Studies in Pure Mathematics To the Memory of Paul Turán

Some asymptotic formulas on generalized divisor functions I

by

P. ERDŐS and A. SÁRKÖZY (Budapest)

1. Throughout this paper, we use the following notations:

 $c, c_1, c_2, \ldots, X_0, X_1, \ldots$ denote positive absolute constants. We denote the number of the elements of the finite set S by |S|. We write $e^x = \exp(x)$. v(n) denotes the number of the distinct prime factors of n. We denote the least prime factor of n by p(n), while the greatest prime factor of n is denoted by P(n).

Let A be a finite or infinite sequence of positive integers $a_1 < a_2 < \dots$ Then we write

$$N_{A}(x) = \sum_{\substack{a \in A \\ a \leq x}} 1,$$

$$f_{A}(x) = \sum_{\substack{a \in A \\ a \leq x}} \frac{1}{a},$$

$$d_{A}(n) = \sum_{\substack{a \in A \\ a/n}} 1$$

(in other words, $d_A(n)$ denotes the number of divisors amongst the a_i 's) and

$$D_A(x) = \max_{1 \le n \le x} d_A(x) \, .$$

The aim of this paper is to investigate the function $D_A(x)$. Clearly

(1)
$$\sum_{1 \le n \le x} d_A(n) = x f_A(x) + O(x).$$

One would expect that if $N_A(x) \rightarrow +\infty$ then also

(2)
$$\lim_{x \to +\infty} \frac{D_A(x)}{f_A(x)} = +\infty.$$

(2) is trivial if $f_A(x) < C$ thus we can assume

(3) $f_A(x) \to +\infty$.

The special case when

(4)
$$(a_i, a_i) = 1$$
 for all $1 \le i < j$

was posed as a problem in [2]. Furthermore, we guessed there that condition (4) can be dropped, in other words, (2) holds for all infinite sequences. To our great surprise, we disproved (2); Section 2 will be devoted to the counter-example. On the other hand, we

prove in Section 3 that $\lim_{x \to +\infty} \inf N_A(x) \left(\frac{x \log \log x}{\log x}\right)^{-1} > c_1$ implies (2). We believe that also the weaker condition $f_A(x)$ (log log x)⁻¹ $\to +\infty$ implies (2). We hope to return to this question in a subsequent paper.

Furthermore, we prove in Section 3 that (3) implies that

(5)
$$\lim_{x \to +\infty} \sup \frac{D_A(x)}{f_A(x)} = +\infty.$$

Perhaps

$$\lim_{x \to +\infty} \sup D_A(x) / f_A(x)^{(1-\varepsilon)\log f_A(x)} = +\infty$$

also holds; we will return to this problem in Part II of this paper. In Section 3, we prove several other theorems concerning various sharpenings of (2) and (5).

Theorem 1. There exist positive constants c_2 , c_3 and an infinite sequence A of positive integers such that for an infinite sequence $x_1 < x_2 < \ldots < x_k < \ldots$ of positive integers we have

$$(6) \qquad \qquad f_A(x_k) > c_2 \log \log x_k$$

and

(7)
$$\frac{D_{\mathcal{A}}(x_k)}{f_{\mathcal{A}}(x_k)} < c_3.$$

Proof. We are going to construct finite sequences satisfying inequalities corresponding to (6) and (7) at first.

By a theorem of HARDY and RAMANUJAN [5], there exist positive constants δ and X_1 such that if $x > X_1$ then uniformly for all $\sqrt{x} \le y \le x$, the conditions $b \le y$ and $v(b) < < 2 \log \log x$ hold for all but $\frac{y}{(\log x)^{\delta}}$ integers b. (See also [1].)

