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1. 1ntroduc‘tion. 

In C51 Grimm made the conjecture that if p,p' are consecutive 

primes, then for each integer m, p < m < p', we can find a prime factor 

4,of m such that the q, 's are all different. More generally, if n 

is a natural number, let g(n) denote the largest number so that for each 

m E {n+l,n+2,... ,n+g(n)) there corresponds a prime factor %I such that 

the qm 's are all different. Thus Grimm's conjecture is equivalent to the 

assertion p+g(p) 2 p' when p,p' are consecutive primes. 

It is known that 

(1) (log n/loglog n)3 4 t< g(n) << (n/log n) . 

The lower bound is due to Ramachandra, Shorey, and Tijdeman C9]; the upper 

bound is due to Erd'ds and Selfridge [3]. From the lower bound, Grimm's 

conjecture for large primes follows from Cramer's well known conjecture: 

lim sup(p'-p)/(log pj2 = 1. 

From the upper bound it follows that if Grimm's conjecture is true, it 

must lie very deep. Indeed, Grimm's conjecture and (1) imply 

(2) P' - P 
4 << (p/log P) . 

While (2) is undoubtedly true, it is generally recognized as probably 

hopeless at this time. Even if the Riemann hypothesis is assumed, the 

best known upper bound result on gaps between consecutive primes is not 

quite as strong as (2). 

As noted in L3], using a result of Ramachandra [8] a better 

upper bound can be proved for g(n). Indeed from the proof in CSI it 

follows that there is an a > 0 such that for all large n a positive 
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proportion of the integers in (n,n+n 
+-0 1 are divisible by a prime which 

exceeds n15'26. Using this result with the method in t31 gives g(n) < n g-c 

for some fixed c > 0 and all large n. It is possible that the methods 

of Graham [41 will give a further reduction in the exponent, but we have 

not pursued this issue. 

In [71 one of us made the conjecture that there are positive 

constants cl,c2 such that 

(3) exp fcl(log n loglog n)% 5 g(n) 5 expic2(log n loglog n)%J 

for all large n. It is known that each of the inequalities in (3) 

separately holds for infinitely many n. (See C31, C71, and ClOl.) 

This paper is addressed to the following question: how does 

Grim's problem change if the factors q m are no longer forced to be prime? 

Specifically, let f(n) denote the largest integer such that for each 

composite m E In+l,n+*,.. .,n+f(n)} there is a divisor dm of m with 

l<d < m and such that the d 's are all different. m We obviously have 

f(n) F g(n) for all n. We prove below that for each E > 0 we have 

I+ << f(n) << n 7/12+~ 

We strengthen the lower bound by showing that 

(5) lim inf f(n)/& > 4 

and that there is a certain set A of integers of asymptotic density 1 

such that 

(6) f(n) > 4J% for n E A, n large. 

We show there are infinitely many twin primes if and only if equality 

holds in (5). Also if a certain very strong generalization of the twin 

prime conjecture is true then 

(7) lim sup f(n)/& = 4J2. 

Thus combining our conjectures with our theorems we have 4fi as both the 

maximal order and normal order of f(n)/&, while 4 is the minimal order 

of f(n)/&. 

In Section 5weconsider thefunctionf(n;c) for n a natural number 

and c > 1. This denotes the cardinality of the largest subset of [n,cnl 

for which we can assign mutually distinct proper divisors. We prove that 



there is a positive constant 6(c) such that 

(8) fb;c> - 6(c)n as n + m . 

The function 6(c) is continuous and strictly increasing. The fraction 

6(c)/(c-1) is the asymptotic limit of the proportion of integers in 

[n,cn] that fall in the maximal subset counted by f(n;c). We have 

(9) 6(c) -=I lim-=- 
.;;: c-l ' 

6(c) 1 1 6(c) - < - < 1 for all c > 1. 
Cam c-l 2’ 2 c-l 

It is probable that G(c)/(c-1) is monotonic, but we have not been able to 

prove this. 

We take this opportunity to thank the referee, John L. Selfridge, 

whose request for more details concerning (6) and (7) led to the discovery 

of an error in the original version. We also wish to acknowledge a helpful 

conversation with E. R. Canfield concerning Theorem 3.1. 

