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1. INTRODUCTION 

The purpose of this paper is to study several 

aspects of the problem of the distribution of values of 

certain arithmetic functions, especially of the values 

at consecutive integers. Our main motivation is the 

function a(n), which represents the number of non- 

isomorphic Abelian groups with n elements. This is a 

well-known multiplicative function which satisfies 

atpa) =PhL where henceforth p will denote primes and 

P(k) will denote the number of (unrestricted) partitions 

of k. It is known that a(n) possesses a positive mean 

value, and more precisely one has 

3 
(1.1) C a(n) = 

nix 
c A xllm+R(x), Am= i N+n). 

m=l m k=l,k#m 
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It was proved long ago by P. Erdds and G. Szekeres [3] 

that R(x) < x 112 , and after many subsequent improvements 

the best known bound is R(x) << x 971381 35 
log x, which is 

due to G. Kolesnik i17]. There are several interesting 

arithmetic aspects of the function a(n) and similar func- 

tions. For example, a(p) =I for every prime p, so that 

ah) =a(s(n)), where s(n) is the squarefull part of n. 

Namely every integer n21 may be uniquely decomposed as 

n=qh>s(n>, (q(n>,dn) = 11, where q(n) is squarefree and 

s(n) is squarefull (s is squarefull if p21s whenever 

PM* Nonnegative, integer-valued arithmetic functions 

f(n) such that f(n) =f(s(n)) for every n21 were called 

functions with squarefull kernel, or simply s-functions 

by A. Ivi& and G. Tenenbaum [16]. It is to be noted that 

s-functions are not necessarily multiplicative: Q(n)-w(n, 

is clearly an additive s-function, where as usual Q(n) 

and w(n) denote the number of all prime factors of n and 

the number of distinct prime factors of n, respectively. 

It was shown in [I61 by a simple argument that the local 

density 

(1.2) dk = lim i C 1 
x-t= nlx,f(n)=k 

of an s-function always exists for any fixed k20. In 

fact, it was proved in [16] that an asymptotic formula 

implying (1.2) with the uniform error term 0(x l/2 log2x) 
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exists. More precise results on local densities of a(n) 

and related functions were proved by E. KrZtzel [20] and 

A. Ivi& [15]. The property that a(n) is an s-function is 

essential in the proof of the asymptotic formulas 

(1.3) c 1 = Ax+O(~~'~log~x), 
nlx,a(n)=a(n+l) 

C a(n)(Q(n+l)-w(n+l)) = Bx+O(x3"+'), 
nix 

where A,B>O are two constants which may be explicitly 

evaluated. These formulas are new, and in proving them 

we shall also make use of the order result 

(1.4) a(n) Iexp log5.c 
4 I logn 

loglogn I 
(nsno(E)). 

This was proved by E. Krgtzel [19], and later sharpened 

by W. Schwarz and E. Wirsing [28], and J.-L. Nicolas 

[26]. The ab ove mentioned properties of a(n) are 

essentially the only ones needed in the proof of (1.3). 

In 2. we shall prove a .more general result than (1.3) for 

suitable s-functions satisfying a mild growth condition 

analogous to (1.4). In order to avoid unnecessary 

technicalities we have not tried to obtain the most 

general possible form of our results. This is also true 

of other sections, where the results obtained for a(n) 

may be readily generalized to many other multiplicative 

functions. 
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It will turn out, however, that the method used in 

proving Theorem 1 and Theorem 2 in 2. (the appropriate 

generalizations of (1.3)) may yield asymptotic formulas 

for other related arithmetic sums. This is discussed in 

3. where several other applications of our method are 

discussed. These include the asymptotic formulas 

(1.5) C a(n)d(n+l) = clxlOgx + c2x + 0(x 8/9+tz > 
nSx 

and 

(1.6) C a(n)w(n+l> 
nix 

= D1xloglogx+D2x+ O(x/logx) 

with Cl, D, > 0, which seems to be new. 

In [IS] A. Ivic! defined the functions C(x), D(x), 

E(x) as follows: C(x) denotes the number of distinct 

values taken by a(n) for n5x, D(x) denotes the number 

of nix such that n= a(m) for some integer m, E(x)= I b(n), 

where b(n) is the number of solutions in squarefull s of 

the equation n =a(s) for a fixed n. The functions C(x) 

and D(x) determine to a great extent the distribution of 

values of a(n), and it is obvious that 

(J-7) , D(x) 5 E(x). 

It was proved in [I51 that 

(I-8) c(x)sexp((3-1'2 2a+E)(logx/loglogx)1'2) (X1x&)), 
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and the significance of E(x) is that it may be fairly 

precisely evaluated. Thus it was shown in [IS] that, as 

x+w, 

(1.9) E(x) =exp((B+~(l))log~'~x), ~=;(65(3)n-~)"~, 

and this formula was refined by J. Herzog and W. Schwarz 

1121, [131. Problems involving the estimation of C(x) 

and D(x) are discussed in 4. where explicit dependence 

of these functions on the structure of prime factors of 

the partition function P(k) is exhibited. It is very 

plausible to conjecture that 

(1.10) c(x) =expmg l/2+o(l)x) 
I D(x) = exp(log 2/34-u lx) 