For any positive integer $x \ge 10$ and for $1 \le j \le (\log x)^{\delta/2}$, let $B_j(x)$ denote the set of those integers b for which

(i)
$$\frac{x}{2^{j}} < b \le \frac{x}{2^{j-1}}$$
,
(ii) $p(b) > 2^{j}$,

(iii)
$$\mu(b) \neq 0$$

and

(iv) $v(b) < 2 \log \log x$

hold and let

$$B(x) = \bigcup_{1 \leq j \leq (\log x)^{d/2}} B_j(x) \, .$$

We will show that there exist constants X_2 and c_4 such that for $x \ge X_2$, we have

(8)
$$\sum_{b \in B(x)} \frac{1}{b} > c_4 \log \log x$$

and

$$D_{B(x)}(x) < 2\log\log x.$$

By using standard methods of the prime number theory (see e.g. [3] or [4]), it can be shown easily that there exist constants c_5 and X_3 such that if $x > X_3$ then uniformly for all y and z for which $\sqrt{x} < y$ and $z \le 2^{(\log x)^{b/2}}$, the number of the integers b satisfying the conditions $y \le b \le 2y$, p(b) > z and $\mu(b) \ne 0$ is greater than

$$c_{5y} \prod_{p \le z} \left(1 - \frac{1}{p} \right) \prod_{p > z} \left(1 - \frac{1}{p^2} \right) > c_6 \frac{y}{\log z}.$$

Thus for $x > X_3$, the number of the integers b satisfying (i), (ii) and (iii) (for fixed j) is greater than

$$c_6 \frac{x/2^j}{\log 2^j} = c_7 \frac{x}{j2^j}$$

uniformly for $1 \le j \le (\log x)^{\delta/2}$.

On the other hand, by

$$\frac{x}{2^{j}} \ge \frac{x}{2^{(\log x)^{\delta/2}}} > \frac{x}{\sqrt{x}} = \sqrt{x} ,$$

the definition of δ yields that for $x > X_1$, (iv) holds for all but

$$\frac{x/2^{j-1}}{(\log x)^{\delta}} = \frac{x}{2^{j-1}(\log x)^{\delta}}$$

of the integers b satisfying (i).

Thus for $x \ge X_4$, we have

$$|B_{j}(x)| > c_{7} \frac{x}{j2^{j}} - \frac{x}{2^{j-1}(\log x)^{\delta}} = c_{7} \frac{x}{j2^{j}} \left(1 - \frac{2}{c_{7}} \frac{j}{(\log x)^{\delta}}\right) > c_{8} \frac{x}{j2^{j}}$$

for all $1 \leq j \leq (\log x)^{\delta/2}$, hence

$$\sum_{b \in B(x)} \frac{1}{b} = \sum_{1 \le j \le (\log x)^{\delta/2}} \sum_{b \in B_j(x)} \frac{1}{b} \ge \sum_{1 \le j \le (\log x)^{\delta/2}} \sum_{b \in B_j(x)} \frac{1}{x/2^{j-1}} =$$
$$= \sum_{1 \le j \le (\log x)^{\delta/2}} |B_j(x)| \frac{2^{j-1}}{x} > \sum_{1 \le j \le (\log x)^{\delta/2}} c_8 \frac{1}{2j} > c_9 \log (\log x)^{\delta/2} > c_{10} \log \log x$$

for $x > X_5$ which proves (8).

In order to prove (9), note that if

$$b_1 u = b_2 v \leq x$$

for some positive integers $b_1 \in B(x)$, $b_2 \in B(x)$, u, v, and $b_1 < b_2$ then by the construction of the set B(x), we have

$$p(b_1) > \frac{x}{b_1} \ge u = \frac{b_2}{b_1}v > v$$

thus $(b_1, v) = 1$ and $b_1 = \frac{b_2 v}{u} \Big/ b_2 v$, hence b_1/b_2 . Thus if $n \le x$, and $b_1 < b_2 < \ldots < b_r$ denote all the positive integers b_i such that $b_i \in B(x)$ and b_i/n then

$$(10) b_1/b_2/\ldots/b_r$$

must hold. By the construction of the set B(x), we have

$$\mu(b_r) \neq 0$$

and

(12)
$$v(b_r) < 2 \log \log x$$

(10) and (11) imply that

$$v(b_1) < v(b_2) < \ldots < v(b_r)$$

thus with respect to (12),

$$d_{B(x)}(n) = r \leq v(b_r) < 2 \log \log x$$

for all $n \leq x$ which proves (9).

