probably that 

(3) f(n; H3(4; 3)) - +-(J if n --, 

As to the general case, it is easy to see that for an arbitrary H’ 

hm ’ 
0 n-b03 r -I f(n; H’) = c(F) 

exists. It is well-known [4] that c(P) =0 if and only if the vertices of H’ can be split 
into r classes so that every edge of H’ meets all r classes. 

We observed [q, [I that for r=2, H= Kk (where K, is the complete graph on k 
vertices), the extremal graph is stable in the following sense: it contains “very large” 
independent sets and if we put on a condition which decreases the size of the maximal 
independent set in G,, then the number of edges of the corresponding extremal graphs 
gets drastically reduced. More precisely, let f(n; H’, I) be the smallest integer for 
which every graph of n vertices and more than f(n; H’, I) edges either contains a 
subgraph isomorphic to H’ or it contains an independent set of size 1. 

Due to Ramsey’s theorem for fixed H’ and /, f (n; H’, I) =0 if nsR(H’, I). 
Therefore, the problem makes sense only in the case when either jY(Hr)I +- or 
I-m. Referring to the case r = 2 and H= Kk, we proved 

(5) 0 
lim lim i 
e-0 #I-+=- -‘f(n; Kk,en) = 

if k odd 

if k even 

while by Turitn’s theorem 

(For k odd see [5], for k=2 see [l], [8] and for k>2, even see [2].) 
In this paper, we investigate analogous problems for hypergraphs. The main 

result of this paper is that surprisingly the situation is quite different for hypergraphs. 
E.g. for K; (and for a more general class of graphs) the condition that the largest 
independent set has size o(n) does not change the situation. We prove 

Theorem 1. Let r 23, H’ be an r-uniform hypergraph, E= {h,, . . . , h,} be the edge-set 
of Hr. Suppose H’ satisfies the condition 

(7) for every i, 1 s i s m there exist a j f i such that ]h,nhj\ 1 2. 
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Let lim (‘)->(ni H’)=c(H’) and liiy lil$n( :)->(n; H’, ~n)=c*(H~), Then It--- r 

(8) c*(H’) = c(H’). 

Remark. Condition (7) holds e.g. for K; and also for Hs (4.3). 

Proof. Our idea in the proof is that if there are large independent sets in the extremal 
graph, we spoil them by adding not too many new edges and then we have to omit 
some, but not too many, to destroy the possible H’s and not to create large indepen- 
dent sets. 

Let a(Gr) denote the size of the largest independent set of Q. We use the fol- 
lowing theorem of Erd&-Hajnal [3] : 

For arbitrary q w0 and mrN(q) there exists a graph LL with the following 
proper ties: 

1 

e(L;) -= msia, 

(*) ~ GJ -e VW 
if ei,ejEE(L’,), i f j, then leinejl s 1. 

Let S=-0 and .s>O be arbitrary and (Gg be a graph satisfying 

(9) H’ Q G:, 

En r N(E~) 

(10) e(G:) =- (c-4 (;) 

where c=c(H’). Decompose the vertex set V= V(G’,) in the form 

where a(G’(B; E(B))-=: and 

a(G"(Ai; E(Ai)) =Z F a 

Obviously, kS2/&. We place into the set Ai a hypergraph L’(i) with Y(L’(i))=Ai 
and which satisfies (*) with q=s2. So we added to our G; new edges and the new 
enlarged hypergraph has clearly no independent set of size =-En. But this new graph 
may contain a graph isomorphic to H’. To avoid this, omit all edges eEE(QJ which 

intersect any of our new edges in at least two vertices. So we omitted at most 
edges. Observe that this final graph Gi’ 

O(nr-$ 

contains no isomorphic copy of I-I’ due to the condition on HP. 
a(G$+n since we did not omit any edge contained in any of the Ai, 
1 s&k. 

(C) \E(G:+(c-~)( :)+ O(n+). 

Since 620 was arbitrary, the proof of Theorem 1 is complete. 1 
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On the other hand we state 

Theorem 2. Let H’ be a graph for which there is a partition of the vertex set 

V(H’) = iil 4 

so that 
E(H’) = E,UE, 

and 

w ]hnAil = 1 for i = 1, . . . . r if hEE,, 
furthermore, for 

E2 = {h,, . . . . h,} & {h: h 2 A,} 

Ill) Ihkfi U 
l&Sk-1 

hi]51 for k=2,...,s. 

Then 
c*(H’) = 0. 

Proof. We use the following theorem of Erd6s [4]. There exists a function f(t) so 
that if nb-N(r, c) and e(G;)=-cn’ then 

K’ 
( 
A..., t, -5 c G,. 
1 r=1 f(t) 1 

Let t= max IAil. Suppose there exists an infinite sequence of graphs G; with 
1sisr-1 

e (G;) r cn’, for which 

W) H’ Q: G; 
and 
(13) ct(G;) = o(n). 