2. The proof of (41. 

The first inequality in (4) is easy. Indeed if we let dm be the 

largest proper divisor of the composite number m, then & 5 dm i m. If 

dm = dk where m < k, then 

k - m 2 (k,m) 2 dk 2 v%. 

Thus it is not the case that both m and k are in the interval 

Cn+l,n+Jn] for any n. We conclude that if m,k are composite and in the 

interval Cn+l,n+&], then d, # dk. Hence f(n) t C&l. 

Our proof of the second inequality in (4) relies on some work of 

Warlimont Cl11 (also see Cook [II) concerning the distribution of abnormally 

large gaps between consecutive primes. First note that if 

Pl <P* < 41 < 92 < q 3 are primes with plql > n, then n + f(n) < p2q3. 

Indeed the six integers piqj have collectively only five proper factors 

larger than 1. Our strategy is thus to find such primes with p2q3 as 

small as possible. 

If x is a real number, let pi(x) denote the i-th prime greater 

than x. Let E > 0 be arbitrarily small, but fixed. Let 



s = Ix: 4 Jn 5 x < ; Jn , p*(x)-x 2 + n1’12+El 

T = Ix: + p3(n/x)-n/x > 5 n 1 l/12-7 

Let pi denote the i-th prime and let di = pi+l-p.. From the estimates of 
I. 

Huxley C61 applied to Warlimont [lo], we have a 6 > 0 such that for all 

large x, 

(10) xddi < x1-& . 
i5x 

di>pi1/6+c/2 

We apply (10) with x = v%. If lo denotes Lebesgue measure and if n is 

large, then (10) implies 

p(S) < 2n(le6)‘*, p(T) < 3n(1-6)‘2. 

We conclude that there is some x with t &I-x<t&suchthatx hS UT. 

Thus 

p,(x) -x 5 + n1'12+E , 1 1/12+E. p3(n/x) - n/x 5 3 n 

3 V? and Note that p2(x) < pl(n/x) (since there are many primes between z 

and that pl(x)pl(n/x) > n. Thus for large n 

1 1/12+e 
n + f (4 < p2(x)P3(n/x) 5 (x+5 n 

1 1/12+E )(n/x+- n 
3 1 

= n + 1. n1/12+E(x+n,x> + 1 n1/6+2E 
3 9 

< n +A n7/12+~ +L ,1/6+2~ ~ *+ ,7/12+& 
- 

6 9 

We thus have (4) for all large n. 

We comment that on the assumption of the Riemann hypothesis, it is 

known that the "l/6" in (10) can be dropped. Thus the Riemann hypothesis 

implies f(n) 5 n l/*+E for all large n. 
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3. Blocking configurations. 

From the definition of f(n) there is a set S = S(n) of minimal 

cardinality such that S c fn+l,n+2,...,n+f(n)+l), every member of S is 

composite, and whenever we choose fbr each s E S a factor ds with 

l<d <s, a then necessarily ds = ds, for some pair s,s' E S with s + s'. 

Such a set S is called a bZocking configuration for n. 

If A is a set, denote by #A the cardinality of A. If S is 

a set of composite integers, let 

D(S) = {d: for some s E S, dls, 1 < d c ~3, 

d(S) = #D(S). 

THEOREM 3.1. til n -t f(n) + 1 c S(n); 

(ii) d(S(n)> = #S(n) - 1; 

(iii) For atL Large n, if s E S(n) then s is either the 

square of a prime orthe productoftio distinct primes; 

(iv) For each n, S(n) is unique. 

Proof. (i) This statement is an obvious corollary of the definition of f(n). 

(ii) Let S be a blocking configuration for n. If T c S, T # S, 

by the minimality of S it follows that for each t E T there is a divisor 

d, with 1 c d, < t and the dt are distinct. Thus d(T) 2 %T. Consider the 

bipartite graph from S to D(S) where s and d are connected by an 

edge if d/s, 1 < d < s. Since by assumption this graph does not contain 

a matching of S into D(S), it follows from the "Marriage Theorem" of P. 

Hall that there is some T c S with #T > d(T). But we have just seen that 

this inequality fails if T # S. Thus the guaranteed set T must be S 

itself. Let m E S. Then 

f/S - 1 = #(S-{ml) 2 d(S-{ml) 2 d(S) < f/S, 

so d(S) = #S - 1. 

(iii) Note that if n is large, then (4) implies f(n) < n 213 . 