Finally, let $x_1 = \max \{10, [X_2]+1\}$ and $x_k = [\exp \{\exp (\exp x_{k-1})\}] + 1$ for k=2, 3, ..., and let

$$A=\bigcup_{k=1}^{+\infty}B(x_k).$$

Then by (8), we have

$$f_{\mathcal{A}}(x_k) = \sum_{\substack{a \in \mathcal{A} \\ a \leq x_k}} \frac{1}{a} \geq \sum_{a \in \mathcal{B}(x_k)} \frac{1}{a} > c_4 \log \log x_k$$

for $k = 1, 2, \ldots$ which proves (6).

Furthermore, (9) yields that for k = 2, 3, ... and $n \leq x_k$, we have

$$d_{A}(n) \leq \sum_{i=1}^{k} d_{B(x_{i})}(n) = \sum_{i=1}^{k-1} d_{B(x_{i})}(n) + d_{B(x_{k})}(n) \leq$$
$$\leq \sum_{i=1}^{k-1} \sum_{b \in B(x_{i})} 1 + D_{B(x_{k})}(x_{k}) < \sum_{b \leq x_{k-1}} 1 + 2\log\log x_{k} =$$

$$= x_{k-1} + 2 \log \log x_k < \log \log \log x_k + 2 \log \log x_k < 3 \log \log x_k$$

hence

(13)

$$D_{\mathcal{A}}(x_k) < 3 \log \log x_k \, .$$

(13) and (14) yield (7) and the proof of Theorem 1 is completed.

We note that we could sharpen Theorem 1 in the following way:

Theorem 1'. There exists an infinite sequence A of positive integers such that for an infinite sequence $x_1 < x_2 < \ldots < x_k < \ldots$ of positive integers we have

(6')
$$\lim_{k \to +\infty} \inf \frac{f_A(x_k)}{e^{-\gamma} \log \log x_k} = 1$$

and

(7)
$$\lim_{k \to +\infty} \sup \frac{D_A(x_k)}{f_A(x_k)} = 1$$

where γ denotes the Euler-constant.

Note that (7') is best possible as (1) shows. In fact, Theorem 1' could be proved by the following construction: Let x_1 be a large number, and for $k = 2, 3, ..., let x_k$ be sufficiently large in terms of k and x_{k-1} . For $k = 1, 2, ..., let B(x_k)$ denote the set of those integers b for which

(i) $x_k^{1/2} < b < x_k$, (ii) $p(b) > \frac{x_k}{b}$, (iii) $\mu(b) \neq 0$, (iv) $\nu(b) < \left(1 + \frac{1}{k}\right) \log \log x_k$,

(v) if the prime factors of b are $p_1 < p_2 < \ldots < p_{v(b)}$ then $p_{i+1} > p_1 p_2 \ldots p_i$ holds for less than $\left(1 + \frac{2}{k}\right)e^{-\gamma} \log \log x_k$ of the integers $1 \le i \le v(b)$.

Finally, let

$$A=\bigcup_{k=1}^{+\infty}B(x_k).$$

It can be shown easily that for this sequence A, we have

(15)
$$\lim_{k \to +\infty} \sup \frac{D_{\lambda}(x_k)}{e^{-\gamma} \log \log x_k} \leq 1.$$

Combining the methods of probability theory with Brun's sieve (see e.g. [3] or [4]) it can be proved that also (6') holds. However, this proof would be very complicated; this is the reason of that that we have worked out the weaker version discussed in Theorem 1. (1), (6') and (15) yield also (7').

Theorem 2. If

(16)
$$\lim_{x \to +\infty} f_A(x) = +\infty$$

then we have

(17)
$$\lim_{x \to +\infty} \sup D_{\mathcal{A}}(x) \left(\frac{\log x}{\log \log x}\right)^{-1} \ge 1.$$

Note that this theorem is best possible as the sequence A consisting of all the prime number shows.