Let U be the set of vertices of a K’ 
( 
t, . . . , t, -!- 

f(t) I 
contained by G;, and U, 

= 
{ 

Xl, me’, Xlr I=-&} c U be the vertices in the rth class. By (12), the subgraph of 

G; spanned by U, cannot contain a subgraph isomorphic to L(A.; Ez). 
Now we prove that by the condition (11) on L(A,; Ed, G;, more exactly U, 

must contain a large independent set. 
Let H(j) (j=l, . . . s) denote the subgraph of H’ formed by the edges 

(h,, ..a, hi) and G; (U,) denote the subgraph of G; spanned by the subset of vertices 
U,. Suppose H(k-l)cG’,(U,) but H(k)aU,‘(U,) for some l-&z%. Let HI be 
a copy of H(k- 1) contained in G:(U,) and VI= V,(H,). By (11) there is a vertex 
XE VI so that x is independent of U, - V,. Note IV,- VI\ =-n/f(t)--Sr. Now apply the 
same argument to G;(U, - V& Thus, we obtain a vertex x,E U,.- VI which is in- 
dependent of a set U, - V, - V, where 1 U, - V, - V,l =-z/f(t) - 2rs. We continue this 
process and obtain and independent set of size zn/f(t)rs. Having (13) this contra- 
diction proves the theorem, 

Problem 1. IS condition Jhin h,J ~2 in Theorem 1 necefsary for the truth of (8)? 
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Problem 2. Does there exist a gruph Hi for which 

0 -z c* (H’) -=z c(H’)? 

Problem 3. Let VI={xl}, V,= { x2, x3, x4}, V, = {x5, x6, x,}, and H3 be the hyper- 
graph with Y(H3)={xj, l~i~7) and 

E(HS) = {{X2, XS, XP), (X.5, X3,X,} at& (4, Xj, Xi}: XiEvl, xjEv2, XJEKX}}* 

We know rhat c(H3)=-0. Is c*(H3)=c(Hr) or O<c*(H3)-=c(H’) or c*(&P)=O? 

Problem 4. Let Y(H3)= VIU V2U V,, where Vz and V, are independent set,s but the 
graph spanned by VI contains a circuit. What can one Jay on c(H3)? 

Problem 5. B condition (11) in Theorem 2 necessary? 

Problem 6. Find a function h(n) so that 

0 ‘; -‘f(n; K,3, h(n)) = 0(n3). 

Our Theorem 1 gives that there is an U-C 1 for which f (n ; Kj, rP) w c,n3 for 
a c,=-0. Is inf {a: lim nd3 f (n; Ki, n”)>O}=-O? 

Graphs of uniform edge density 

Remark. We know that for every ES-O there exists a graph G, so that e(G,)r 
>(1/8 - &)n2, K4 Q G,, and OL (G,)-= en. On the other hand, it is easy to see that if 
every subset of V which is “small enough” has a not “too small” edge density then 
our G,, must contain a Kk. Now we make this vague and heuristic statement more 
precise in two ways. 

Proposition 1. Let G,,,; n, crna-= . , . be a sequence of graphs with the folIowing 
properties: 

(14) Wni) 2 > Ciyli, 

(15) Iff is an arbitrary function with liiO f (x) = 0 and if i=- i,, (E) then in G,, every 

set of >&ni verticeg spans a subgraph of at least f ( ) E e2n2 edges. Then for i large enough 
KkCGn,* 

Proposition 2. Let k be given. For every E >O there is an q = q (8, k) z-0 so that if G” is 
a graph which sati$$es that every subgraph of more than qn vertices spans a subgraph of 
at least &$n2 edges, then Kk c G,, I 

The proofs are easy and left to the reader. 
Now we consider the analogous question for hypergraphs. 
Concerning the case r 2 3 we have: 
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Proposition 3. For every rfw0 there existsan es0 and a graph GE having the following 
property 

K,“$ Gz (and even more, H3(4; 3) Q Gi) 

and each spannedsubgraph of Gz of more than yn vertices contains more than E v 
( 1 

3 edges. 

To see this, let n=3’, V(GE)=(l, . . . , n}, i= ,&3Y the trinary expansion 
of i, and 

Jw3 = (1 i, j, I}: i = 2 .@3”, j = 2 .@3”, 1 = 2 aJ3)3v, 
v=o v=o VI0 

gp = 42’ = &C3) for v < vO, Y {$‘, Eg), @} = (0, 1,2}. 

It is easy to see, that this graph has the above property. At the same time to every 
a>O, there is an q 50 so that there is a spanned subgraph of Gi of more than qn 

vertices and contains less than E edges. This means that the edge-density is 
not uniformly positive. 

Problem 4. Assume now that we have an infinite sequence (Gz) so that for every spanned 

subgraph of m=-qn vertices Gi contains more than c 
0 
‘;” edges, Does it then follow 

that our graph contains a Ki if nwn,(e, c, r)? We do not know the answer even 
for k=4, in fact, we do not even know whether our graph contains a H3 (4; 3). 

Perhaps it is clearer to state the problem in a sligthly weaker form. 

Problem 5. Assume that Gi has the property that every spanned subgraph of rn=-n log n 

vertices contains at leaA t c 
m 

0 
3 edges. Does our graph then contain a HS (4; 3) or a 

K; or Kg 

The role of -5 
log n 

could be replaced by anyf(n) with It -+ f(n) o . 

Problem 6. Assume that there is a c1 so that for every x, yE V(Gi) 

j{z: 1x3 Y, zbW;)}[ =- cn. 
Is it then true that H3(4; 3)cGi? 

Problem 7. We define a sequence of graphs et (i= 1,2, . ..) to be uniformly distributed 
it for every vw0 there is a c(q) so that for every i*io(&) every spanned subgraph of 

rnzqn vertices has (c{r,~)+O(l)) c) edges. 1s there a graph H3 so that there is an 

extremal graph belonging to HS which is uniformly distributed? 

We expect that such a graph does not exist. 
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