Thus if s,s' E S(n), s # s', then (s,s') < n 213 If so E S(n) has three 

prime factors, then it has a factor do with s 2j3 < d <a. For each 0 0 0 

s E S(n) - {so), let ds be a factor with 1 < ds < s and such that the ds 

are distinct. But do f ds for all s E S(n) - Iso) for otherwise 
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2/3 (s,so) > n . This contradicts the definition of S(n). Thus there is 

no s 
0 

s S(n) with three prime factors. 

(iv) Let T c in+l,n+2 ,...,n+f(n)+l) be any set of composite 

numbers. Then d(T) > #T - 1, for if not then n + f(n) + 1 = m E T and 

d(T-{ml) < d(T) -< #(T-{ml), 

contradicting the definition of f(n). Now suppose Sl, S2 are two different 

subsets of In+1 ,...,n+f(n)+l) such that every member of Sl, S2 is composite, 

d(Si) < #S i, but if T c Si, T # Si, then d(T) z #T. From the proof of 

(ii) it follows that a blocking configuration has these properties. Thus 

to prove (iv) it suffices to show that these properties force S = S 1 2' 
Note that neither of Sl, S2 is a subset of the other. Thus 

a contradiction. 

d(SI u S2) 5 d(S1) + d(S2) - d(S1 n S2) 

c i/s, - 1 + I/s, - 1 - #Cs, n s2) 

= #(S, u S2)-2 < d(S1 u S2), 

4. me normal size of f(n). 

If n is large we can represent the blocking configuration 

S(n) of n as a graph whose vertices are the prime factors of the members 

of S(n) and two primes are joined by an edge if and only if their product 

is in S(n). If the square of a prime is in S(n), we represent this as a 

loop. We call this graph G(n). Each vertex of G(n) has valence at least 

2 and there is exactly one more edge in G(n) than vertices. We give 

examples of a few G(n). 



Gi132): 13 19 29 31 

G(133): 

G(134): 

67 71 73 

w  2 

Note that (4) shows that if n is large, then the largest prime 

in G(n) is at most n 7/12-k , so that the smallest prime in G(n) is at 

least n5'lzmE . 

We now show (5). Let pl denote the largest prime in G(n). Say 

it is connected to pi and pj where pi > p. . 
3 

(Note that we allow the 

possibility pl = pi.) Now pj is connected to some pk # pl. Since we 

may assume all of these primes are odd, we have 

f(n) 2 plpi - p,pj 2 PlCPj+2) - CPl-2)Pj 

= 2Pl + 2P. 
J 

a 4Jp > 44;. 
1-j 

Note that if f(n) < (4+s)&, then the above argument shows that 

'i ='j +'. 
On the other hand if p,p+2 are both prime, then the 

configuration p',p(p+Z), (P+Z)~ shows that f(p'-1) C 4p+4. Thus equality 

in (5) is equivalent to the existence of infinitely many twin primes. 

For most integers n, the interval [n+l,n+l&l is free of 

square5 of primes. If A denotes the set of such n, then A has 

asymptotic density 1. In fact, the number of n Z x with n d A is 

O(x/log x). We now show (6) for the set A. 



THEOREM 4.1. For a22 sufficiently large n E A tie have f(n) > 4&. 

Proof. Suppose n E A and that f(n) <: 4& Also suppose n is large 

enough so that (iii) of Theorem 3.1 holds. Thus every member of S(n) 

is of the form pq where p, q are'primes. Since the smallest prime in 

G(n) is at least n5'12-E, we may assume all of the primes in G(n) exceed 5. 

We first note that no prime p > &I in G(n) is connected to two 

primes differing by 6 or more for otherwise 

f(n) > 6p > 6J;; > 46. 

Since there are no squares of primes in n+l,n+lO& , we conclude that 

no two primes exceeding &I are connected in G(n). Denote the primes 

exceeding & in G(n) by p1 -C p2<... i pe and the remaining primes by 

q1 < 42 <..a <qk. Each p is connected to exactly two q's (which are 

necessarily consecutive primes differing by 2 or 4) and each q is 

connected to at least two p's. 