Proof. We are going to show at first that (16) implies that for all $\varepsilon > 0$, there exist infinitely many integers y such that

(18)
$$N_{\mathcal{A}}(y) > \frac{y}{(\log y)^{1+\epsilon}}.$$

In fact, let us assume indirectly that for some $\varepsilon > 0$ and $y > y_0(\varepsilon)$ we have

$$N_{\mathcal{A}}(y) \leq \frac{y}{(\log y)^{1+\varepsilon}}.$$

Then partial summation yields that for $x \rightarrow +\infty$ we have

$$f_{\mathcal{A}}(x) = \sum_{a \le x} \frac{1}{a} = \sum_{y=1}^{x} \frac{N_{\mathcal{A}}(y) - N_{\mathcal{A}}(y-1)}{y} = \sum_{y=1}^{x} N_{\mathcal{A}}(y) \left(\frac{1}{y} - \frac{1}{y+1}\right) + \frac{N_{\mathcal{A}}(x)}{x+1} = \\ = \sum_{y=1}^{x} \frac{N_{\mathcal{A}}(y)}{y(y+1)} + \frac{N_{\mathcal{A}}(x)}{x+1} = O\left(\sum_{y=1}^{x} \frac{y/(\log y)^{1+\varepsilon}}{y^{2}}\right) + O\left(\frac{x/(\log x)^{1+\varepsilon}}{x}\right) = \\ = O\left(\sum_{y=1}^{x} \frac{1}{y(\log y)^{1+\varepsilon}}\right) + O\left(\frac{1}{(\log x)^{1+\varepsilon}}\right) = O(1)$$

in contradiction with (16) and this contradiction proves the existence of infinitely many integers y satisfying (18) (for all $\varepsilon > 0$).

Let us fix some $\varepsilon > 0$ and let y be a large integer satisfying (18). Put

$$X = \prod_{\substack{a \in A \\ a \leq y}} a.$$

Then

$$X \leq \prod_{\substack{a \in A \\ a \leq y}} y = y^{N_{\mathcal{A}}(y)}$$

hence

(19)
$$\log X \leq N_A(y) \log y,$$

and for large y, we have

$$\log X = \sum_{\substack{a \in A \\ a \leq y}} \log a \ge \sum_{\substack{a \in A \\ 3 \leq a \leq y}} \log a >$$

$$> \sum_{\substack{a \in A \\ 3 \leq a \leq y}} \log 3 = (N_A(y) - N_A(2)) \log 3 \ge (N_A(y) - 2) \log 3 > N_A(y)$$

thus by (18),

(20)
$$\log \log X > \log N_A(y) > \log \frac{y}{(\log y)^{1+\varepsilon}} > (1-\varepsilon) \log y$$

for sufficiently large y.

(19) and (20) yield that

(21)
$$N_{\mathcal{A}}(y) \ge \frac{\log X}{\log y} > \frac{\log X}{\frac{1}{1-\varepsilon} \log \log X} = (1-\varepsilon) \frac{\log X}{\log \log X}.$$

Furthermore, we have

(22)
$$D_A(X) \ge d_A(X) = \sum_{\substack{a \in A \\ a \mid X}} 1 \ge N_A(y)$$

since $X = \prod a$ is divisible by all the $N_A(y)$ integers a satisfying $a \in A$, $a \leq y$. $a \in A$ $a \leq y$ (21) and (22) yield that

$$D_A(X) > (1-\varepsilon) \frac{\log X}{\log \log X}$$

For all $\varepsilon > 0$, this holds for infinitely many integers X and this proves (17).

Theorem 3. If $x > X_0$ and

(23)
$$N_{A}(x) > 5 \frac{x \log \log x}{\log x}$$

then there exists a positive integer X such that

(24)
$$\frac{x}{\log x} < X < \exp(x)$$

and

(25)
$$\frac{d_{\mathcal{A}}(X)}{\log X} > \exp\left(\frac{1}{20} \frac{\log x}{x} N_{\mathcal{A}}(x)\right).$$

Note that by (23) and (24), the right-hand side of (25) is

$$\exp\left(\frac{1}{5}\frac{\log x}{x}N_{\mathcal{A}}(x)\right) > \exp\left(\log\log x\right) = \log x > \log\log X \to +\infty$$

as $x \to +\infty$.

