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Let A be an infinite sequence of positive integers a, < a, < .I. and 
put fAxI = CnsR,oCx (l/a), D,(x) = maxtcnGx CoeA,o,n 1. In Part I, it was 
proved that limx++m supD,(x)/f,(x) = +co. In this paper, this theorem 
is sharpened by estimating DA(x) in terms of f,(x). It is shown that 
lim X+ +a3 sup DA(x) exp(-c,(logf,(x))‘) = +a~ and that this assertion is not true if 
c, is replaced by a large constant c2. 

1 

Throughout this paper, we use the following notation: c, cr, c2 ,..., X*,X, ,... 
denote positive absolute constants. We denote the number of elements of the 
finite set S by 1 S 1. We write ex = exp(x). We denote the least prime factor of 
n by p(n), while the greatest prime factor of n is denoted by P(n). We write 
p” 11~1 if p”ln but pa+’ tn. v(n) denotes the number of the distinct prime 
factors of n, while the number of all the prime factors of n is denoted by 
w(n) so that 

v(n) = 2 1 and w(n) = c a. 
Pin P% 

We write 

v(n,y)= 2 1, w(n, u> = .y a, 
PlH 

P<Y 
;“?‘; 

v’(n,y)= r 1, W+(n,y)= 1 a 

Plfl P”ILt 
P>Y P>Y 

and 

v(n,x,y)= 2 1 
Pin 

X<P<Y 
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116 ERDiiS AND SARKiiZV 

(so that v(n, n) = v+(n, 1) = v(n), o(n, n) = w’(n, 1) = u(n) and ~(n, X,J) = 
v(n, u) - v(n, x)). The divisor function is denoted by d(n): 

d(n)= c 1. 
din 

Let A be a finite or infinite sequence of positive integers a, < a2 < .a.. 
Then we write 

(in other words, d,(n) denotes the number of divisors among the a,?) and 

In Part I (see [2]), we proved that for an infinite sequence A, we have 

DA(X) lim supfAo= i-co. 
.V++oO 

(1) 

(In 141, Hall proved independently that (1) holds in the special case 
lim,,, co supfA(x)/log x > 0. Note that we have C, G:nClx d,(n) = xfA(x) + 
O(x).) Furthermore, we proved some other related results in [2]. In 
particular, we proved that 

THEOREM 1. rf 

lim fA(x) = -too (2) *‘I* 

then 

(This theorem will be needed in the proof of Theorem 2 below.) 
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We conjectured in [2] that (1) could be sharpened in the following way: 

lim sup DA(x) exp(-(1 - E)(logfA(x))*) = +co. 
.X++* 

Sections 2 and 3 will be devoted to the proof of the following slightly 
weaker estimate: 

THEOREM 2. Assume that for an infinite sequence A of positive integers 
a, < az < .a‘, (2) holds. Then for all E > 0, we have 

lim sup DA(x) exp - -E--E (logf,(x))’ = +03. 
i(d 1 

(4) .v++iX 

Furthermore, we show in Section 4 that Theorem 2 is the best possible 
except for the constant factor in the exponent (and that our conjecture is 
false in its original form): 

THEOREM 3. For all t: > 0, there exists an infinite sequence A of positive 
integers a, < a2 < -.. such that 

(i) A has density 1, i.e., 

lim &(x)/x= 1; (5) *++5 

(ii) we have 

lim sup D,(x) exp(-(4 + c)(log f, (x))‘) = 0. (6) .X++cC 

Finally, we sketch the proof of three other related results in Section 5. (In 
particular, Theorem 5 will show that the factor e/ 16 - E in the exponent in 
(4) cannot be replaced by e/8 + E.) 

In order to prove Theorem 1, we need some lemmas. 

LEMMA 1. Assume that for an infinite sequence A of positive integers, 

lim sup fA(x) exp(-(log log x)“*) > 1 (7) X++CG 
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holds, and let E be a fixed positive number. Then there exist infinitely many 
positive integers x such that 

f,@x) > exp((log log x)“*) (8) 

and 

log log x 
log logy *wfA(Y) < (1 + 6) *%.fA(x) for aIl y > x. (9) 

Proof. By (7), there exist infinitely many integers z such that 

& (2) > exp((log log 2) 1’2). (10) 

Obviously, it is suffkient to show that for such an integer z, there exists an 
integer x satisfying x 2 z, (8) and (9). In order to prove this, assume that if 
x > z and (8) holds, then there exists an integer y for which (9) does not 
hold. 

