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Summary. A lower limit of the length of the longest excursion of a sym- 
metric random walk is given. Certain related problems are also discussed. It 
is shown e.g. that for any a>0 and all sufficiently large n there are C(E) 
loglogn excursions in the interval (0, n) with total length greater than n(l 
-a), with probability 1. 

1. Introduction 

Let x,, x,, . . . be a sequence of i.i.d.r.v.‘s with 

lP(Xi=+l)=JP(X,= -I)=$ (i=l,2, .-,) 

and consider the random walk S(O)=O, S(II)=X,+X,+...+X, (n=l,2, . ..). 
Introduce the following notations : 

9(n)=J%.{k: O<kS:n,S(k)>Oj, 

z%‘(m)=d’o,{k: O<ks;n, S(k)=O), 

(,4%. (...I stands for cardinality of the set in brackets). 

po=o. 
p,=inf{k: k>O.S(k)=O}, 

p,=inf{k: kz=-p,, S(k)=O}, 
. . . . . . . . . . . . . . . . . . 

P .+l=inf{k: k>p,, S(k)=O}, 
. . . . . . . . . . . . . . . , . . 

,W)=maxtp,. p2-p1, --., Pa(n)-P9(n)-1, +p2(,,). 

Here F(?t) is the length of the longest excursion of the random walk S(O), 
S(l), . . . , S(n). The main goal of the present paper is to study the properties of 
F(Il). 
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The properties of .2(n) and .Vp(n) were studied by Chung and Hunt (1949) 
and Chung and Erdds (1952) resp. Here we recall the Chung-Erdiis theorem. 

Theorem A. Let f(x) be a non-decreasing function for which lim f(x)= s and 

Put 
x-+33 

w,=q $& 

Then 

JP{l(n)>n (1-h) i.o.}={i z :ti;zz7 (1.1) 

and 

P B(n)&& i.o. 
1 $ I(j-)=cc, 
0 if Z(f)<m (1.2) 

Studying the proof of Theorem A we can realize that the following stronger 
statement is also proved by Chung and Erdds: 

Theorem B 

(1.3) 

provided that f(x)/” cc. 

(1.3) gives the best possible upper bound for F(n). For example it implies 
that for any E>O 

~(n)Sn-(log$+s 

except finitely many n with probability one and 

infinitely often with probability one. We are interested to find a lower bound 
for Y(n). Our main result is 

Theorem 1. Let f (x) be a non-decreasing function for which 

and let 

J?(f)= z f(M) e-lw) 
II= 1 n 

Then 

where fl= 0,85403 . . . is the root of the equation 

(1.4) 

0.5) 
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(1.4) says for example that 

Remark. Equation (1.5) emerges in a paper by Shepp (1967) (see also Green- 
wood and Perkins (1983)). 

Beside of studying the properties of the length of the longest excursion, it 
looks interesting to say something about the second, third . . . etc. longest 
excursion. Consider the sample pi, pz -pl, . . . , pacnj--pwcnl- 1, n-pP,(,) (the 
lengths of the excursions) and the corresponding ordered sample Yi(n) 
= Y(n) 2 T,(n) 2.. .Z Y&+ 1 (n). Now we present our 

Theorem 2. FOP any fixed k = 1,2, . . . we have 

liminf F $r.YJn)=kfl as. 
“iC.2 

This Theorem, in some sense, answers the question “How small can be 
FZ((n), Y3((n), . ..?” In order to obtain a more complete description of these r.v.‘s 
we present the following: 

Problem 1. Characterize the set of those non-decreasing functions f(n) (n 
=l, 2, . ..) for which 

lP{&(n)zt (1-h) i.o.)=l. 

(1.3) says that for some n nearly the whole random walk S(O), S(l), . . . , S(n) 
is one excursion. (1.4) and (1.6) say that for some n the random walk consists 
of at least /3-’ loglogn excursions. These results suggest the question: For 

k 

what value of k= ii(n) will the sum 1 Y?(U) be nearly equal to n? In fact we 
formulate two questions: j= 1 

Question 1. For any E>O let F(E) be the set of those functions f(n) (n= 1,2, .,.) 
for which 

f(n) 
1 qn)&l(l-&) 

J= 1 

with probability one except finitely many n. How can we characterize F(E) for 
some E>O? 