Theorem 4. If A is an infinite sequence such that

(26)
$$\lim_{x \to +\infty} \inf N_A(x) \left(\frac{x \log \log x}{\log x} \right)^{-1} > 5$$

then we have

(27)
$$\lim_{x \to +\infty} \frac{D_A(x)}{\log x} = +\infty.$$

Note that for large x, we have

(28)
$$f_A(x) = \sum_{\substack{a \in A \\ a \le x}} \frac{1}{a} \le \sum_{\substack{a \le x}} \frac{1}{a} < 2 \log x$$

thus (25) implies that also

$$\lim_{x \to +\infty} \frac{D_A(x)}{f_A(x)} = +\infty$$

holds.

We are going to prove Theorems 3 and 4 simultaneously.

Proof of Theorems 3 and 4. Assume that $x > X_0$ and for a finite or infinite sequence A, we have

(29)
$$N_{\mathcal{A}}(x) > 5 \frac{x \log \log x}{\log x}$$

Let t be a real number such that

(30)
$$\frac{5}{4}\log\log x \le \log t \le \frac{1}{4}\frac{\log x}{x}N_{A}(x)$$

Then obviously, we have

$$\log t \leq \frac{1}{4} \frac{\log x}{x} x = \frac{1}{4} \log x$$

hence

$$(31) t \leq x^{1/4}$$

Let A* denote the set of those integers a for which $a \in A$, $a \leq x$ and $P(a) > \frac{x}{t}$ hold. It is well known that

(32)
$$\sum_{p \le y} \frac{1}{p} = \log \log y + c_{11} + O\left(\frac{1}{\log y}\right).$$

(30), (31) and (32) yield that

$$\sum_{\substack{1 \le n \le x \\ P(n) > x/t}} 1 \le \sum_{\substack{x/t
$$= \sum_{x/t$$$$

(33)

$$= x \left\{ \left(\log \log x + c_{11} + O\left(\frac{1}{\log x}\right) \right) - \left(\log \log x/t + c_{11} + O\left(\frac{1}{\log x/t}\right) \right) \right\} = \\ = -x \log \left(1 - \frac{\log t}{\log x} \right) + O\left(\frac{x}{\log x}\right) < 2x \frac{\log t}{\log x} + O\left(\frac{x}{\log x}\right) < 3x \frac{\log t}{\log x}$$

since

$$-\log(1-y) = \sum_{k=1}^{+\infty} \frac{y^k}{k} < \sum_{k=1}^{+\infty} y^k = \frac{y}{1-y} < 2y \quad \text{for} \quad 0 < y < \frac{1}{2},$$

and

$$0 < \frac{\log t}{\log x} < \frac{1}{4}$$

by (30) and (31).

(30) and (33) yield that

$$|A^*| \ge N_A(x) - \sum_{\substack{1 \le n \le x \\ P(n) > x/t}} 1 = N_A(x) \left(1 - \frac{1}{N_A(x)} \sum_{\substack{1 \le n \le x \\ P(n) > x/t}} 1 \right) =$$

(34)

$$= N_{\mathcal{A}}(x) \left(1 - \frac{\log x}{4x \log t} \sum_{\substack{1 \le n \le x \\ P(n) > x/t}} 1 \right) > N_{\mathcal{A}}(x) \left(1 - \frac{\log x}{4x \log t} \cdot 3x \frac{\log t}{\log x} \right) = \frac{1}{4} N_{\mathcal{A}}(x)$$

Let us denote the least common multiple of the elements of A^* by X. Then with respect to (34), we have

(35)
$$d_{A}(X) \ge d_{A^{*}}(X) = |A^{*}| > \frac{1}{4} N_{A}(x)$$

Furthermore, if $a \in A^*$ then $a \leq x$ and $P(a) \leq x/t$ thus we have

$$a \Big/ \prod_{p \leq x/t} p^{\lfloor \log x/\log p \rfloor}$$

hence

$$X \Big/ \prod_{p \leq x/t} p^{\lfloor \log x / \log p \rfloor}$$

which implies that

(36)
$$X \leq \prod_{p \leq x/t} p^{\lceil \log x / \log p \rceil} \leq p \prod_{p \leq x/t} x = x^{\pi(x/t)}.$$

Using the prime number theorem or a more elementary theorem, we obtain from (36) with respect to (31) that