I 

i 
1 and these formulas are proved if a certain conjecture 
/ 
' involving the function P(k) is assumed. Our construction 

of the lower bound for C(x) may be generalized tcl evarlOUS 

other multiplicative functions besides a(n). Thus if 

dl(n) represents the number of ways n may be written as . 

a product of kk2 fixed factors (d,(n) Ed(n)) and C(x) is 

again the corresponding number of distinct values of 

d&d f or nsx, then our construction gives 

(1.11) =q?(E, (k) (log x> 1'2/log log x) < c(x) a: 

+C exp(E2(log x/log log x> l/2) 
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for some E,(k), E2>0. This seems to be new for k>2, but 

for k=2 (i.e. for d(n)) this problem has been practically 

solved by P. Erd% and L. Mirsky [5], who proved 

(1.12) C(x)=exp((2~(2/3)1'2+o(l))(log ~)“~/log log x) (X-J). 

For some recent results concerning (1.12) and the related 

B-numbers defined in [5], see the works of M. Nair and 

P. Shiu [ 251, [29]. 

The aforementioned paper of ErdBs and Mirsky 

considered problems concerned with long blocks of 

consecutive integers such that the values of d(n) at 

these integers are all distinct. It was shown that there 

exist infinitely many n such that d(n+l>, d(n+2) ?***I 

...t d(n+k> are all distinct, where k= [c(log n) I/2 /loglogn,. 

It was also conjectured that d(n)=d(n+l) has infinitely 

many solutions, and this difficult problem has been only 

recently solved in the affirmative by D.R. Heath-Brown 

[II]. Both of these problems for a(n) are duscussed in 5. 

and naturaily they can be considered for various other 

arithmetic functions. The intrinsic property that a(p)=1 

gives easily the existence of infinitely many n such that 

ah) =a(n+l) =a(n+2) holds. This follows from the old 

result of L. Mirsky [23] that 

(1.13) C ~2(n)~2(n+l)~2(n+2) =ll(l -3p-2)x+o(x 2/3+~) 
t 

nix P 
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since a(n)=a(n+l)=a(n+2)= 1 if 112(n)u2(n+l)p2(n+2)=l. 

Hence this problem for a(n) is considerably easier than 

the corresponding problem for d(n) (not much seems to be 

known about n for which d(n) =d(n+l>=d(n+2)). We shall 

prove that there are infinitely many n such that the 

values a(n+l), . . . . a(n+t) are all distinct for 

t= [C(log n/log log n)1'2 ] (C> 0), and infinitely many 

n such that a(n+l)= . ..=a(n+k) for 

k=[Dlognlogloglogn/(loglogn)2] (D>O>. Quantitative 

forms of these results are contained in Theorem 6 and 7 

of 5. 

Finally we wish to thank A. Schinzel for kindly 

letting us use his unpublished result (Lemma 2) on prime 

factors of the partition function. 

2. ASYMPTOTIC FORMULAS FOR CERTAIN SUMMAJORY 

FUNCTIONS 

In this section we shall prove a general result 

which contains (1.3). First we make the following 

DEFINITION. Let B denote the class of nonnegative, 

integer-valued s-functions b(n) (i.e. b(n)=b(s(n)) for 

nZ1) such that b(n)<< nE for any E >O. 

In view of (1.4) it follows that a(n) (generated by 

GIG... > belongs to D, and many other multi- 

plicative functions also belong to B. Two further 
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examples are S(n) (the number of non-isomorphic semi- 

simple rings with n elements, generated by n cdmr's) > 
m,r>l 

and d(e) (n) (the number,of exponential divisors of n, 

defined by the relation d (4 (p")=d(a),. But as noted in 

1. s-functions need not be multiplicative, and e.g. 

Q(n) -w(n) belongs to B, since 0(n)-w(n) s a - 1 log 2 

for nZl), and other examples of additive functions from 

B may be readily found. 

Our aim in this section is to study the asymptotic 

behaviour of the sums 
nsx,f(i)=g(n+l) 

1 and C f(n)g(n+l) 
nix 

when f,gEB. The growth condition imposed on the func- 

tions of B is a mild one, and a condition of this sort 

is necessary if one wishes to avoid trivial results. One 

expects that both of the above sums are asymptotic to Cx 

for some C2 0. This, and much more, turns out to be true. 

Our results are contained in the following two theorems. 

THEOREM 1. Let f(n) and g(n) be two functions 

belonging to 8. If s,,s, denote squarefull numbers, then 

we have 

(2.1) c 1 =Ax+O 
nsx,f(n)=g(n+l) 

(x3’4 loglx), 

where 

(2.2) A = A(f,g) =$ F 1 x 
+TrTr sl’s2=~,(s,,s2)=~,f(s1)14(s2) s1s2 
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X ll (1 
pls,s2 

-1) II (I -+,. 
p Pb'S2 P 

THEOREM 2. Let f(n) and g(n) be two functions 

belonging to B. If s,,s2 denote squarefull numbers, then 

we have 

(2.3) C f(n)g(n+l) = CX+O(~~'~+'), 
nix 

where 

C=C(f,g)=-$ 
co 

(2.4) c 
f(s, )4(s2) 