Now we are going to show that our assumption implies that there exist 
positive integers (z =) x0 < x, < x1 < * =. such that (8) holds with xk in place 
of x and 

*oELLc4 2 (1 + Elk 
log log Xk 
log log x, *wf, (x0) for k = 0, 1, 2 ,.... (11) 

In fact, by (lo), x0 = z satisfies (8) (with x0 in place of x) and also (11) 
holds trivially. Assume now that x0 c x, < . -. < xk have been defined so that 

f, W > w((*og log xkY2) (12) 

and (11) hold. Then by (12) (and xk > x0 = z), our assumption yields that 
there exists an integer y for which y > xk and 

log log Xk 
log logy wd4(Y) > (1 + El *wfah)* 

Let xkfl = y. Then (with respect to (11) and (12)) we have 

f,(xk+J =.G(Y)~ ew 
( 
(1 + d *og.fZd :o”,“~,“~J 

> exp 
( 
(1 + s)(log log xJ”” 1% log Y 

log log Xk 1 

=exp ((1 +c) (ll~~ll~~~k)“* (loglogy)1~2) 

> exp((log logy)“‘) = exp((log log xk+ ,)I’*) 
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and 

log log Xkt 1 
= (1 + Elk+’ log log x, kt4(x,) 

so that both (11) and (12) hold with k + 1 in place of k, and this proves the 
existence of a sequence x,, ( x, < -a- having the desired properties. 

But if k is large enough {depending on x0), then (11) yields that 

logf,(xk) < 2 log log xk. (13) 

On the other hand, obviously we have 

< log(log xk $ c,) < 2 log log xk. (14) 

Inequalities (13) and (14) yield a contradiction which completes the proof of 
Lemma 1. 

LEMMA 2. There exists an absolute constant c, such that if x, y and t 
are positiue numbers satisfying 

3<Y<X (15) 

and 

1 < t < log log x, (16) 

then 

c n<x 
~~c,logy (elogty’t’? 

u+(n,Yl<t 

ProojI If n <x and u+(n, y) = m then n can be written in the form 

n = n,pyl ---pzm, (17) 
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where n, < x, P(n,) < y, y <pi ,< x, pi f pj for i # j and a, ,..., a, are positive 
integers. Furthermore, if n is fixed and n, ,p, ,..., pm, a, ,..., a, satisfy all these 
conditions, then also the permutations of the prime powers py’,...,pzm satisfy 
them; thus n has m! representations of the form (17). Hence, with respect to 
(15) and (16), 

ItI 

< \‘ -!- - c, logy * (log log X + C5)* 
m=O m! 

<c,logy 1 
If’ (log logx)” I + c, I* 

WI=0 m. 1 ( log log X 1 

<C,hsY _ 
q (log log X)‘tl 1 + c5 I 

m-o ([(I)! ( log log x ) 
< c ,og y( (1% 1% XP 6 (PI>! 

since 

n l 
p<y 1 - l/P 

< c7 h y, 

Y- i=loglogx+ O(1) 
P-z p 

and 

By using the Stirling formula, we obtain from (18) that 

e log log x 

1 

[‘I \’ &Jogyr 
i [tl 

t-112 
nix u+(n,y)<f 

< c9 lO!sY 
‘eloglogx f 
( i 

t’l2 
t 

(18) 

which completes the proof of Lemma 2. 
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LEMMA 3. Let E be an arbitrary nonempty set of prime numbers and let 

E(x) = P-E +,. 

P<X 

Then for ~11 x > 1 and a > 1, the number of the integers n satisfying 
l<n<xand 

s 1 > aE(x) 
Pin 

PEE 

is <clox exp((a - 1 - a log a) E(x)). 

This lemma is due to K. K. Norton; see (5.16) and (1.11) in 161, also 171. 