(37)
$$\log X \leq \pi(x/t) \log x < 2 \frac{x/t}{\log x/t} \log x \leq \frac{x}{t \log (x/x^{1/4})} \log x = \frac{8}{3} \frac{x}{t}.$$

In order to deduce Theorem 3 from the construction above, assume that A satisfies the conditions in Theorem 3, and put

(38)
$$\log t = \frac{1}{4} \frac{\log x}{x} N_A(x).$$

Then by (23), we have

(39)
$$\log t > \frac{1}{4} \frac{\log x}{x} \cdot 5 \frac{x \log \log x}{\log x} = \frac{5}{4} \log \log x,$$

while the second inequality in (30) holds by the definition of t. Thus by (23), (35), (37) and (38), the construction above yields the existence of an integer X such that

$$\frac{d_{\mathcal{A}}(X)}{\log X} > \frac{N_{\mathcal{A}}(x)/4}{8x/3t} = \frac{3}{32} \cdot \frac{N_{\mathcal{A}}(x)t}{x} = \frac{3}{32} \cdot \frac{N_{\mathcal{A}}(x)}{x} \exp\left(\frac{1}{4} \cdot \frac{\log x}{x} N_{\mathcal{A}}(x)\right) =$$

$$= \exp\left(\frac{1}{4} \cdot \frac{\log x}{x} N_{\mathcal{A}}(x) + \log\frac{3}{32} \cdot \frac{N_{\mathcal{A}}(x)}{x}\right) >$$

$$> \exp\left(\frac{1}{4} \cdot \frac{\log x}{x} N_{\mathcal{A}}(x) + \log\frac{3}{32} \cdot \frac{5\log\log x}{\log x}\right) >$$

$$> \exp\left(\frac{1}{4} \cdot \frac{\log x}{x} N_{\mathcal{A}}(x) - \log\log x\right) >$$

$$> \exp\left\{\frac{1}{4} \cdot \frac{\log x}{x} N_{\mathcal{A}}(x) \left(1 - 4 \cdot \frac{1}{N_{\mathcal{A}}(x)} \cdot \frac{x\log\log x}{\log x}\right)\right\} >$$

$$> \exp\left\{\frac{1}{4} \cdot \frac{\log x}{x} N_{\mathcal{A}}(x) \left(1 - \frac{4}{5}\right)\right\} = \exp\left(\frac{1}{20} \cdot \frac{\log x}{x} N_{\mathcal{A}}(x)\right).$$

Finally, by the definition of X and with respect to (23) and (34), we have

$$X \ge \max_{a \in A^*} a \ge |A^*| > \frac{1}{4} N_A(x) > \frac{1}{4} \cdot 5 \frac{x \log \log x}{\log x} > \frac{x}{\log x},$$

while (36) and (39) yield that

$$X < \exp\left(\frac{8}{3} \cdot \frac{x}{t}\right) < \exp\left(\frac{8}{3} \cdot \frac{x}{(\log x)^{5/4}}\right) < \exp(x)$$

and this completes the proof of Theorem 3.

In order to prove Theorem 4, assume that an infinite sequence A satisfies (26) and let y be a large number; we are going to show by using the construction above that $\frac{D_A(y)}{\log x}$ is large. Define x by

 $\log y$ is large. I

$$x = \frac{1}{3}\log y(\log\log y)^{5/4}$$

and put $t = (\log x)^{5/4}$. Then for sufficiently large y, (29) holds by (26). Furthermore,

$$\frac{1}{4} \frac{\log x}{x} N_A(x) > \frac{1}{4} \frac{\log x}{x} \cdot 5 \frac{x \log \log x}{\log x} = \frac{5}{4} \log \log x = \log t$$

thus also (30) holds. The construction above yields the existence of an integer X such that (35) and (37) hold. We obtain from (37) that

$$X < \exp\left(\frac{3}{8}\frac{x}{t}\right) = \exp\left\{\frac{8}{3} \cdot \frac{1}{3} \frac{\log y (\log \log y)^{5/4}}{\left(\log\left(\frac{1}{3}\log y (\log \log y)^{5/4}\right)\right)^{5/4}}\right\} < \exp\left(\frac{8}{9}\frac{\log y (\log \log y)^{5/4}}{(\log \log y)^{5/4}}\right) = y^{8/9} < y,$$