IT sl ‘s2 =I, (s, ,s2)=l sl s2 

x II (1 -1) l-I 
pls,s2 p p+s,s2 

2). ' (' -2 

Note that A>0 if f(s,) =g(s,) has at least one 

solution in squarefull s1,s2 such that (s1,s2)=l, while 

C>O if f(sl),g(s2)>0 for at least one pair s1,s2 such 

that (s, ,s2) = 1. It may be remarked that Theorem 1 and 

Theorem 2 have relatively wide applicability, since 

f(n), g(n) E B implies both f(n)g(n) E B and fk(n) E B 

for any integer k2 1. The proofs of both theorems depend 

on a certain asymptotic formula involving squarefree 

numbers. This is 

LEMMA 1. Let a,b be two given natural numbers such 

that (a,b) = 1 and let 
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(2.5) S = 
ka-lb=l,IbSxf(k,a)=(l,b)=l 

v2(kh2(1), 

where k,l denote natural numbers. Then uniformly for 

(2.6) S =:6x l-I (1 
a2ab plab 

-1, II (1 -2) +*(x~(ab)-~2w(ab) + 

p PW P2 

PROOF OF LEMMA 1. Let H be a parameter which 

satisfies lsHs(x/b)'. Observe that the number of solu- 

tions in natural numbers u and v of the equation 

uu 0 - vv 0 = I, w. 5 x, (u,,v,) = 1, uo,vo E N is uni- 

formly x/(uovo)+O(l). Using then v2(l)= 5 p(c) we 
mc =l 

have, for S defined by (2.5), 

S EC 
c2mi;xlb,(c,ab)=l,(m,ab)=l, 

u(c)v2(k) 

mbc2=ka-l,(k,a)=l 

= c dc> c v2(k) 
cl(x/b)'(c,ab)=l kl(x+l)/a,(k,abc2)=l, 

ka=mbc2+l,(m,b)=l 

= c dc> c u2(k) + 
clH,(c,ab)=l kl(x+l)/a,(k,abc')=l, 

ka=mbc2+l,(m,b)=l 

+o I c c 1 

jHScs(x/b) $ kl(x+l)/a,k-a'(mod bc2) 1 
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(a’ = a'(b,c)) 

= c lh> c u(d) 
clH,(c,ab)=l dl((x+l)/a) ;,(d,abc)=l 

c 1 
X ad2r=mbc2+l,mbc2~x,(m,b)=l,(r,a)=l 

+ O(x/(abH) + (x/b)') 

= c dc) c v(d) 1 de) 

CSH, (c,ab)=l *((x+1)/a ',(d,abc)=l ela 

c l-e> c 1 
X fib ad*,=fm,bc2+1 ,fm,bc2Gc 

(r,,bcf)=(m,,ade)=l 

+ 0(x/(U) + (x/b+) (r = r 1 e, m = m f) 1 

= c dc) c v(d) 
CSH, (c,ab)=l ~((x+l)/a+,(d,~)=l 

. 
x II 

i PM 
(I-$) *+ o(2w(ab)) 1 

+ O(x/(aH-I) + (x/b)') 

00 co 
=-J& n (I-;) c dc)c-* 1-I (d)d-* 

Plab c=l,(c,ab)=l d=l,(:,abc)=l 

+ o(&- )+O((;)')+O(H(~)'2"'ab))+O(~~)' ;I. 
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Now we choose H=x$b-& , so that the condition Hl(x/b)' 

is obvious, and HZ1 for blx; , and the above error 

terms are 

<< x'(ab) "2w(ab) + (x/b)' + (x/a)'b-'. 

It remains to evaluate the constant which appears in the 

above main term. This is equal to 

(ab)" l-I (1 -p-l) 
co 
c -2 

Plab 
ddc 

c=l,(c,ab)=l 

00 
X d=l,(d$x)=l 

dd)a'2 

= (& II 
Plab 

(l-p-') II 
Pjrab 

(l-p-2)6,-2 

co 
X c ddc O2 fl (I -p-2)-' 

c=l,(c,ab)=l Plc 

= 6(r2ab)-' II (l-p-') TI 
Plab Pcab 

(l-p-2)(l-p-2(l-p-2)-1) 

= 6(n2&)-' II (l-p-') II (I-2p02), 
PI& PW 

so that the proof 

in most cases the 

(2.7) s << 5 

of Lemma 1 is complete. For x'<bSx 

trivial bound 

+ 1 

suffices. (2.7) follows from 
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SI 1 I c 
l<x/b,lb=-I(& a), 

l=J&+O(l), 
B/b,lrl'(& a) 

(a,b)=l 
where 1’ = 1’ (b) l 

PROOF OF THEOREM 1 AND THEOREM 2. Having at our 

disposal Lemma 1 it will be a relatively simple matter 

to prove both Theorem 1 and Theorem 2. Let s(n) be the 

squarefull part of n, let q and s denote squarefull and 

squarefree numbers respectively, and let H be a parameter 

which satisfies 1 IH Ix'. Then we have 

m,f(n)&(n+l) 
1 = c I+ 

n%f(n)=g(n+l),s(&H 

+ c 1 
nlx,f(n)=g(n+l),s(n)>H 

= c 1+0( c c 1) 
nlx,f(n) =g(n+l),s(n)a H9sx qGc/s 

= c 1 + o(xHI-+ 
~,fh+g(n+l),s(n)~ 

= c 1 + O(xH-$ 
nlx,f(n)=g(n+l),s(n)93,s(n+l)SH 

= c c 1 +O@-‘). 
s,,s2SH,.(s,,s2)=1 q2s2-q,s,=1, 

f(s,)=g(s2) q,s,lx,(q,,s,)=(q2,s2)=l 

In the last expression the inner sum may be estimated by 

Lemma 1. a Hence (2.6) gives (s,LHlx ) 
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(2.8) 

nQbf&gcntl> 
1 =6x c 1 

712 s1,s2sJ&(s1,s2)=l sls2 

f(s,)-(s2) 