If k = 2, then L 2 3 and G(n) must contain the subgraph 

P2 Pl p3w 
q1 42 

and so this subgraph must in fact be G(n). But p3 t pl + 6, so that 

f(n) 2 p3q2 - plql 2 (p1+6)(q1+*) - plql 

> 2pl + 6ql > 2pl + 6n/p1 2 SV%> 4&, 

a contradiction. We conclude that k 2 3. 

Say for some i, j we have q. - qi t 4 and that q. is connected 
J J 

to Pa and q i is connected to pb. Then we must have pa 5 pb. For if not, 

then 

f(n) 2 paqj - pbqi 2 (Pb+2)(qi+4) - Pbqi 

> 4pb f 2qi > 4pb + 2n/pb > 6JL > 4&T, 

52 



a contradiction. 

We conclude that q2 - ql = 2, For if q2 - ql = 4, qL is 

connected to pb < pL and pb is connected to q. > qL, then q. - q1 2 4 
J J 

and we are in the situation just covered. Similarly we have 

'k - qkml = 2. 

Putting together what we have learned about ql,....qk with the 

fact that the q's are coprime to 30, we have 

b+..., qkl = Iq1,q1+2,q1+6,q1+~8). 

We conclude that G(n) must contain the subgraph 

and so this must be G(n). 

Now note that p3 - p4 = 2. For if p5 - p4 2 4, then 

f(n) 2 p5Cql+ 2) - P4ql - ' (p4+4)(q1+2) - P49L 

> 2~4 + 4qL > 2~4 + 4n/p4 t 4JK. 

Similarly we have p2 - PI = 2. 

We have p3 5 &, for if not, then 

f(n) z p3(ql+6) - p3(ql+2) = 4~3 > 4J?% 

thus q1 + 2 > m. But then p5 - p3 < 6, for if not, 

f(n) Z p5(q1+2) - P3(q1+2) 2 8(ql+2) > 4;%n. 

Similarly p3 - PL _< 6. We conclude that p4 - p3 = p3 - p2 = 4. so that 

one of these primes is divisfble by 3, a contradiction. Thus the 

theorem is established. 

We now give a heuristic argument for (7). However, the first 

part of the argument is rigorous. Let 1 > c > 0 be arbitrary, but 

fixed. Let h(x) denote the function 2x + 2 - 9. For each large integer 

n we can find an integer x0 with the following properties: 
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(11) 

I 

GE-<xo < m + d/4 ) 
1 - $ E -x h(x0) 1 - Ch(x)I-<l---E, 0 3 

[h(x )I _= 39 (mod 210) . 0 

To see that x0 exists, note that for 0 < a < 9 

h(m + an 1i4)'=2PG-9+dia2+*(n . -l/4) 

Clearly there is a real number ao, 1 < a0 < 9, such that 

24% - 9 + 2Jz ai def m. 2 40 (mod 210). 

Thus there are positive quantities 1 > 62 > 6 
1 > 0 such that if x0 is 

any integer in the interval 

then 

vQ7 + (ao-62)n1’4 < x0 < J;;Tz + (a0-61)n1'4, 

*0 - $ E < h(xo) < m 
0 

- i E. 

This number x0 satisfies the conditions in (11). 

Now let w. = [$I - 9, so that 
0 

Ch(xo)l = 2x0 + w. 5 39 (mod 210). 

Thus there are infinitely many integers y such that the nine numbers 

(12) 

- , xo+y wO 2Y 

xO 
+y+2 w  

0 
-2y+2 

' "0 +y+6 wo-2y+6 

"0 +y+a w  0 - 2y + 12 

wO - 2y + 14 

are simultaneously coprime to 210. Indeed, if y E 11 - x0 (mod ZlO), then 

the first column modulo 210 is 11, 13, 17, 19. Since 

wO - 2y E w. + 2x 0 - 22 2 17 (mod 210), 

the second column modulo 210 is 17, 19, 23, 29, 31. 



Thus from the prime k-tuples conjecture there are infinitely 

many values of y for which the integers in (12) are all prime. We now 

make an even stronger conjecture. Namely, we assert that for all 

sufficiently large n there is a value of y with \yl -< n 115 and such 

that each number in (12) is prime. 