Question 2. Let Y{D) be the set of those functions f(n) (n = 1,2, . . .) for which 

lim n- ’ C Fj(n)= 1 as. 
n-cc j= 1 

How can we characterize F(G)? 
Studying our first question we have 



368 I?. CsBki et al. 

Theorem 3. For any E > 0 there exists a C = C(E) > 0 such that 

c loglog MEF(&). 

Concerning our Question 2, we have the following result: 

Theorem 4. For my C>O 

f(n)= c 10g10gm$~(0) 

andfor any +jr x (n-t x) 

w(n) loglogE~((o). 

2. Proof of Theorem 1 

We recall the following well-known 

Theorem C 
(k = 1, 2, . . .). 

Consequently 

where 13,15 1. 

b,= 1 ___ k-” exp(3Jk) 
2fi 

By (2,l) we easily obtain 

Lemma 1 

where /I is the root of Eq. (1.5). 

Proof. Clearly we have 

$ bjexp ~~)=j~~b~+j~~bj(exp~~)-‘) 
j= 1 

and 

A,=---- 
1 z pk f jk-' 

2fi k= 1 ak k! j= 1 

0.7) 

(14 

(2.1) 

(2.2) 

‘co B” 
=‘“‘)-tkCI k!(2k-1) 

+o(a-t)=(7la)-r+8(a-:) 
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what proves (2,2). 
A,=O(d) 

Let 

Ptl=PJ4= 
i 

IP(F(2n).52a) if nza, 
1 if n<a. 

Then we clearly have 

Lemma 2. 

Pn=iP ,ejbj (n=a,a+l. . ..). (2.3) 
j= 1 

Now we are looking for the solution of (2.3) satisfying the initial condition 
p,=l if II= 1,2, . . . ,a -1. We obtain 

Lemma 3. There exist positive constants 0 < C, 5 C, < ,zm such that 

and 
C,sC(n,a)sC, 

provided that n 2 a*. 

From now on C (with or without index) will stand for an absolute constant 
whose actual value may change from line to line. 

Proof: Replacing (2.4) in (2.3) we get 

C(n, a) = j$l C(n -j, a) exp (P i) bj. (2.5) 

In case ns2a our statement is trivial. For n>2a the statement follows from 
(2.5) by induction, 

Lemma 4. Let f(n) (n = 1,2, . . .) be a non-decreasing positive function for which 

and put 
f-(n) <a loglog n i.0. w9 

Then &=$=m’. 

ProoJ: Suppose that f(N)<+ loglog N for a fixed N. Then a simple calculation 
gives 

(2.7) 



370 E Csiki et al. 

Thus f2 C(log N)’ for infinitely many N, we have # = co. One can see similarly 
that j= x8 by observing that condition (2.6) implies that f(n,)<f loglogn, i.o. 

Lemma 5. Let f(n) (n= 1, 2, . ..) b e a non-decreasing, positice function. Then & 
=a if and only if j=‘z. 

Such a lemma like this and the previous lemma is frequently used in the 
proofs of theorems like our Theorem 1, hence its proof is routine. For the 
convenience of the reader we present it. 

Proof 

.,pwe-“““‘=c~* 
k log k 

Similarly one can obtain that 

By Lemma 4 one can assume that f(n) >a loglog n (n= 3,4, . .). Hence we have 

$*g‘$ 

that is 2 = cc implies f = W. In order to see the converse statement let 

Then 
A = {k: f(nk) ~2 loglog nk}. 

f(%) sCCepftnk)+C -e -She) 5 cj + c 

keA k$A logk 

what proves the implication: if & = xi then 2 = ixj. 
The following lemma is trivial, we give it without proof, 

Lemma 6. Let {a,} be a non-increasitzg sequence of positioe numbers for which 
cc 
C a,<ccj. Then 

?I= 1 

np.)l-~<;c. 

Lemma 7. Let 
A, = (F(n,) 2 Ok] k = 2, 3, I.. 

where 

Pnk 
ak=fo 

and f(n) is a non-decreasing positioe function such that f(n) 5 j?n*. Then 

JF(A,A,)~ClP(A,)exp (-fly) (lsk<l<m). (2.8) 
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ProajI Let F(a, b) (0 S a < b < cc) be the length of the longest excursion of the 
random walk S(a), S(a + l), . . . , s(b). Then 

=P(F(n,-nk)~aa,)IP(Ak)5C exp -/I ( 7) WA,) 

(the last inequality follows from Lemma 3). Hence we have (2.8) 

Lemma 8. Let f(n) be a non-decreasing function for which 9(f)= m. Then for 
any 0 <E < 1 there exists a non-decreasing function fsuch that 

N f(n) Zf(n) (n = L2, . . .I, 
(ii) Y(f)= xi, 
(iii) T(n) 2 & loglog n. 