II (1 

pls,s2 
-1, II (lo+) 

p PI+2 p 

+ o(d3% + o[sl,~~x~s~] + 

2 ds,) 1 
+o c x42 

i 

43) -3 

sl I S P  

s72 
s2 l 

I  

But if s denotes squarefull numbers, then by easy 

elementary arguments we have, as x+=, 

(20g) six1 - ~(312) xh c 2"(s)s-i << 
' - 

log2x I c s <x-4 -1 

c(3) s>X 

Using (2.9) in (2.8) we obtain 

(2.10) 
rSx,&gb-W 

l=Ax+o(xH-~)+o(x+-Ihg x)+o(xhg4x). 

If we choose H=x$, then (2.10) immediately c&es (2.1). 

The proof of Theorem 2 is completely analogous. We 

(2.11) C f(n>g(n+l) = f(dg(*l> + 
nsx nSx,s(n)&s(n+l)Qi 

+ o(xl+EH-+ 
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= 
s, ,sp,L, rs*I=l 

as, MS,) c 1 
92sp,s,=’ I 

q,s+ (9, ,s, )=(q&=’ 

+ 0(x ‘+yi), 

where we used f(n) << &g(n)< nE in estimating the 

error term. Using again Lemma 1 and proceeding as in the 

previous proof we obtain (2.3) and (2.4). 

3. APPLICATIONS 

As already remarked, several common arithmetic 
2 functions such as a(n), n(n)-w(n) and p (n) (the 

characteristic function of squarefree numbers) clearly 

belong to B. It was also remarked that f,gEB implies 

f-g E B and fC1 EB for c1 a natural number; however for 

Theorem 2 we may take even aERe, since the proof 

obviously works for the sum C f 7 (n)g c12 (n+l) if 
n<x 

f,gEB, al,a2ERe and f,g, are positive for all n. Thus 

as corollaries of Theorem 2 we have 

(3.1) C a(n)(Q(n+l)-w(n+l)j=Cx+O(xa+') (c>W, 
n<x * 

(3.2) C ar(n)as(n+l) = C, sx+O(x 2+E: ) 
nix I 

with C, s > 0 and r,s E Re fixed. Hence by the binomial I 
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theorem (3.2) implies 

(3.3) C (a(n)-a(n+l))2m = cmx+o(x $+E ) 
nix 

with Cm> 0 and mEN fixed. From Theorem 1 we have 

(3.4) c 1 
nSx,a(n>=a(n+l) 

= D,x + O(xtlog4x), 

(3.5) c 1 
nSx,a(n)=Q(n+l>-w(n+l) 

= D2x + O(xtlog4x), 

where D1,D2>0, the latter formula being true since 

a(q) = n(s,) - w(s2) has the solution s 
1 = P$ 

s2 = pi (p's primes). The method of proof of Theorem 1 

works also for sums like 
nSx,rf(i)=g(n+l) 

1, where f,gEB 

and r>O is given rational number. It would be too long 

to state explicitly all interesting applications of our 

theorems. We mention only one more, namely 

(3.6) C p2(n)p2(n+1) = Dx + 0(x'+'), D=n(1-2~-~), 
nSx P 

and the sum in (3.6) is interesting, since it represents 

the number of n<x such that both n and n+l are squarefree. 

However, for this particular problem much better error 

terms are known: 0(x 2/3+s ) is due to L. Carlitz [I], 

o( x2’310g4’3 x) to L. Mirsky [21], [22], O(x2'310g2'3x) 

to R.R. Hall [81, and finally 0(x 7111 log'x) was proved 
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recently by D.R. Heath-Brown [IO]. Likewise, the error 

terms in (3.2) and (3.3) may be replaced by 0(x 2/3+s 
1. 

This follows from Th.. 1 of L. Mirsky [24], but his 

method requires the functions in question to be sub- 

multiplicative, hence it cannot give e.g. (3.1) nor, in 

general, Th.2, and it cannot be used at all for the sum 

in Theorem 1. 

There are several more general sums than the ones 

in (2.1) and (2.2) which may be also evaluated by methods 

similar to those used in proving Theorem 1 and Theorem 2. 

