
Graphs and Combinatorics 3, l-6 (1987) 

Graphs and 
Combinatorics 
C Springer-Verlag 1987 

Goodness of Trees for Generalized Books* 

S.A. Burr’, P. Erdos’, R.J. Faudree, C.C. Rousseau, R.H. Schelp3, R.J. Gould4 
and MS. Jacobson’ 
’ Department of Computer Sciences, City College C.U.N.Y., New York, NY 10031, USA 
’ Mathematical Institute of the Hungarian Academy of Sciences, Budapest, H-1053, Hungary 
3 Department of Mathematical Sciences, Memphis State University, Memphis, TN 38152, USA 
4 Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, 
USA 
5 Department of Mathematics, University of Louisville, Louisville, KY 40292, USA 

Abstract. A connected graph G is said to be F-good if the Ramsey number r(F, G) is equal to 
(x(F) - l)(p(G) - 1) + s(F), where s(F) is the minimum number of vertices in some color class 
under all vertex colorings by x(F) colors. It is of interest to know which graphs F have the prop- 
erty that all trees are F-good. It is shown that any large tree is K( 1, 1, NIP, m2,. , m,)-good. 

1. Introduction 

Let F be a graph with chromatic number x(F). The chromatic surplus s(F) is defined 
to be the smallest number of vertices in a color class under any x(F)-coloring of 
the vertices of F. For a pair of graphs (F, G) the Ramsey number p(F, G) is the least 
number N such that in every two-coloring (R, B) = (red, blue) of the edges of K,, 
there is either a red copy of F or a blue copy of G. 

For a connected graph G, r(F, G) satisfies 

$7 G) 2 (X(F) - l)(p(G) - 1) + s(F), if p(G) 2 s(F). (1) 

This inequality follows by coloring red or blue the edges of a complete graph on 

(x(F) - l)(p(G) - 1) + s(F) - 1 vertices such that the blue graph (B) is isomorphic 

to (x(F) - 1)&w U KswI and the red graph (R) is isomorphic to its comple- 
ment. When equality occurs in (1) we say that G is F-good. The concept of 
F-goodness generalizes the classical simple result of Chvatal that r(K,, T,) = 
(m - l)(n -. I) + 1 [S], where K, denotes the complete graph on m vertices and T, 
denotes a tree on n vertices. 

Our purpose is to investigate those graphs F for which all large trees T, 
are F-good. The importance of x(F) in the value of r(F, T,) leads the investigation 
to a consideration of multipartite graphs F. It is known that T, fails to be 
K(m,, m2,. . , m,)-good when each mi 2 2 or when m, = 1 and m, 2 2 for 2 < i I s 
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[3,4-J. For example in [3] it is shown that r(K(2,2), K(1, n - 1)) > n + G2 - 5n3’10 
for n large. Thus, at this point the most general multipartite graph for which good- 
ness of trees is unsettled is K(1, 1, m,, m2,. , m,). The principal result of the paper 
shows that each large order tree T, is K( 1,1, m,, m,, , . . , m,)-good, thus answering 
completely in one sense the F-goodness question for large trees. 

Some known results, which we now list with appropriate references, will be 
needed in the proofs. However, we first introduce some special notation. For 
simplicity the multipartite graph K(I,, &, . . , I,, m,, m2,. . , m,) will be denoted by 
K(1,,1,,...,I,,m;s)whenm=m, =m,=.~+= m,. In particular we will frequently 
encounter this graph when 1, = I, = 1 and k = 2, (i.e., the graph K(l, 1,m;s)). If a 
graph G contains a vertex which is adjacent to k end vertices, we shall say that G 
has a talon of degree k or that G has a talon with k vertices. Additional notation 
will follow that used in standard texts, e.g. [l, 81. 

Theorem A. Let m and s be fixed positive integers. 
(i) [4] There is a nondecreasing function f,(m,s) of m and s such that 

r(K(Lm;s),K(l, n - 1)) I sn + fi (m, s) for all n. 
(ii) [4] There is a function n,(m, s) ofm and s such that u(K(1, 1, m;s), K(1,n - I)) < 

(s + l)(n - 1) -t l-for all n > n, (m, s). 
(iii) [6] There are A = A(m,s), CI = a(m,s) (0 < c1 < 1) and n,(m,s) such that 

r(K(m; s), T,) I (S - l)(n - 1) + An” for all n 2 n,(m, s). 

Theorem B. Let X = (x,,x,,. . . ,xn} and Y = (y1,y2,. , .,yh) be disjoint sets of 
vertices of a complete graph which is (R, B) a-colored. 
(i) II61 If (x1,x2,..., x0) is a maximal length path from x1 to x, in (B) and a 2 

b(c - 1) + d, then either (R) 2 K, or Y is completely joined in (R) to a subset 
X’ c X with IX’] = d. 

(ii) [7] There is either a blue matching of X into Y or for some c (0 I c I a - 1) all 
edges between a (c + 1)-subset of X and a (b - c)-subset of Y are red (i.e. 
(R) 2 K(c + l,b - c)). 