Proof of this lemma is based on the same idea as that of Lemma 4 and will be 
omitted. 

Lemma 9. Let 

where 
B, = (F(n) 5 b,) 

Bn 
b”=fo 

and f (n) is a non-decreasing function for which f c ~13. Then 

Proof. Let 
lP(B, Lo.) = 0. 

fc%,=~f'"k+l'. 

Then by Lemmas 5 and 6 

kg2eMfcnk)< cc 

and by Lemma 3 

provided that f(n) 5 pn*. 
Now let nk~n~nk+l then 

(2.9) 

with probability one except finitely many k. Hence we have (2,9), if f (n)s /?n+ 
(n 2 noI. 
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In the case when this condition does not hold, define f, (n) = min (f(n), on)). 
f,(n) is non-decreasing with #(S,)< CC and f, (n)sM, hence (2.9) holds for 
f(n) replaced by ii(n). Since fi(n)5f(n), we have also (2.9) with the original 
f(n). This proves the first part of Theorem 1. 

To show the second part, assume that 

+ loglog n 5J(n) 5 2 loglog I? (n=3,4, . ..) (2.10) 

The lower inequality can be assumed by Lemma 8, while if the upper in- 
equality does not hold for all n large enough, then by eliminating those n’s for 
which f(n)>2 loglogn, the whole procedure below can be done for the remain- 
ing subsequence and still conclude the second part of (1.4). 

Defining nk as in Lemma 4, for large enough k and k < 1 we have 

log!?=-- I-k k(logI-logk) 
nk log/ log I log k 

,1-k l-k -- >!I-k 
=log1 (logI)(logk)=2 1ogE’ 

Now for k fixed, split the indices 1 (k<isn) into three parts: 

L,=(l: O<I-kslogI} 

L,=(l: logI<1-k61og2I} 

L,=(l: log21<l-k}. 

For MEL, we have from (2.10) and (2.11) 

yf(nJZ (1-exp (-i $)) kloglogn, 

For MEL, we have from (2.11) 
2 

Hence by Lemma 7 and (2.10) 

For IEL, we have from (2.10) and (2.11) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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Hence 
,z P(AkAl) 5 cP(A,) 2 e-c’(l-k) 5 cP(A,), (2.15) 

1 iELl 

since C 15 c(logk)‘. 
1ELZ 

By Lemmas 3 and 7, (2.14), (2.15), (2.16) 

~p(A3 = = 

and 

,gl ,$, p(AkA,)s ’ (j 
1 

IP@k))* + ’ ,$, IPb%) 

consequently 

and by the Borel-Cantelli lemma (cf. Spitzer (1964)) we have 

P(A, i.0.) 2 C-l > 0. 

Hence we have our Theorem 1 by the O-l law. 

3. Proof of Theorem 2 

We give the following analogue of Lemma 3. 

Lemma 10. Let 

p”, = hi4 = 
i 

IP(F(2??)522a, S(2‘n)=O) if nza, 
lP(S(2n)=O) if n<a. 

Then there exist positive constants 0 < C, 5 C, < ~1 such that 

and 

provided that 0 5 ni a*. 

ProoJ Observe that the statement is trivial if Osn<=2a and we have 

(2.16) 

ii,= i fin-jbj (nZ2a). 
j=l 
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Now we obtain OUT Lemma 10 using the method of proof of Lemma 3. 
Let u1,a2, . . ..uk be a sequence of positive integers and m 

=min(a,,a,, ,.., a&. Further let d,,d,, . . . . dkil be a sequence of non-negative 
integers such that 

d,~O,d,ZO,d,~O ,..., d,~OO,d,+,~O 

d,+d,+...+d,+,+a,Jrn,+...+a,=n 

Introduce the following notations 

B, ={S(d,)=O, F(O,d,)=<m}, 

A,={S(d,+i)+O((i=1,2 ,..., a,-l),S(d,+a,)=O), 

B,={S(d,+a,i-dz)=O, ~-(d,+a,,d,+fl,+d,)~m), 

(3.1) 

A,=(S(d,+a,+...-ta,_,+d,+i)*O (i=1,2 ,..., a,-l), 

S(d,+n,+...+d,fa,)=O) 

3 k+l={S(dlfai-t...t-d,+a,)=O, ~(d,+a,+...+d,+a,,n)~:m), 

A=A,A,...A,B1B2...Bkil, 

A*=A*(a,,u,,...,a,)=~*A 

where in the sum c* the indices d,, d,, . . . , dk+l run over all (k + l)-tuples of 
integers which satisfy (3.1). Clearly A* is the event that the random walk 
S(l), S(2), L * ’ , S(n) consists of excursions of size a1,a2, . . ..ak in this order but all 
other excursions are shorter than m. 