Consider, for example, C f(n)h(n+I), where f(n) E B, 
nix 

and h(n) is a positive, integer-valued arithmetic func- 

tion for which only h(n) < nE is supposed to hold (so 

that h(n) is not necessarily a s-function). If 1 IHlx' 

is a parameter, than we have 

(3.7) C f(n)h(n+I) = C f(n)h(n+I) + 0(x1+&H-') 
na nSx,s(n)SH 

= c f(s) 
slxls,~q,s)=l 

h(qs+l) + O(X'+~H-') 

= c f(s) c v(d) 1 h(msd2+I)+O(x1+"K') 
ds~x/& 
(d,s)=I 

= c f(s) c u(d) c h(msd2+I) + 
d&,(d,s)=l xwsd2), 

(m,s>=I 
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+ o(xl+EH-+ + o&j 

= c f(s) c da> c dS> c h(k) + 
dS+,(d,s)=l 4s k,<x,kzl(mod sd26) 

+ o(xl+EH-J) + o@xE), 

where as before q and s denote squarefree and squarefull 

numbers, respectively. Therefore if we can find an 

asymptotic formula for 

(3.8) H(x,r) = c h(n) (r=dss2), 
nlx,n-l(mod r) 

which is uniform in r= r(x) for a certain range, then 

inserting (3.8) in (3.7), simplifying and choosing H 

optimally we obtain an asymptotic formula for the 

summatory function of f(n)h(n+l). As an example,,consider 

h(n) = d(n), the number of divisors of n. It was proved 

by D.R. Heath-Brown [9] that 

(3.9) c d(n) =X(A(r,l~~log~+2y-l)+2B(r,l))+ 
n&,nrl(W r) r2 r2 

+ 0(x 1/3+E) 

uniformly for 1 Ir Sx 213 , where y is Euler's constant and 

A(r,l) = c d&& Q: rx', B(r,l)= 
dir 

c d$$log d < rx". 
dir 
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For r=sd26: sSH, d21H,61H the condition rix 2/3 is 

satisfied if H =x 219 , whence from (3.7)' and (3.9) we 

obtain 

(3.10) 1 f(n)d(n+l) = c,x logx + c2x + 0(x 8/9+y . 
nix 

In this formula, which appears to be new (and gives (1.5) 

as a special case), f EB, Cl1 0 and C2 are two constants 

which may be explicitly evaluated. The analogous problem 

with d(n) replaced by d,(n) may be considered if one 

appeals to the recent result of J.B. Friedlander and 

H. Iwaniec [7] concerning the asymptotic formula for 

c d3(n), (a,q)=l. A corresponding formula 
nlx,nza(mod q) 
for H(x,r) in (3.8) when h(n)=w(n) or G?(n) may be 

obtained by the methods of H. Delange [2], and in this 

case the error term would be uniform for 1 IrSlogCx, 

C>O any fixed number. This would give, for f EB, 

(3.11) C f(n>w(n+l> 
nix 

= D,xloglogx + D2x + O(x/lOgx) 

where D,20 and D2 may be explicitly evaluated. In (3.11) 

one may consider wk(n+l) for any fixed kEN instead of 

o(n+l) only. In this case the right-hand side of (3.11) 

would contain as the main term x times a polynomial of 

degree k in loglogx. 
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One may also consider the sum 

(3.12) 1 fh)g(n+k) 
n<x 

where f,gEB and k>l. In fact, k may be assumed to be 

any fixed natural number, and even k=k(x) may be 

interesting. It is possible to evaluate the general sum 

appearing in (3.12) by proceeding as in (3.7). In this 

way one is led to the estimation of the sums 

G(x;r,l) = c g(n) 
nlx,nzl(mod r) 

where (1,r) = 1 does not have to hold, and consequently 

the estimation of G(x;r,l) may be technically difficult. 

The same applies to the estimation of the sum 

(3.13) sktx) = c 
nix 

fl(n+"l)f2(n+"2) ... fk(n+Rk), 

where f,, . . . . fkEB, OS&, I... IRk are fixed integers. 

This sum would be asymptotic to Cx, C=C(f,,...,fk,lll,...,2k)2 

2 0, and its evaluation would reduce to Sk-,(x) for n in 

a certain residue class. Under certain conditions which 

include multiplicativity or sub-multiplicativity of the 

firs, this follows from the works of P. Erd"os [3] and 

L. Mirsky [24], respectively, and the latter gives a 

good error term. But none of these apply to the case 

when the fi 's are s-functions. Also one should be 

careful in treating (3.13), since in the general case it 
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may well turn out that C=C(f,,...,X ) is zero, or even 
l k 

that the whole sum under consideration is zero. As an 

example, we recall L. Mirsky's formula (1.13), but note 

that identically 

C V2(n)~2(n+1)~2(n+2)~2(n+3) = 0, 
r&x 

since one of any four consecutive integers must be 

divisible by four, and p(4m) =0 for any m2 1. For a 

generalization of (3.13) when f.=p2, see R.R. Hall [8]. 
3 

4. THE DISTRIBUTION OF VALUES OF a(n) 

As in 1. we let C(x) and D(x) denote the number of 

distinct values of a(n) for nix and the number of nix 

such that n= a(m) for some m, respectively. An un- 

conditional proof of the formulas in (1.9) seems quite 

difficult, but it seems reasonable to expect that 

lim C(x)/D(x) = 0 may be at least proved. This follows 
X-+” 
from 

THEOREM 3. For x2x0 

(4.1) D(x)+(x)lOglOgx. 