With such a value of y, let ql = x0 + y, pI = wO - 2y and 

consider the graph 

The three largest integers represented by edges in this graph are 

(q1+8)(p1+ 2) = xowO + y(w,-2x0) + 8w0 + 2x0 + (y+8)(-2y+ 2), 

(13) (ql+6)(QL+ 6) = xowo + y(wO-2x0) + 6w0 + 6x0 + (y+6)(-2y+ 6), 

(ql$2)(Ql+14) = xOwO + y(wO-2x0), + 2w0 + 145, + (y+2)(-2y+14), 

while the three smallest integers represented by edges in the graph are 

ql(Q1+12) = X W 0 0 + Y(wO-2x0) + 12x* + y(-2y+12), 

(q1+2)(p1+6) = xOwO + y(w,-2x0) + 2w0 + 6x0 + (y+2)(-2y+6), 

(ql+6)P1 = row0 + ~(w~-25,) + 6w0 + (y+6)(-2~). 

Since 

x0 = GE-+ O(n1'4), wO = Jz- + O(n1'4), y2 = O(n2"), 

it follows that the least of the 3 smallest numbers is the middle one for 

all large n. Moreover, since w  - 2x 

(q1+Wpl+6) = xowo + O(:g'20)o+ 

= O(n1'4), it follows that 

2wo + 6x0 + ~(n~'~) 

= xo(wo+lO) + O(n 9120) 

= x,(C$l+l) i- O(ng'20) 
0 

=n+x 0 - x0(+ - [$I) + O(ng'20) . 
0 



Thus from (ll), 

1 n f---X 3 0 + ,(*g'20 .) 5 (ql+2)(pl+6) < n + $EX~ + O(n"*') . 

We conclude rhat for all large n, we have 

n -t (ql+2)(p1+6) I n +c&. 

Since each of the numbers in (13) is (4&+o(l))Jn more than 

(q1+2)(p1+6), it follows that 

f(n) 5 (4J;!+c+*(l))Jn 

for all large n. Since E > 0 is arbitrary, we have 

lim sup f(n)lrn 5 4J2. 

This inequality (which depends on a strong form of the prime k-tuples 

conjecture) with Theorem 4.1 implies (7). 

5. A related problem. 

We say that a set of natural numbers S has the distinct divisor 

property if for each s E S we can find a divisor ds(s, 1 < ds < s, such that 

the ds are all distinct. If c > 1, let f(n;c) denote the cardinality of the 

largest subset of [n,cnl which has the distinct divisor property. 

Put another way, we can let G(n;c) denote the bipartite graph 

from the integers in [n,cnl to the set of their proper divisors, where edges 

connect numbers in [n,cnl to their proper divisors. Then f(n;c) is the 

cardinality of the largest matching in G(n;c). 

THEOREM 5.1. nor each c > 1 there is a constant 6 (c) such that 

f(n;c> - 6(c)n as n + ~0 . 

Proof. To prove the theorem we break the graph G(n;c) into little pieces 

and then put them back together. Perhaps there is a more direct proof, 

but we have not been able to find it. 

Let B > 0 be a fixed but arbitrarily large integer. Let G(n;c,B) 

denote the subgraph of G(n;c) where each of the edges m, d (where 

m E rn,cnl, dim, 1 5 d < m) satisfies m/d 5 B. Let f(n;c,B) denote the 

cardinality of the largest matching <n G(n;c,B). We shall show below that 

there is a constant 6(c,B) such that 
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(14) fb;c,B) - b(c,B)n as n -+ m . 

This result implies the theorem. Indeed, if Bl < B2, then clearly 

f(n;c,Bl) S f(n;c,Bg) so that 6(c,Bl) 5 6(c,B2). Thus 

def 
&CC) = lim 6(c,B) 

B* 

exists. Now the number of d such that djm for some m E [n,cnl and 

m/d > B is at most en/B. ThUS 

f(n;c,B) < f(n;c) C f(n;c,B) + en/B, 

and so 

6(c,B) s li& f(n;c> 5 limi f(n;c) 5 6(c,B) + c/B. 

Letting B + m, we have 15(c) = lim t f(n;c), which was to be proved. 

Let B' > B be arbitrarily large but fixed. If m is any positive 

integer, we can factor m = a(m)b(m) where a(m) is the largest divisor of m 

that is coprime to B! . Let G(n;c,B,B') denote the subgraph of G(n;c.B) 

where we take only those m E in,cnl with b(m) 5 B'. We shall show below 

that there is a constant G(c,B,B') such that if f(n;c,B,B') is the 

cardinality of the largest matching in G(n;c,B,B'), then 

(15) f(n;c,B,B') - G(c,B,B')n as n + m . 