thus with respect to (29) and (35), we have

(40)
$$\frac{D_{A}(y)}{\log y} \ge \frac{d_{A}(X)}{\log y} > \frac{N_{A}(x)/4}{\log y} > \frac{4}{5} \frac{x \log \log x}{\log x \log y} = \frac{4}{5} \frac{\frac{1}{3} \log y (\log \log y)^{5/4} \log \log \left(\frac{1}{3} \log y (\log \log y)^{5/4}\right)}{\log \left(\frac{1}{3} \log y (\log \log y)^{5/4}\right) \log y} > \frac{1}{3} \log \frac{1}{3} \log y (\log \log y)^{5/4}} = \frac{1}{3} \log \frac{1}{3} \log y (\log \log y)^{5/4}}{\log \left(\frac{1}{3} \log y (\log \log y)^{5/4}\right) \log y} > \frac{1}{3} \log \frac{1}{3} \log y (\log \log y)^{5/4}} \log y$$

$$> \frac{4}{15} \frac{(\log \log y)^{5/4} \log \log \log \log y}{2 \log \log y} > \frac{2}{15} (\log \log y)^{1/4} \log \log \log y$$

which completes the proof of Theorem 4.

Theorems 3 and 4 are best possible (except the values of the constants on the right hand sides of (23) and (26), respectively) as the following theorem shows:

Theorem 5. There exists an infinite sequence A of positive integers such that

(41)
$$\lim_{x \to +\infty} \inf N_{\mathcal{A}}(x) \left(\frac{x \log \log x}{\log x}\right)^{-1} \ge 1$$

and

$$(42) d_A(x) \le \log x$$

for all x.

Proof. Let A consist of all the integers a of the form a = pk where p is a prime number and $1 \le k \le \log p$. Then by the prime number theorem (or a more elementary theorem) and (32) we have

$$\sum_{\substack{a \in A \\ a \leq x}} 1 = \sum_{p \leq x} \sum_{1 \leq k \leq \min\{\log p, x/p\}} 1 \geq \sum_{\frac{x}{\log x - 2\log \log x}} \sum_{1 \leq k \leq \frac{x}{p}} 1 \geq$$

$$\geq \sum_{\frac{x}{\log x - 2\log\log x}$$

$$= x \left(\log \log x - \log \log \frac{x}{\log x - 2 \log \log x} + O\left(\frac{1}{\log x}\right) \right) + O\left(\frac{x}{\log x}\right) =$$

$$= -x \log \left(1 - \frac{\log (\log x - 2 \log \log x)}{\log x} + O\left(\frac{x}{\log x}\right)\right) =$$

$$= (1 + o(1)) \frac{x \log(\log x - 2 \log \log x)}{\log x} + O\left(\frac{x}{\log x}\right) = (1 + o(1)) \frac{x \log \log x}{\log x}$$

which proves (41).

Let $x \ge 2$ be an integer and let $x = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$ where $p_1 < p_2 < \dots < p_r$ are prime numbers and $\alpha_1, \alpha_2, \dots, \alpha_r$ are positive integers. For $i = 1, 2, \dots, r$, let S_i denote the set of the integers a for which $a \in A$, a/x and $P(a) = p_i$ hold.

By the definition of the set $A, a \in S_i$ implies that a can be written in the form $a = p_i k$ where $1 \le k \le \log p_i$. Thus obviously, we have

$$|S_i| \leq \sum_{1 \leq k \leq \log p_i} 1 \leq \log p_i$$

hence

$$d_{\mathcal{A}}(x) = \sum_{\substack{a \in A \\ a/x}} 1 = \sum_{i=1}^{r} \sum_{\substack{a \in A \\ a|x \\ P(a) = p_i}} 1 = \sum_{i=1}^{r} |S_i| \leq \sum_{i=1}^{r} \log p_i =$$
$$= \log\left(\prod_{i=1}^{r} p_i\right) \leq \log\left(\prod_{i=1}^{r} p_i^{\alpha_i}\right) \leq \log x$$