PROOF OF THEOREM 3. Let n,=a(k,),--.,nt = a$) 

(kjSx) be the distinct values of a(n) for nSx. Then 

t=C(x), and from (1.4) it follows that 
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Put 

n s expbg x/(%log log xH,(x2xO; j=l,...,t). 3 

*j,r 2 = kj(q1q2**aqru) I 
where q,'q2'... are distinct primes not dividing any of 

the kj's (e.g. take ql > x for 1 = 1,2,...), r 1 1 is an 

integer and u = [log x/(log 2 log log x)1. Thus 

ah. > hr = a(kj)acq:)...a(&,) = nj(zujr IX 

for j = 1 ,...,t and 1 s r s [i log log xl, so that there 
are at least 

r; log log xlt 2 ; c(x) log log x 

numbers a(m j,r) for X 2 X0, and (4.1) follows if they are 

all distinct. Suppose that this is not true. Then if 

(4.2) nj2ru = nk2su 

for s > r, we have for x 2 x0 

exP(log X/(2 log log x)) 1 nj/nk = 

= 2u(s-d 2 2" 2 exp(3log x/(Qlog log x)), 

which is a contradiction. It follows that in (4.2) we 

have s = r, hence j = k, and (4.1) is proved. 

Note that if (1.9) is true, then D(x) is roughly 

C(x) to the power log 116 x, which is incomparably stronger 

than (4.1). On the other hand, practically the only 
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property of a (n) that was used in the above proof was 

the bound (1.4). Hence an analogous result may be easily 

formulated for a wide class of multiplicative, prime- 

' -independent functions which take natural numbers as I 
i values and satisfy a growth condition similar to (1.4). 

To obtain lower bounds for C(x) we proceed as 

follows. Let t,r 2 1 be integers (to be suitably chosen 

later), and let p, denote the n-th prime. Consider 
i 

numbers of the form 

(4.3) n = (Pl**.Pj > 

kl 

(P,+l**eP~+j,) 

k2 
l ** 

l **(Pr(t-l)+l*o’P,(t-l)+j jkt t t 
where each j, (l=l ,...,t) takes all possible values 

jl = 1,2,..., r and 1 I k, < k2 < . . . < kt are suitably 

chosen integers. By the prime number theorem 

pn = (l+o(l))n log n as n - 00 and e(x) = c logp= 
PSX 

= X+O(X) as x + ~0, hence for rt large 

n s exp(kt8(prt)) s exp(2ktrt log) s exP(lOg X) =X 

I if r,t and kt satisfy 
1 

(4.4) 2ktrt log(rt) I log x (x 2 x0). 

-67 - 



Moreover, 

(4.5) a(n) = P jl j2 (k,)P (k2)...P '+-($1 r 

and we wish all the numbers of the form (4.5) to be 

distinct. Therefore the sequence k, < . . . < kt should be 

chosen in such a way that 

(4.6) ah, > = P jl (k,)...P Jt 5 (kt) = P (k,)...P It (kt) = a(n,) 

implies n =n 1 2 
for 1 < jm, ln I r, 1 5 m,n 5 t. If 

(4.4) and the last condition are satisfied, then there 

are rt different numbers of the form (4.3), and it 

follows that 

(4.7) c(x) 2 rt . 

Hence the larger tlog r is, the better our lower bound 

for C(x) will be, and therefore kt (as a function of t) 

should be as small as possible. One may think of the 

numbers k 
j as the elements of the (minimal) basis of the 

multiplicative semigroup generated by P(l), P(2), 

p(3), . . . . so that k. 
J 

is the j-th element of the basis. 

In this context D(x) represents the number of distinct 

elements of this semigroup which do not exceed x. To 

obtain a specific, unconditional lower bound for C(x) 

we shall use the following 
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LEMMA 2. (A. Schinzel) If w(n) is the number of 

distinct prime factors of n, then 

(418) lim 
n-coo 

=co . 

j=l 

PROOF OF LEMMA 2. For the partition function we 

shall use the well-known asymptotic formula (see e.g. 

M. Knopp [Ml, p. 90) 

P(n) = -!- l 

ahn 
(4.9) 

e 

4,/3 n - l/24 
(1 - & -  > + O(e 

5aXn/8 
> Y  

n 

where Xn = (n - l/24) l/2 and a = 1~(2/3) l/2 . We suppose 

that the primes q,, . . ..qr constitute the prime factors 

of P(n) fer every n 1 2. We shall use a result of 

R. Tijdeman [30], which says that there exists a 

constant C < 0 such that if the numbers A and B are 

composed only of q,,...,q, and IA - BI I AlogCA, then 

A= B. Let us choose two sets of positive integers 

al I*** I ak and b, ,...,bk such that 

k k 
C a: = C by 

j=l j=l 

for m = 1,2, . . . . [c/2], but 

k c a[c/21+1 # ; b,[c/2]+1 . 
j=l IJ j=l J 
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Using (4.9), Taylor's expansion and simplifying the 

resulting expressions we obtain 

k k 
(4.10) II P(n+aj) = n P(n+bj)(I +O(n -1/2-k/21)) 

j=I j=I 

and also 

(4.11) i P(n+aj)= 
k 
fl P(n+bj)(I +Q(n 4/24C/21))* 

j=I j=I 

Putting in Tijdeman's theorem 

k k 
A= II P(n+aj), B = II P(n+bj) 

j=l j=I 

we find from (4.10) 

A- B 4 A(logA)-2[c'21-' , 

which yields A = B. However, this contradicts (4.11), so 

(4.8) must hold. 