In the same way as the theorem follows from (14), we can show (14) follows 

from (15). Indeed, if Bi < B;, then f(n;c,B,Bi) 2 f(n;c,B,B;). Thus 

G(C,B,Bi) 5 G(c,B,B;) so that 

def 
&(c,B) = lim S(c,B,B') 

B’-ro 

exists. Now the number of m E [n,cnl with b(m) > B' is at most 

c' en/b 
b>B' 

where C' denotes the sum over those b free of primes exceeding B. Since 

E' l/b < m, it follows that 

lim c' l/b = 0. 
B'a b>B' 



But 

f(n;c,B,B') 5 f(n;c,B) S f(n;c,B,B') -I- c' en/b, 
b>B' 

so that 

G(c,~,~') s ei f(n;c,B) 5 %k ftn;c,B) 5 G(c,B,g') f x'c/b- 
b>B' 

Letting B' -+ -, we have (14). 

If a is an integer coprime to B!, let G(n;c,B,B',a) denote the 

subgraph of G(n;c,B,B') where we take only those m E Cn,cnJ with a(m) = a, 

Note that if m, d is an edge in G(n;c,B,B',a), then aid. Indeed, m/d S B 

and (a,B!) = 1, so aid. A corollary is that if al # a2, then eny connected 

component of G(n;c,B,B') does not intersect both G(n;c,B,B',al) and 

G(n,c,B,B',a2). Indeed, if m, d and m', d are two edges in G(n;c,B,B'), 

then a(m)\ dim' and a(m')ldlm, so that a(m) = a(m'). 

It thus follows that a maximal matching in G(n;c,B,B') corresponds 

to a union of maximal matchings in the G(n;c,B,B',a)'s. If f(n;c,B,B',a) 

is the cardinality of the largest matching in G(n;c,B,B',a), then 

(16) f(n;c,B,B') =xf(n;c,B,B',a). 
a 

Although there are many terms in this sum, we note that up to isomorphism 

there are really only a bounded number of different graphs G(n;c,B,B',a), 

Indeed, we can list the numbers b C B' composed solely of the primes up to 

B in increasing order: 

bl < b2 <...< bk. 

Then for each a for which G(n;c,B,B',a) # 0 there is an i, j with 

1 S i C j C k and such that the vertices in [n,cnl that are in 

G(n;c,B,B',a) are bia,bi+la,...,bja. In addition, the edges in 

G(n;c,B,B',a) connect a number ba to a divisor da where 1 < b/d < B. For 

each pair i, j with 1 5 i 5 j 5 k, let G i j denote the bipartite graph 

from Ibi,bi+l,..., bjl to factors where b,'d is an edge if d/b and 

1 i b/d 5 B. Thus we have seen that each G(n;c,B,B',a) # 0 is 

canonically isomorphic to a G. * and so if f 
l,j' i,j 

is the cardinality of 

the largest matching in G. 
l,j' 

then 

f 
i,j 

= Y(n;c,B,B',a). 



Let g. 
bj 

(n;c,B,B') denote the 

G(n;c,B,B',a) canonically isomorphic to 
P 

number of values of a with 

G. 
lsje 

Then from (16), we have 

f(n;c,B,B') = 2 fi jgi j(n;c,B,B'). 
l<i<j<k ' ' 

Thus to prove (15) and ultimately the theorem it is sufficient to show 

there are constants 6 i j(c,B,B') with 
, 

g. 
l,j 

(n;c,B,B') m 6 i j(c,B,B‘)n as n + m 
, 

(17) 

or g. l,j 
(n;c,B,B') = O(1) as n + - . 

For G(n;c,B,B' ,a) to be canonically isomorphic to G 
i,j 

it is 

necessary and sufficient that 

(a,B!) = 1, bi-1 a <n 5 bia, and bja < cn < bj+la 

(where we let b 0 
= 0, bk+l = m). Let 

Then the difference between g. 
l,j 

(n;c,B,B') and the number of a E C.cm,Bnl 

with (a,B!) = 1 is at most 2. This possible error is caused by the 

ambiguity of the 2 possible extreme values for a. Thus if CL < B, 

g. 
+@I) 

l,j 
(n;c,B,B') u (8-c)Tn as n+ m , 

while if a 2 6, then 

g. l,j 
(n;c,B,B') = O(l) as n + m . 