Lemma 11. Let n smm”. Then 

IP(A*)s Cm-%(&+m~exp (-pm-’ (n-i1 ai)) (3.2) 

where the constant C may depend on k. 

Proo$ By Theorem C we have 

P(Ai/A,...Ai_,B,...Bi)~ Ca;* (i=l,...,k). 

Since d, 5 n 5 m3, by Lemma 10 

P(Bi/A,...Ai~,B,...Bi~l)~C(m~~+(rii+l)~f)exp(-~m~‘d~) (i=l, . . ..k) 

and by Lemma 3 

P(B,+l/A,...A,B,...Bk)~Cexp(-Bm-’dk+l). 
Hence 

P(A)sCexp (-/I’m-’ (n-$,a;)) ib(m-‘+(di+l)P”). 
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Now 

and (3.2) follows. 
A trivial consequence of Lemma 11 is 

Lemma 12. Let a, za, 1,. . >= aL 2 n’ be a sequence of integers. 7hen 

p(T,(n)=a,, . . . . T,(n)=a,)jca;~(,ak.~+a:)kexp j-pa;’ (n-iIazjj. (3.3) 

Lemma 13. Let kn+su <YE. 

k 

c Tj(n)Su, T,(n)& 
3k 

scu5- 
j= 1 

y(nu-++u:)kexp (-/SF). (3.4) 

Proof. (3.4) follows from (3.3) by summation for the possible a, (i = 1,2, . . . . k) 
observing that nf 5 ak 5 u/k and the fact that a sequence a, 1 a2 2.. .L ak >= ns of 

k 

integers for which c ai 5 u can be chosen at most uk different ways. 
i= 1 

Lemma 14. For large enough n we haue 

P j~~~(~)~/i(l-i)k~)~c(logn)-(i+~)- 
i 

Proof. By letting 
u=u,=b(l-E)kA 

loglogn 
we obtain from (3.4) that 

P q;(n) 5 u,? T,(n) 2 n+ 5 c(log n)-(‘++). 

Furthermore 

(3.5) 

(3.6) 

P 
( 
jiI 7;.(n)su,/k, T,(n)<,*) IP(T,(n)~u,/k)~c(logn)-(‘+f). 

Finally, if u,/k 5 a, + . , . +a,5 u, and uk<n%:, then max di zc,n with some 
lsisk+l 

constant c2, i.e. there exists an interval of length Lc,n such that longest 
excursion within this interval is shorter than n*, the probability of which is less 
than c1 eacsn’ , The number of possible choices of a, . . . ak, d, . . . d,,, is obviously at 
most nzk+‘, hence 

P un/kj i Tj(n)lu,, Tk(n)<n3 ~cln2k+1e-csn3. 
jel 

Since for large n the upper bound in (3.8) is less than the upper bound in 
(3.9 we have Lemma 14 by combining (3.6), (3.7) and (3.8) with some constant 
c (different from that in (3.6) and (3.7)). 
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(3.5) by well-known methods implies 

liminfe j~l~(n)~k~ a.s. 
n-m 

Now Theorem 2 follows from (1.6) and (3.9). 

(3.9) 

4. Proof of Theorem 3 

Instead of proving Theorem 3 we prove the analogue statement (Theorem 3*) 
for a Wiener process (IV(t), tzO}. Theorem 3 can be obtained from 
Theorem 3” constructing the sequence {Xi] from IV(t) by the Skorohod stop- 
ping rule. 

Theorem 3*. Let {W(t), t 2 0} be a Wiener process. Then for any E > 0 tkere exist 
s(( T) = [C, E-I loglog T] excursions gl, &, . . . , Jacacn of W in [O. T] suck that 

am 
i~llgi12il--E)T 

if T is large enough with probability one where Igil is the length of the excursion 
c?‘~ and C, is an absolute constant. 