From Lemma 2 it follows that there exist arbitrarily 

large t and integers 2 = k, < k2 < kt such that there 

exist primes 2 = q, < q2 < . . . < q, with the property 

that each q. 
3 divides P(kj) but does not divide any 

P(kl) for 1 < j, i.e. lim kt = 00. We shall take 
t+rn 

t = [A] + I (wh ere A > 0 is any fixed constant), 

r = [clogx/loglogxl, c = I/(IOktt). Then (4.4) clearly 

holds, and all numbers of the form (4.5) are distinct. 

Namely, if (4.6) holds, we must have first j, = It 
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(since qt does not divide P(km) for 15 ml t-l), like- 

wise j,-, = It-, I...I until finally we obtain j, = 11, 

that is, n, = n2. Consequently (4.7) gives immediately 

THEOREM 4. For any fixed A > 0 and x 2 x0(A) 

(4.12) c(x) > (log x)A . 

It is clear that any non-trivial bound of the form 

kt I g(t), where g(t) is a positive, increasing function 

tending to 00~ would improve (4.12). For example, if we 

had kt << ect (c > 0), then by the foregoing argument it 

would follow that C(x) > exp(B(loglogx)2) for some B > 0. 

Actually, it seems not unreasonable to expect a drastic- 

ally better bound for kt to be true, namely 

(4.13) kt << tl+' , 

which is (up to E) best possible. Proving (4.13) seems 

quite difficult, but perhaps it is not hopeless to expect 

that kt << tBlogCt may be proved with some B 2 1, c 2 0. 

If this were so, then taking r = 2 in our construction we 

would obtain 

n I exp(2kptlogbt)) s exp{Ijt B+llogc+'t) 5 x 

(D, > 0, x > x0) 

for 
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t = ++I )/(B+l > I, 

(D2 

which exists by Lemma 2. (Note the principle of the 

> 0) 

construction: if we have a poor bound for kt, take r as 

large as possible; if we have a good bound for kt, take 

r = 2, i.e. as small as possible). Then (4.7) gives 

(4.14) C(~)lr~=2~ >~(D3(l~)'/(I~)(loglogx)-(C+Z)I(Btl)l 

for some D3 > 0. In this case the numbers of the form 

(4.5) are all distinct, and in fact (4.5) also gives 

a(n) I Prt(kt) 5 exp(C k:/2rt) I 

5 exp(C2t(a+z)/210gC'2t) I exp(log u) = x 

for some C,, C2 > 0 if r = 2 and 

t = [D4(logx) 2'(B+2)(loglogx)-c'(B+2)],(D4 > 0). 

Note that we used here an upper bound for the partition 

function (follows easily from (4.9)), hence an intrinsic 

property of a(n). With this t the numbers of the form 

(4.5) are all counted by D(x), and we obtain 

(4.15) D(x) 2 2%xp(D5(logx) 2/(B+2)(loglogx)-C/(B+2)) 

(D5>O). 
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In particular, if we recall that (1.7) - (1.9) hold 

unconditionally, then from (4.13) - (4.15) we obtain 

THEOREM 5. If the bound (4.13) holds, then as x -c 03 

c(x) = exp((logx) l/2+0(9 
I 

D(x) = exp((logx) 2/3+0(l)) . 

This means that if the conjecture (4.13) is true, 

then (up to the evaluation of the o(l) terms) we have 

determined asymptotically the order of magnitude of C(x) 

and D(x). It is also worth remarking that the above 

procedure for bounding C(x) can be carried over to count 

distinct values of other multiplicative, prime-indepen- 

dent, positive, integer-valued functions f(n). Instead 

of trying to obtain a general result, we shall consider 

the familiar function f(n) = dk(n). In this case 

g(a) = dk(p') = (a + l>(a + 2)...(a + k - I) 
(k - I)! 

plays the role that P(n) had for a(n). Now q divides 

4h - 1) for q(> k-l) prime, and for almost all q 

dq - m) (m > I) is not divisible by q. Hence in the 

above notation kt <tBlogCt with B = C = 1 for dk(n). 

If we recall the classical Hardy-Ramanujan formula for 
al a2 a 

the number of integers of the form n = pl p2 . ..prr 
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(al > a 2 L . . . 2 a rt P' 3 the j-th prime) not exceeding x, 

used in majorizing C(x) as in (1.8), then from (4.14) 

with B = C = 1 we obtain unconditionally 

(4.16) exp(E,(k)llogx) 1'2/loglogx) << c(x) << 

<exp(E2(logx/log10gx) l/2) 

with E,(k)>O, E2 = 21~3 -I/2 +E . This seems new for k > 2, 

but is was already mentioned (see (1.12)) that P. Erd& 

and L. Mirsky [5] proved a sharper result than (4.16) 

for k = 2. It is plausible to conjecture that for d,(n) 

(k 2 2 fixed) one has, as x * CQ, 

c(x) = exp((E(k) + o(l))(logx)1'2/10glogx) 

(E(k) > 0). 

In this case the function D(x) is much easier to handle. 