This proves (17) and thus the theorem. 

We now collect together some results about the function 6(c). 

THEOREM 5.2. li) The function 6(c) is continuous and strictly hmeasing, 

fii) l/2 < &(c)/(c-1) < 1, 6(c) < c/2, 

(iii) lim+ 6(c)/(c-1) = 1, lim 6(c)/(c-1) = l/2. 
c-r1 C- 

PrOOf. Let S be a subset of Cn,cnl with the distinct divisor property 

and let E > 0 be arbitrary. If S' denotes the set of even numbers in 

(cn,(c+E)nl, then S u S' has the distinct divisor property. Indeed, the 

members of S' can be mapped to their halves; this does not interfere 

with the divisors of members of S. We thus have 
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so that 

f(n;c) + m/2 - 1 < f(n;c+e) 5 f(n;c> + En, 

6(c) + E/2 s &(CiE) 2 6(c) + E. 

This proves (i). 

The even numbers in [n,cnl have the distinct divisor property. 

A proper divisor d of any number in Cn,cnl satisfies d s cn/2. These 

two observations immediately give 

(18) (c-l)/2 S 6(c) s c/2- for all c 31 1. 

Therefore lim S(c)/(c-1) = 112, which is part of (iii). To see that we 

can make the first inequality in (18) strict, note that the small odd 

multiples of 3 in Cn,cnl can be mapped to l/3 of themselves and this will 

not interfere with mapping evens in [n,cnl to their halves. Specifically 

we have 

I 
2(c-1)/3, 1 < c < 312 

6(c) 1 (c--1)/2 + l/12, c 2 3/Z, 

so that 6(c)/(c-,l) > l/2 for all c > 1, proving part of (ii), 

To see that the second inequality in (18) is strict, suppose not, 

so 6(c) = c/2 for some c. If c' > c, the argument that gives (i) shows 

that 

S(c'> > 6(c) + Cc'-c) /2 = c'/2 

so that S(c') = c'/Z. Thus we may assume the value of c with 6(c) = c/2 

also satisfies c 2 2. If Sn c [n,cnl is a maximal set with the distinct 

divisor property, then #Sn = cnJ2 + o(n). But each proper divisor of a 

member of Sn does not exceed cn/2. Therefore, but for o(n) exceptions, 

we can map the integers in [l,cn/21 to distinct multiples in Cn,cnI. 

Since c/2 2 1, we thus have a subset Tn c Cl,nj with #Tn = n + o(n) such 

that the members of Tn can be mapped to distinct multiples in [n,cnl‘ 

Let t denote an arbitrarily large, but fixed integer. 

Consider all of the integers 

k,2k,...,tk 
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where k runs over the integers in (& , :I. These integers are all 

different, for if ik = jk' with k -< k', then 

t< k.--<- . k' t+1 
t-l - j k t ' 

a contradiction. Then for some k E (%,:I and for each n bigger than 

some no(t), the set Tn contains all of k,2k,...,tk. For if not, then 

STn 5 (1 --+n+l, 
t2+t 

contradicting #Tn = n + o(n). Thus if n r n,(t), there is some 

k E (s,:] such that k,2k,..., tk all have distinct multiples in [n,cn]. 

It then follows from Theorem 2 in [2] that 

c 2 (1 + o(l))hog t/loglog t 
S, 

where the "o[l)" tends to 0 as t + m. But this inequality fails for 

large t. This contradiction shows that 6(c) < c/2, proving another part 

of (ii). 

The second inequality in (18) shows that S(c)/(c-1) < 1 for c > 2. 

Suppose now 1 < c < 2. Let T denote the set of integers in rn,cn] not 

divisible by any prime up to c/(c-1). Then 

#T - {(c- l)II, (l- l/p)]n as n + m 

where II1 denotes the product over primes p 5 c/(c-1). If dlt, d < t, 

t E T, then d 5 cn/pO where p0 is the first prime exceeding c/(c-1). 

Moreover, d is not divisible by any prime p 5 c/(c-1). Thus the number 

of proper divisors of members of T is 

5 (1 + o(l))~(c/pO>lIl (1-l/p)ln as n -+ m. 