3 

In this section, we complete the proof of Theorem 2. 
Let E be a small but fixed positive number such that E < 1. 
Assume first that 

lim 
x-t+CC 

supf, (x) exp(-(log log x) l”) < 1. 

Then for x > X0, we have 

f,(x) < 2 exp((log log x)“‘). 

Hence 

exp 
(( ) 

+ - E bdi(x))* ) 

< exp 
N 1 

$ - E (log(2 exp((log log x)~/‘))~) 

< exp 
( 
flog log x 

1 ( 
< exp + (log log x - log log log x)) 

= (lo:gx), =O (lo:Ex)* (19) 

By (2), we may apply Theorem 1, and we find that (3) holds. Inequalities (3) 
and (19) yield (4). 
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Assume now that 

lim supf, (x) exp(-(log log x)“~) > 1. 
X-+00 

Then by Lemma 1 (with s/2 in place of E), there exist infinitely many 
integers x such that 

and 

(20) 

Obviously, in order to prove that (4) holds also in this case, it is suffkient to 
show that if x > Xi(s) and x satisfies (20) and (21), then there exists an 
integer u satisfying 

and 

x < u ,< exp((log x)‘) (221 

DA(U) > exp ((G-G) ~WM~))2). (23) 

Assume that x is large (in terms of E) and x satisfies both (20) and (21). 
Let us write 

y = exp{(logf,(x))3i (24) 

and 

g(u)= (elog~ogx)y, h(u)= (lo~u)4 (foru>O). 

Obviously, we have 

f,(x)= c i, 2 +ogx+c,,. 
UEA a a<x 
a<.% 

(25) 

It can be shown easily that the function h(u) is increasing for u > U,. Thus, 
by (20) and (25), we have 

= -w(Qog log x> 1’2) 
(log log x)’ (Nag 1% xl21 (26) 
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and 

lrjgx+c,, 
w.4~~X)) < Wlog x + CIA = (log(,og x + c,,))4 < 1% x (27) 

for sufficiently large x. Furthermore, for 1 < u < log log x, the function g(u) 
is continuous and increasing since 

and by (26) and (27), we have 

g(l) = e log logx < IzVA(xj) 

and 

g(log log X) = log x > h(JA (x)). 

Thus, there exists a uniquely determined real number t such that 

1 <r<loglogx W-9 

and 

m = WI4 &>I (29) 

We need lower and upper bounds for this number t. By (28), we have 

fA k> 
P%.L (4)” = hGfA(x)) = g(f) = ( e logtlog ” ) t > et; 

hence 

On the other hand, by (29), we have 

t log log x t log log x 2 log log x 

{log h(&(X)))2 = (log g(t))’ = t2(1 + log log log X - log t)* 

1 = t 
i 1 - log 

t 
log log X log log x 1 

2 

(30) 

1 
= rI(1 - log v)’ (31) 
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where (with respect to (28)) 

o<v= t 
log log x 

< 1. 

But a simple computation shows that for 0 < 5 < 1, the function 

CG) = 1 
((1 - 1% r> 

assumes its minimal value at [= l/e so that 

v(v) = 
1 1 e 

u(l -log v) ,>rp -g =Q. 
( 1 

(32) 

By (31) and (32) we have 

1 
t= (log w4w)2 

v(1 - log v)’ . log log x 

> e ~log~f,~x)l(logf,~~)~4))z = 1 _ L e owfA(x))2 
‘4 log log x ( 1 4 4 loglogx (33) 

if x is sufficiently large. 
Let A * denote the set of the integers a such that a <x, a E A and 

vf(a, y) > t. 

By (24) and (25), we have 

(3<) Y = wOxL(x))-‘> 

=c ew((log(log x + cIo)>3) Ia). (34) 

By (28) and (34), both (15) and (16) hold; thus Lemma 2 can be used in 
order to estimatef,.(x), and we obtain that 
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Hence with respect to (24), (29) and (30) 

.Mx> as, (xl - c2hLfA (4)’ fA(X) 
(logf, (x))” uogf, Cx)) 

112 

=x4 (xl (1 ~ (logfltx)) 1,2 
1 

> +s4 (xl. (35) 

Let us write 

k = [log x] 

and let S denote the set of the integers n such that 

and n can be represented in the form 

ai,ai, -a. aiAm = n, (36) 

where ai, E A *, ai E A * ,..., aik E A * (and m is positive integer). For fixed 
II E S, let g(n) denote the number of representations of II in the form (36). 