Theorem C. [2] Let T be a tree with n vertices. If T has no suspended path with more 
than a vertices, then G has at least rnl2al vertices of degree one. 

2. Results 

In order to prove our primary result we must first prove the following proposition. 

Proposition 1. For positive integers m and s, there is a function f(m, s) such that for 
all n, 

r(K(l,m;s), T,) I sn + f(m,s). 

Proof. Set 1 = max{f,(m, s), n,(2m,s), (4Am3s2)1’(1-a)}, where fi, n2, m, s, A = 
A(2m, s) and cx = cr(2m,s) are as defined in Theorem A. The proof is by double 
induction on n and s. 
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The result is trivial when s = 1 since for any tree T,, r(K(1, m), T,) I n + m - 1. 
It is clear that for a proper choice of f(m, s) the proposition is true for all n I 1. 
Hence, we assume s > 1, n > 1 and that the proposition is true for all smaller values 
of these parameters. 

Let N = sn + f(m, s), and suppose (R, B) is a 2-coloring of the edges of K, in 
which (R) $ K(l,m;s) and (B) $z T,. We shall demonstrate that this assumption 
leads to a contradiction. The proof is divided into three cases. 

(i) The tree 7;, contains a suspended path with ms(ms - m -t 2) vertices 
Let T’ be the tree obtained from T, by shortening the length of the suspended 

path by one. Since T’ has n - 1 vertices, by induction there is a blue copy of T’ and 
a disjoint red copy of K( 1, m; s - 1). Now apply Theorem B(i) with X the vertex set 
of the suspended path and Y the vertex set of the red K(l,m; s - 1). Thus n = 
ms(ms - m + 2) - 1 and b = m(s - 1) + 1, and let c = ms +- 1 and d = m. The 
requisite inequality in Theorem B(i) is clearly satisfied, so since (B) $ T,, either 
(R) 2 K(1,m;s) or (R) 2 K,,+l 2 K(l,m;s), a contradiction. 

(ii) The tree T, contains 2m independent end-edges. 
Since n > I > max { n,(2m, s), A li(‘-@}, Theorem A(iii) implies (R) 2 K(2m;s). 

Let T’ be the tree obtained by deleting the 2m independent end-edges from T,. Thus 
T’ has n - 2m vertices, so by induction there is a blue copy of T’ disjoint from the 
red copy of K(2m; s). Apply Theorem B(ii) with X the vertices of T’ incident to the 
independent end edges deleted from T, and Y the vertices of the red K(2m;s). 
Therefore either (B) 2 T, or for some positive integer c < 2m there is a (c + l)- 
element subset of T’ which is adjacent in red to 2ms - c of the vertices of the red 
K(2m; s), In the second case (R) c K(1, m; s), although there are two subcases to 
consider. The l-element part of K(l, m;s) will be in X if c + 1 < m and will be in 
one of the parts of K{m;s) if c + 1 2 m. 

(iii) Neither (i) nor (ii) occur. 
By Theorem C the tree T, contains at least rn/2m2s2] vertices of degree one. 

First suppose that T’,‘, contains no talon with more than An” vertices. Then, since r, 
has fewer than 2m independent end-edges, T, has at most 2Amn” vertices of degree 
one. Hence 2Amn” > n/2mzs2. Therefore n < (4Am3s2)‘i(‘-“’ < I, a contradiction. 

The only possibility which remains is that T, has a talon with more than An” 
vertices. Let x be a center of such a talon. Since n 2 fi (m, s), Theorem A(i) implies 
that (B) 2 K( 1, II - 1). Let y denote the center of this blue K(l, n - 1). 

Let T’ denote the tree obtained from T, by deleting the end vertices of the talon 
with center x. We will attempt to embed T’ in (I?) by mapping x onto y. Note 
that if T’ could be so embedded, then T, could also be embedded due to the large 
blue degree of y. Extend the embedding of T’ one vertex at a time and always 
with a vertex of degree one as far as possible. Since (B) 2 T,, there exists a 
vertex z where the embedding stops. This means that z is adjacent in red to all 
vertices not in the embedded portion of T’. Thus z is adjacent in red to at 
least (N - 1 - [(rr - 1) - An”]) = (s - l)n + An” + f(m,s) vertices. But n > I 1 
ra,(2m, s), so Theorem A(iii) implies that the graph induced by the red neighborhood 
of z contains a red copy of K(m;a). This graph together with .z is a red K(l,m;s), 
again a contradiction. 
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Theorem 2. For fixed positive integers m and s, there is a corresponding number 
n,(m, s) such that 

r(K(l,l,m;s), T,) = (s + l)(n - 1) + 1 for all n 2 n,(m,s). 

Proof. In light of inequality (1) we need only establish that (s + l)(n - 1) + 1 is an 
upper bound. The proof is very similar to that of Proposition 1 in that similar 
techniques will be applied to the same three cases. Therefore some details wiil be 
left to the reader. 