Since c/p0 < c - 1, it follows that 

(19) 6(c) 2 c - 1 - i(c-l)lt, (l-l/p) - (C/PO)IIl (l-l/p)] < c-l. 

This completes the proof of (ii). 

It remains to show lim+ S(C)/(C-l)=l. 

first two primes with p2/pl <?! 

Let pl -C p2 denote the 

Let U denote the set of m E [n,cn] 

divisible by some prime below p2. Then 



I/u-{cc -l)(l-S2(l-l/p))In as n -+ m 

where II2 denotes the product over the primes p x p2. If m E II, let p(m) 

denote the least prime factor of m. Then the mapping m + m/p(m) is 

one-to-one on U. For if ml/p(ml) = mZ/p(m2) where p(m1) < p(m,), then 

1 5 p(m2)/p(ml) = m2/ml _< c, 

Since p(m2) < p2, we have p(m2) = p(m1) so that m2 = ml. Thus the 

mapping is one-to-one as claimed. We conclude that f(n;c> > %U, so that 

S(c) 2 (c-l)(Mr,(l-l/p)). 

By the prime number theorem p2 + m as c + l+. 
+ 

Thus l'$(l-l/p) diverges 

to 0 as c-+1. We conclude that 

lim+inf a(c)/(c-1) 2 1. 
c-+1 

Combined with (19), we have lim+ S(c)/(c-1) = 1. 
c-+1 

6. Further comments. 

In section 3 we proved that if n is large, then every member of 

n's blocking configuration is a product of twu primes. We have computed 

the blocking configurations for all n < 436 and we found that in each case 

every member is the product of two primes. We thus conjecture that there 

are no exceptions, that for every n, S(n) consists solely of integers the 

product of two primes. 

Ps #S(n)bounded? In particular, can this be seen to follow 

from our other conjectures? 

Let fl(n) be the corresponding function to f(n), but now we allow 

the divisor 1 to be used (but only once, of course). The function f,(n) 

behaves very much like f(n). The only change is that the numbers in (5), 

(6), (7) are different. 

Suppose in the definition of f(n), instead of asking that 

m E [n+l, n+f(n)I be composite, let us ask that m has at least three 

(or r), not necessarily distinct prime factors. The blocking sets get 

much more complicated (in fact, how large is the smallest blocking set for 

r prime factors?) and it seems that instead of f(n)zn', the corresponding 
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function fr(n) will have an exponent that increases with r. Finally 

suppose we only want that for almost all m in [n+l, n+F(n>] there 

should be proper factors d of m, 

men from the inequality STc)/(c-T) 

distinct for different values of m. 

4 1 of Theorem 5.2 it follows that 

F(n) = o(n). Put another way, if F(n) is any function such that for each 

n, [n+l, n+F(n)] contains a subset of size (1+0(l)) F(n) with the 

distinct divisor property, then Theorem 5.2 implies F(n) = o(n). 

From the proof of Theorem 5.2, it follows that the function 

c/2 - 6(c) is positive and non-increasing. It therefore tends to a limit. 

Is this limit O? That is, do we have 6(c) = c/2 + o(1) as c + -? 

Is the function G(c)/(c-1) monotone? Is it strictly monotone? 

If the latter is so, the following corollary holds. For each number 

a, l/2 < a < 1, let F(n;a) denote the largest integer so that in 

[n,nSF(n;a)] there is a subset of cardinality at least aF(n;a) with the 

distinct divisor property. Then there is a number y > 0 such that 

F(n;a) u yn as n + m, In fact, if y exists, then clearly &(y+l)/y = a. 

If we knew that S(c)/(c-1) were strictly monotone and if $ denotes 

the inverse function, then y = B(a) - 1, Can y be proven to exist without 

using S(c)/(c- 1) strictly monotone? 

In C21 we consider a problem that is in a sense "dual" to the 

considerations with f(n). With f(n) we'map all composite numbers just 

above n to distinct divisors. In L2] we map the first n integers to 

distinct multiples just above m. Specifically, we let f(n,m) denote the 

least integer so that in [m+l,mtf(n,m)] we can find al,...,a with 
n 

i/ai for i = l,...,n. We establish some results on the average order and 

maximal order of f(n,m) (considered as a function of m) and we also 

obtain estimates for f(n,n). 
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