Then by (35), we have 

ai,EA*....,qkEd* T aj, .-a Uik 

’ k -Y- 
1 

z---x 

2 ai,EA*,~,a,kEA’ ‘i, “* aik 

k 

(37) 

sinceaEA*impliesthata<x,and [u]>fuforallu>l. 
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On the other hand. we have 

Let S, denote the set of the integers n such that n E S and 

m+(n,y) - v+(n,y) > +kt (39) 

and write 

s,=s-sl. 

Then we have S = S, U S, so that 

l~l~I~lI+l~2I. (40) 

First we estimate (S,\. Let nE S,, n = (~7’ --.pFr)‘n, where 
Y(Pl <P2(**. < pr, and p > y implies that p21;n r . Then obviously, 

w+(n,y)--v’(n,y)~2(a,+u,+‘..+cr,). (41) 

Inequalities (39) and (41) yield that 

al 
Pl 

,.*p;‘>y”l* ... p =yal+‘.’ ta,~y(w+(n,Y)-v+(n.y))/2 >Y(c/12)kt* 

Thus, writing j =pf ’ . -- prr, we obtain that for n E S,, there exists a positive 
integer j such that j’/n and j > y (s’12)kt. Hence with respect to (24), 

IS,lG c 1 1 
j>y(f/lllkt ?I(.$ 

Y/n 
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= xk exp 
( 
-+kt logy 

1 

= xk exp 
( 
- -& kt(l~gJ,(x))~ ) < xk exp(-k(log&{x))5’2) (42) 

for sufficiently large x. 
Now we estimate IS,/. If n E S, then n c?.! S,; thus we have 

w+(n,y)-vt(n,y)<+kt. (43) 

Furthermore, n E S, implies that n E S and thus n can be represented in the 
form (36). Hence with respect to (43), for M f S, we have 

#,Y,x)= @,J',X)- (m(&J',x) -v@,y,x)) 

= U(Ui, '.' aihm,y,x)-$kt 

k 

= x w(a,.y,x)+w(m.hx)-*kt 
j=l 

= 5 W+(ni,,y)+w(m,4’,x)-~kt 
j=i 

= l--$ kt 
( 1 

so that 

(44) 

Let E denote the set of the prime numbers such that y <p < x. Then 
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and we have 

= log log x - log log 4’ + 0 
1 

i 1 
- 
log x 

< log log x (45) 

(for large enough x) since 

K7 -Loglogu+c+O 
1 

pzl P ( 1 log* 

Write a = (1 - ~/6) kt/E(x). Then for large x, LI 2 1 holds trivially (by (45)). 
Thus, by Lemma 3, we obtain (with respect to (28), (33), (44) and (45)) that 
for large x, 

= \.‘ 
-k 

1 < clOxk exp((cr - 1 - u log a) E(xk)) 
nsx 

I.ln.y..r)>rrE(X~) 

(1 -e/6) kt 

‘(‘) 

<xkexp (- (1 -+)ktlogk) 

<x”exp (; (1 -G)k (1 -c)g (‘~~~~ loglogx) 

<xkexp (- (1 -~~$k(logS,(x))‘). (46) 

Inequalities (40), (42) and (46) yield that 

1st G ISI1 + /S*I 

< xk + exp - 1 - -!- ??- k(logf,(x))2 
(id4 i) 

< xk exp (47) 
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By (37, (38) and (47), we have 

129 

1 -xk 2 ( 1 &&I k -c PA(Xk))k ISI 

< (o,JXk))k Xk exp (41 -El ~k(w*o)‘)~ 

Thus, writing u = xk, we obtain, in view of (2 1) that 

Q&4 = R&f) > +. -$N exp ((I - d-f Pxf&N’) 

> exp (1 - E)$ PdXW ) 

and 

x < u = x”~~-‘~ < x’Ogx = exp((log x)‘) 

so that both (22) and (23) hold and this completes the proof of Theorem 2. 