We perform induction on s. The result is trivial when s = 0. Thus, we assume 
s > 0, set N = (s + l)(n - 1) + 1, and assume that (R, B) is a two-coloring of K, in 
which (R) $ K(l,l, m;s) and (B) 2 T,. In what follows f(m, s) will denote the 
function whose existence was established in Proposition 1. 

(i) The tree T, contains a suspended path with m2s2 + 2ms + 2 + f(m, s) vertices. 
Let T’ be the tree obtained from T, by shortening this path by f(m, s) vertices. 

The induction hypothesis together with Proposition 1 implies a blue copy of T’ 
and, disjointly, a red copy of K(1, 1, m; s - 1). By applying Theorem B(i) the argu- 
ment for this case can be completed just as (i) in the proof of the Proposition. 

(ii) The tree T, contains f(s, m) + s + m independent end-edges. 
Let T’ be the tree obtained from T, by deleting f(m, s) + s + m independent end 

edges. Since 

(s + l)(n - Ef( , ) s m -t- s + m]) + f(s,m) I (s + l)(n - 1) + 1, 

the Proposition implies that (B) 3 T’. Apply Theorem B(ii) with X the vertices of 
T’ which were incident to the edges deleted from T,, and Y the vertices of K, not 
in T’. Let X’ be the vertices of X and Y’ be the vertices of Y contained in the red 
K(c + 1, b - c) insured by Theorem B(ii). 

There are two separate possibilities to consider, depending on the value of c. 
First consider the case c + 1 2 m. Since c < f(m, s) + s + m - 1, 

b - c 2 N - (n - f(m,s) - s - m) - c 2 s(n - 1) + 1. 

The induction assumption implies the graph (Y’} contains a red copy of 
K(l,l,m;s - 1). This red K(1, 1,m;s - 1) along with m vertices of X’ gives a red 
K( 1, 1, m; s). Next consider the case c < m - 1. Thus 

b-c>N-(n-f(m,s)-s-mm)-c>sn+f(m,s)+l. 

The Proposition implies that (Y’) contains a red copy of M(l,m;s), which along 
with a vertex in X’ gives a red K( 1, 1, m; s). Thus for each of the two possibilities we 
reach a contradiction. 

(iii) Neither (i) nor (ii) occur. 
We assume without loss of generality that nO(m, s) 2 n,(m, s), where n1 is as given 

in Theorem A(ii). Hence by Theorem A(ii), (B) 2 K(l, n - 1). Also for 1 = m2s2 + 
2ms -t 2 + f(m, s) Th eorem C implies that the tree T. contains at least [n/211 vertices 
of degree one. 

Again two possibilities must be considered. The first is that T, contains no talon 
with more than f(m, s) + s vertices. Since T, has fewer than f(s, m) + s + m inde- 
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pendent end-edges, this tree has at most [f(lp~, s) + s] [f(s, m) + s + m] vertices of 
degree one. But then 

L-f@% s) + sl Cf(s, m) + s + ml 2 @x 

which clearly fails for all n 2 n* for an appropriate II* depending only on s and m. 
The second possibility is that T, contains a talon with more than f(rra, s) + s 

vertices. Let x be a vertex of T, incident with more than f(m, s) + s end vertices. 
Since (8) 2 K(1, n - l), let y denote the center of this blue star in K,. A contradic- 
tion to complete the proof of this case can be reached just as in case (iii) of the 
Proposition, except that the Proposition is applied in the last step instead of 
Theorem A(iii). This completes the proof of the Theorem 2. 

There are statements that are equivalent to Theorem 2 which appear to be more 
general. We state two of them. 

Theorem 3. Let m,, m2,. . , , m, be fixed positive integers. There exists a integer n, 
such that 

r(K(1,1,m1,m2 ,..,, mJ,T,)=(s+ l)(n- l)+ 1 

for all n 2 n,. 

Theorem 4. Let G be a graph with x(G) 2 2 which has a vertex X(G)-coloring with 
at least two color classes consisting of a single vertex. Then for sufficiently large n, 

r(G, T,) = (x(G) - l)(n - 1) + 1. 

3. Comments 

There are many questions left unanswered concerning connected graphs G which 
are F-good. In light of the results of this paper it would be interesting to be able to 
determine the value of r(K(m,, m2,. . . , m,), T,) when n is large and m, 5 m2 < a++ < 
m, are arbitrary, but fixed. However, this appears to be a very dificult question. 

In particular it is true that for n large, 

@(AmI,..., m,), T,) < (s - l)(M - 1) + 1 

where M = r(K(1, m,), T,). There is equality when T, is a star l-31, and a forthcoming 
paper will show that there is in fact equality for almost all large trees. It is quite pos- 
sible that r(K(m,,m,),K(l,d(T,)) is involved in the value of r(K(m,, m2,. . . , m,), T,) 
for large n. Also, a reasonable conjecture would be 

r(K(m,,m,,...,m,),T,)I(s- l)(r(K(m,,m,),T,)- l)+q. 
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