Introduce the following notations: Let a,>0 be a function of T and 

Y,=O, 

q=Y,(T)=inf{s: s> y_, +a,, W(s)=O} (i=1,2 .,.. ), 

v,=max{k: E’,s T}, 

Zi=Z,(T)= I’-(~-,+a,), 

Mi=Zi/aT. 

The following lemma is well-known. 

Lemma 15. (i) (2,) is a sequence of i.i.d.r.u.‘s. 
(ii) { Ui} = (Zi(W( y_, + aT))-2j is a sequence of i.i.d.r.v.‘s 

(iii) IP(U,<x)=Ip(U,<xJ W(x-, +a,)=w)=j27r)+ j 3 1 u-Ye-l;dc, 
0 

(iv) E(exp{ -tU;})=exp{-t*), t>O. 

The next lemma is an easy consequence of a theorem of Steinebach (1978). 

Lemma 16 
lim(P(M,+...+M,~rm)~~=p(a), 
m-x 

where p(a) = inf(A{t)e”‘), i(t) = E(e-*Mi). 
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Lemma 17. Let 

Then 

UT= E2 T(lOglOg T)-‘, 

mT= [(3rr)+s-lloglog T], 

IP(V,>m,)=O((logT)-+) US T+a. 
Proof 

~IP(z,+... 
i 

T 
+Z&T)=JP M,+...+M,r~- 

'TmT 

It is easy to check that 

where d(x) is the standard normal distribution function and hence 

P(tl)<exp( --(271~)-~). 

Lemma 17 now follows from Lemma 16. 
Considering the excursions &Yi around the points K +a, (i = 1,2, . . . . vT) the 

non-covered part of the interval [0, T] will be less than vTuT. Hence Lem- 
ma 17 implies 

Lemma 18. With C, =(3r)* we have 

a(T) 
It’ ,~JZJ<(l-sC,)T =G((logT)-‘) (T.-o). 

L 1 

Lemma 18 via standard methods implies Theorem 3” with C, =(3x)+“. 

5. Proof of Theorem 4 

It is easy to see that (1.8) is a simple consequence of Theorem 3. Instead of 
proving (1.7), we present again the proof of the analogue statement for a 
Wiener process, In fact we prove our 

Theorem 4”. Let {W(t), t 2 0} be a Wiener process and let q(T) 2 5(T) 2. . be 
the lengths of the longest, second longest excursions of W up to 7: Then for any 
D > 0 there exists an E= E(D) > 0 such that 

IP{~~(T)+~~(~~)+...+~~,,,~T(l-E) i.o.}=l 

where b(T)= [D loglog T]. 

Introduce the following notations: 

(5.1) 
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a,=a(T)=fi T 
log log T’ 

Y,=O, 

I/,=sup{s: S<QT, W(s)=O}, 

Y,=inf(s: s>ay, W(s)=O), 

. . . . . . . . . . . . . . . . . . . . . . . 

l$+,=sup{s: sty++, W(s)=O}, 

x+,=inf(s: s>x+aT, W(s)=O), 

. . . . . 4 . . . . . . . . . . . . . , ,. 

di=K-& zi=~;-(~~,+aT), 

q=(W(y-1+aT))-2zi, Ni=a,+W(Y,-,+a*), 

v,=min{i: xz T}, 

Ri=y-x-,, 

The next lemma is an easy consequence of Lemma 16. 

Lemma 19 

IP m-l f? qNF<c1 ZCe-“‘I” 
i= 1 

for any ct > 0 and m big enough. 

Lemma 20 
Ip(Z, f z, + . . . + z,,,, +a(T)b(T)ST)g C(logT)-’ 

if s=(D2+D)-1. 

Proof 

1P(Z,+Z,+...+Z,,,,+a(T)b(T)~T) 

=IP(Z,+Z,+...+Z,,,,~(l-5D)T) 

=lP(b-l(T)a-l(T)(Z, +Z,+ . . . +Z,&<(l4D)6-‘D-l) 
b(T) 

=lP 
( 
b-‘(T) 1 u,N,z<D . 

i=l 1 

Hence we have (5.3) by (5.2). 

Lemma 2LIP(Z,+Z,+...+Z,,,, + a(T) b(T) 5 T Lo.)= 1 equivalently 

IP{v,zb, i.o.}=l or lP(Y&~Ti.o.)=l. 