4 

In order to prove Theorem 3, we need the following lemma: 

LEMMA 4. Let F(x) + +cr, and 6 be a fixed positive number. Let A 
denote the sequence of positive integers n such that 

(i) Iv(n,y) - log logy/ < 6 log logy for all F(n) < y < n. (48) 

Then A s gas density 1. 
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This lemma can be proved by the methods of probabilistic number theory 
(see [I, 51). 

Using the same notations as in Lemma 4, let At denote the set of the 
integers n such that n E A, and 

(ii) 

if j> F(n) then j2@ (49) 

(in other words, A,* denotes the set of the integers n satisfying both (i) and 
(ii)). Obviously, (ii) holds for all but o(x) integers rt; thus by Lemma 4, also 
A,* has density 1. 

Now we are going to show that choosing F(x) = log log log x and 
6= s/100 in the definition of this sequence A$, we obtain a sequence 
A = At which satisfies conditions (i) and (ii) in Theorem 3. 

In fact, (i) holds since A $ has density 1 (by Lemma 4). In order to show 
that also (ii) holds, let n denote an arbitrary integer, and assume that d/n 
and d E A,*. Let k = [4/&l + 1 and write 

n = non, n, .a. nkr d = d,d,d, a.- d,, 

where 

F(n) <p(nA < P(n,> < w((log nYX 

ev((log 4 li-‘)jk) < p(n,) < P(n,) < exp((log 12)~‘~) 

for i = 2, 3,..., k 

and 

dilni for i = I, 2 ,..., k. 

By (50) and (53), do may assume at most 

= (2 log n) log log log* = exp(2 log log n log log log n) 

distinct8 values for large n. 
Furthermore, by (49) and (5 l), d, 1 n, implies that 

(50) 

(51) 

(52) 

(53) 
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thus, the prime factors of d, can be chosen from the 

v(n*) < log n, < log n 

prime factors of it 1, and by (48) and (51), their number is at most 

v(d,) < v(d, exp((log n)‘lk)) < (1 + S) log log(exp(log n)““)) 

Thus, d, may assume at most 

T vh> 
O<i~(l+~)(l/k)loglogn ( 1 i 

< =5- -i+ 
Osis(l+&,k)loglogn 

(vh>>’ G 
O<;r<(l+8Fllkc3glogn 

< log log n(,og n)( I + S)( l/k)kq log n 

=exp (logloglognf (1 +-&-)+(ioglogn)‘) 

<exp ((1 +$-)+(loglogn)2) 

(log n)’ 

distinct values. 
Finally, (49), (52) and (53) imply that for i= 2, 3,..., k, we have 

thus, the prime factors of di can be selected from the v(n,) prime factors of 
ni. By (52), we have 

n > n, > 11 p > n p(n,) > n exp((log n)(i-‘)‘k) 
PIni Plni PIni 

= exp(v(n.)(log n)+‘)lk)- I I 

hence 

v(ni) < (log n)/(log n)+r)lk = (log yl)l--(i--l”k. 



132 ERDC%AND SARKGZY 

Furthermore, by (48), (52) and (53), 

v(d,)= v(d, exp((log n)""))- v(d, exp((log n)+')'k)) 

< (1 + S) log log(exp((log tl)i’k)) - (1 - F) log log(exp((log n)(i-‘);k)) 

= 
iI 
(1+6)$-(1 -~)~)loglogn 

( 2i- 1 
= ++a- 

) 
log log n < 

( ) 
+- + 26 log log n. 