and this completes the proof of Theorem 5. Theorems 2 and 3 imply that

Theorem 6. If

$$\lim_{x \to +\infty} f_A(x) = +\infty$$

then we have

(43)
$$\lim_{x \to +\infty} \sup \frac{D_A(x)}{f_A(x)} = +\infty.$$

Proof. Assume at first that

(44)
$$f_A(x) = o\left(\frac{\log x}{\log\log x}\right).$$

We have

$$\frac{D_A(x)}{f_A(x)} = \frac{D_A(x)}{\frac{\log x}{\log \log x}} \cdot \frac{\frac{\log x}{\log \log x}}{f_A(x)}.$$

Here the first factor is $\ge \frac{1}{2}$ for infinitely many integers x by Theorem 2, while the second factor tends to $+\infty$ by (44) which implies (43).

c / 1

Assume now that

(45)
$$\lim_{x \to +\infty} \sup \frac{f_A(x)}{\frac{\log x}{\log \log x}} > 0.$$

We are going to show that this implies that there exist infinitely many integers x satisfying

$$N_A(x) > 5 \frac{x \log \log x}{\log x}$$

Assume indirectly that for $x > X_0$ we have

$$N_{\mathcal{A}}(x) \leq 5 \frac{x \log \log x}{\log x}$$

Then partial summation yields that

$$f_{\mathcal{A}}(x) = \sum_{\substack{a \in \mathcal{A} \\ a \leq x}} \frac{1}{a} = \sum_{y \leq x} \frac{N_{\mathcal{A}}(y) - N_{\mathcal{A}}(y-1)}{y} = \sum_{y \leq x} N_{\mathcal{A}}(y) \left(\frac{1}{y} - \frac{1}{y+1}\right) + \frac{N_{\mathcal{A}}(x)}{x+1} = \\ = \sum_{y \leq x} \frac{N_{\mathcal{A}}(y)}{y(y+1)} + \frac{N_{\mathcal{A}}(x)}{x+1} \leq \sum_{y \leq x} \frac{N_{\mathcal{A}}(y)}{y^{2}} + \frac{N_{\mathcal{A}}(x)}{x} = \\ = O\left(\sum_{y \leq x} \frac{\log \log y}{y \log y}\right) + O\left(\frac{\log \log x}{\log x}\right) = O((\log \log x)^{2})$$

in contradiction with (45) which proves the existence of infinitely many integers satisfying (46). By Theorem 3, this implies that

(47)
$$\lim_{x \to +\infty} \sup \frac{D_{\mathcal{A}}(x)}{\log x} = +\infty.$$

Obviously, we have

$$f_{\mathcal{A}}(x) = \sum_{\substack{a \in \mathcal{A} \\ a \leq x}} \frac{1}{a} \leq \sum_{a \leq x} \frac{1}{a} \sim \log x$$

thus

(48)
$$\lim_{x \to +\infty} \inf \frac{\log x}{f_A(x)} \ge 1.$$

(47) and (48) yield that

$$\lim_{x \to +\infty} \sup \frac{D_A(x)}{f_A(x)} = \lim_{x \to +\infty} \sup \frac{D_A(x)}{\log x} \cdot \frac{\log x}{f_A(x)} = +\infty$$

and this completes the proof of Theorem 6.

References

- P. ERDÖS, An asymptotic inequality in the theory of numbers (in Russian), Vestnik Leningrad. Univ., 15 (1960), no. 13, 41-49.
- [2] Problem 483, Nieuw Archief voor Wiskunde, 25 (1977), 424-425.
- [3] H. HALBERSTAM and H. E. RICHERT, Sieve methods, Academic Press, London-New York-San Francisco, 1974.
- [4] H. HALBERSTAM and K. F. ROTH, Sequences, vol. I, Oxford at the Clarendon Press, Oxford, 1966.
- [5] G. H. HARDY and S. RAMANUJAN, The normal number of prime factors of a number n, Quarterly Journal of Mathematics, 48 (1920), 76–92.

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES H-1053 BUDAPEST, REÁLTANODA U. 13–15. HUNGARY

12*