6.2) 

(5.3) 

Proof. Let T,=k” and let the events A,, At be defined by 
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By Lemma 20, we have 

Furthermore, since for large k, T,ta(T,+,), the events A, and A,* are inde- 
pendent for k<l. Hence 

for any F>O provided k< I and k is large enough, where the last step follows 
from Lemma 16. One easily verifies that 

i i WA,41 
lim inf 1~ 1 k= 1 

n-*x (pyA,))? 51 

and by the already quoted Borel-Cantelli lemma (cf. Spitzer, 1964) we have 

which proves Lemma 21. 
P(A, i.0.) = 1 

By the above procedure we have chosen b, excursions (vi, YJ (i = 1,2, . . . , br) 
which however are not necessarily the b, largest ones. It is possible that some 
of them can be replaced by larger from the intervals (y, 5 + 1) (i = 0, . . . , b, - 1). 
But it is readily seen that even the largest b, excursions in (0, YbT) can not 

bcr 
cover more than 1 (Zi +max(R,, a,-R,)). Hence the non-covered part of 

i= 1 

(0, Y&) is at least 5 min(R,, uT -RJ. Since R,/a, (i= 1, . . . , b,) are i.i.d. random 
i= 1 

variables having arc sine distribution and 

we have by the law of the large numbers 

Lemma 22 

lim (a,b,)-’ 5 
T-.tX i=l 

min(R,,a,-Ri)=i--k 

It follows that for large enough T 

$ min(Ri, T 
U~-Ri)~~~~b,>--- 

6(D + 1) 

a.s. 

as.. 

which together with Lemma 21 proves Theorem 4. 
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6. A Consequence and some Problems 

Introduce the following notations: 

M,(n)= max S(k), 
Osks;n 

~,(n)=o~~~nIWl, 
- - 

c~~=~~(j)=O, flo=&(j)=max{i: izOo,Mj(i)=O}, 

a,=cx,(j)=min{i: i>bO,M,(i)=Mj(i+l)}, 

j?, =j31(j)=max{i: Mj(i)=Mj(r,(i))], 

. . . . . . . . . . . . ..‘...........I.......... 

a,=a,lj)=min{i: i>Bk--lrMj(i)=M,(i+l)}. 

&=&(j)=max{i: Mj(i)=M,(rJj))}, 

@(n)=.@j(n)=max{k: a,tj)sn>, 

~(n)=~(j)(M)=max(Bo-x,,B,-a tr...,Bg(n)-l-a~(n)-lr n--a,,,,> 
(j=1,2). 

Here f-(j)(,) is the length of the longest flat interval of Mj(i) (Oli sn; j 
= 1,2). A famous theorem of Levy (see e.g. Knight (1981) p. 130 and Csaki and 
RCvCsz (1983)) says that the limit behaviour of M,(n) is the same as that of 
S!(n). Applying this result and Theorems B and 1 one has 

Consequence. Let f(x) be a non-decreasing function for which 

and 

where p is defined by (1S) and I resp. $’ are defined in TheoTerns A resp. 1. 

This Consequence gives a complete characterization of y-(‘)(?z) and suggests 
our 

Problem 2. Characterize the sequence y@)(n). 

Let {a,> be a non-decreasing sequence of positive integers and consider the 
process 

m(n) =m(n, a,) = min (W(k+ a,) - B(k)). 
OSkSM-0, 



On the Length of the Longest Excursion 381 

Theorems B and 1 imply 

lim sup m(n, a,) = 0 as. 

lim infm(n, a,) = 0 as. and I(f)= co. 

Problem 3. Characterize those sequences {a,} for which 

lim sup m(n, a,) = K as. 

where K is a given positive integer. 

Problem 4. For a given sequence {a,} find the normalizing factors i(n) = i(n, a,) 

whenever I(f) = and s(n)=s(n, a,) (a, >/3n/f(n) whenever 

f(f)< co) such that 

and 

lim sup ~ - 4% 4 _ 1 
s(n) 

a s . . 

lim inf ____ 4% 4 = 1 
i(n) 

a s . . 

Remarks. 1. The properties of 

max (C%?(k+a,)-8(k)) 
O(k~n--o, 

were studied by Csaki et al. (1983) and by Csaki and FGldes (1984). 
2. Our Theorems were formulated originally for random walks. In order to 

get a simpler proof we reformulated some of them for Wiener processes and 
noted that the reformulated versions imply the original ones by invariance 
principle. Here we wish to mention that Theorems 1 and 2 can be reformulated 
for Wiener process as well. 

Acknowledgement. The authors wish to thank the referee for careful reading of their manuscript 
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