Thus, di may assume at most 

v v(nJ 
u 

( . 1 O~j<~l/k+26)loglogn J 

< r 
O<j<lllk%-;d)loglogn 

WJ> 

< log log n((log n)l-ci-‘)‘k ) (~+26)log1ogn 

<exp (logioglogn+ ((i--9)+26) (1oglogn)‘) 

<exp (((k-y)+-&)(loglogn)‘) 

values. 
Summarizing our estimates above, we obtain that the product of the d;‘s, 

i.e., d can be chosen in at most 

cf4(n) < exp(2 log log n log log log n) . exp ((I+&-)-$(loglogn)‘) 

- !jexp (((+-$&)+&)(loglogfl)‘) 

(( 

2 

< exp $+++ -&+ g2 ($2) + kg) s (ioglogn)‘) 

< exp 
cc 

1- (k- 1)W + 
k2 ( 

&+&+$ (log log n)’ 

< exp bxhsn)2 
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= exp 
(( 

++ l + ([$]+3)~)(loglogn)‘) 
2([4/&1+ 1) 

< exp 
(( 

++;+2+.$ (loglogrz)* 
) 1 

cexp ( (+++)(loglogn)2) (54) 

ways. 
Furthermore, A = A z has density 1; thus, for large x we have 

hence 

logf,(x) > log log X - 2. (55) 

Inequalities (54 and (55) yield (6) and this completes the proof of 
Theorem 3. 

5 

In this section, we formulate three results which can be proved by the 
same methods as Theorems 2 and 3, respectively. 

THEOREM 4. For ail E $0, there exists a number X0 =X0(~) such that if 
x > X,, and A is a sequence of positive integers satisfying 

NA(X) > ~ x exp((log log x)“‘), 
log x 

then there exists an integer u such that 

x < u < exp((log x)‘) 

and 

(56) 

dA (u) > yexp ((+-c) (log NA(xL10g”)2) (57) 

(so that for Q > 0, x > X,(a, E), NA(x) > ax we have 

4W > exp 
N 1 

$-& (loglogx)2 
1) 

. 
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Note that for “small” values of NA(x), the following trivial inequality can 
be used in order to estimate D,(exp((logx)2)): if NA(x) > logx, then we 
have 

Theorem 4 can be proved in the same way as Theorem 2. However, 
Lemma 2 must be replaced by an upper estimate for CnCx,v+(nSyjCt 1: 

LEMMA 5. There exist absolute constants c,~ and c,~ such that 17 x, y 
and t are positive real numbers satisfying 

and 

then we have 

F- 1 < c13 
n<x 

&logy ( elogtlogx)l P. 

v+ol,Y)<f 

This lemma is a consequence of a theorem of Hal&z; see [3], see also 
[6, pp. 687-6891. 

THEOREM 5. For all E $0, there exists an infinite sequence A of posilive 
integers a, < a2 < . . . such that 

(9 lim inf*(logx)L-2/C+E= +m, 
x++tC 

(ii) lim sup D,(X) exp 
X’fW (- (++e) w%s,(xN’) =o. 

(58) 

(59) 

(Thus the factor e/16 - E in the exponent in (4) cannot be replaced by 
e/8 + E.) 

Sketch of the Proof: Let B, denote the sequence consisting of the 
positive integers n such that 

(9 I+f+y) - (I/ 11 1 e og og~~<6loglogyforalllogloglogn<y~~; 

(ii) if j > log log log n, then j’&. 
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By using the results of Hal&z and Norton (see [3, 6]), it can be shown 
that if 6 is sufficiently small in terms of E, then for x > X,,(E); the sequence 
A = B, satisfies 

NA 6) > & (log X)*‘e-c’iO (for x > X0(s)); (60) 

and this implies (58). 
On the other hand, it can be proved by the method used in the proof of 

Theorem 3 that if 6 is sufficiently small in terms of E, then for x > X,(E), the 
sequence A = B, satisfies also 

(60) and (61) yield (59). 

THEOREM 6. If E > 0 and x > X0(c), then there exists a sequence A of 
positive integers a, < a, < . . . such that A c { 1, 2 ,..., x}, 

(i> NA(x) > x(log~)-‘+~‘+~, 

(ii) dA(u) < yexp ( (++E) (log ~~‘“~‘“““)‘) 

for all u satisfying (56). 

(This theorem shows that in (57) in Theorem 4, the factor e/4 - e cannot 
be replaced by 3e/8 t E.) 

In order to prove Theorem 6, put A = B, f’ [0,x] where B, is defined in 
the proof of Theorem 5. By (60) and by using the same method as in the 
proof of Theorem 3, it can be shown that if 6 is sufficiently small and x is 
sufficiently large in terms of E then both (i) and (ii) hold. 
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