For k = 2 one has trivially D(x) = x + O(1) (since 

n = d(m) has a solution for every n 2 I), and for k > 2 

it is not difficult to show that D(x) is of the order 

X 
I/(k-l)+o(l) . 
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5. THE VALUES OF a(n) ON LONG BLOCKS 

OF CONSECUTIVE INTEGERS 

In this section we shall consider the values 

a(n+l), a(n+2), . . . on "long" blocks of consecutive 

integers. More precisely, we shall suppose x I n S 2x 

and will try to find two functions k = k(x) and t = t(x), 

as large as possible, such that a(n+l) = . . . = a(n+k) 

for many n and such that the values a(n+l), . . . . a(n+t) 

are all distinct for many n. Analogous problems may be 

of course considered for other common arithmetic func- 

tions, such as d,-(n) for instance. The first problem is 

very difficult already for d(n) = d,(n), and it is 

that 

x/log7x < 
n<x,d(n!=d(n+l) 

1 << x(loglogx 

known 

-l/2 . 

The lower bound is due to D.R. Heath-Brown [Ill, and the 

upper bound to P. Erdcs et al. [6] (A. Hildebrand very 

recently announced in [14] the lower bound x(loglogx)-'). 

Nothing non-trivial seems to be known about integers n 

for which d(n) = d(n+l> = d(n+2) etc. On the other hand, 

P. Erd% and L. Mirsky [5] showed that the number of 

x I n I 2x such that the values d(n+l>, . . . . d(n+t> are 

all distinct is >>x l/2 if t = [c(logx)1'2 /loglogx] with 
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a suitable C > 0. We are going to prove the same result 

for general d,(n) by a method which, in the case of a(n), 

gives the result with t = [C(logx/loglogx) "2]. We shall 

also be able to find very long blocks of consecutiv= 

integers where the values of a(n) are all equal. This is 

quite a contrast with the case of dk(n), and is 

essentally due to the fact that a(n) is an s-function, 

that is, a(q) = 1 if q is squarefree. Our results are 

THEOREM 6. There exist at least x l/2 numbers n 

from [x,2x] such that 

a(n + 1) = a(n + 2) = . . . = a(n + k), 

THEOREM 7. There exist at least x w numbers n 

from [x,2x] such that for a suitable C > 0 the values 

a(n + I), a(n + 2), . . . . a(n + t) are all distinct for 

t = ~c(logx/loglogx) '2] . 

PROOF OF THEOREM 6. If k is as in Theorem 6, then 

we shall find k integers n+l,n+2,...,n+k which all 

have the same pattern for at least x l/2 numbers n from 
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[x,2x]. By this we mean that 

(5.1) n+i= (7 a2 aR 
pi,l Pi,2 l ”  Pi,Rli (i=l,2,...,k), 

where the pi 's are distinct primes not dividing li, li 

-is squarefree, 2 I a, I a2 I . . . 5 aR, and we say that 

(9 d-5’ . . ..aR) is the pattern of n + i. From (5.1) it 

follows that 

a(n + i) = P(al)P(a2)...P(aR) (i=1,2,...,k), 

and since the right-hand side here does not depend on i, 

we have a(n+l) = a(n+2) = . . . = a(n+k) and Theorem 6 

follows. Note that this construction does not work for 

d(n), since 

d(n + i) = (a, + l)(a2 + l)...(a, + I)2 
w(li) 

depends on i. Therefore our problem is reduced to the 

purely arithmetic problem of finding long blocks of 

consecutive integers with the same pattern, which seems 

to be a problem interesting in itself. First we define 

(fix) the pattern (al,a2,...,aR) as follows. Note that 

if 2a s k < 2a+1, i.e. if a = [logk/log2], then 

"R = [logk/log2] and this occurs with multiplicity one in 

the pattern. The number 2 occurs among the ar's jl 
times if jl is defined by 
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2232 2 . . . < k < 2232 'j, - . ..p2 p2 j, j,+l ' 

where p m is the m-th prime. In general, for a given r 

such that 2 I r I logk/log2, the number r occurs in 

the pattern jr times, where jr (2 1) is defined by 

(5.2) p+;. . . p;p k < P:P&P;,P;~+, l 

Therefore, roughly speaking, the numbers occurring in 

the pattern will represent the union of all possible 

exponents of squarefull numbers not exceeding k. Small 

a /s will appear in the pattern with a large naxltiplicity, 

and large ar 's with a small one. Namely from (5.2) and 

the prime number theorem we have, for 2 I r 5 g(k), 

g(k) = o(logk/loglogk) as k * 

(5.3) jr = (1 + o(l))logk 
rloglogk 

In general, for r0 I r I logk/log2,(5.2) implies by 

estimates from elementary prime number theory 

(5.4) jr 5 510gk 
rlog(+$ + 1) l 

Our construction gives then the precise pattern of 

numbers of the form (5.1). Further, for p. s k 112 we 3 
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define cj (2 2) as the integer for which 

and we denote by J = n(k 1'2) the largest 

9 -1 

pj 
7 Ik<p., I 

j such that 

'j I k1'2. We require first 

c +I c +I c +I 
(5.5) n = py1py2...pFJ(mod PI1 P22 l “pJJ 1 l 

Next we require that, for i = 1 ?a** I k, 

(5.6) n+iZ T a2 aR 
Pi,lPi,2"'Pi,R (mod p 

a,+1 a2*l flR+l 
1 i,l 'i,2 "'Pi,R' ' 

where (al,a2, . . ..aR) is the pattern defined above, and 
9 the congruence conditions ensure that p. bj In + i. Here 

the p. 's are distinct primes exceeding k l/2 
bj , to be 

taken as small as possible. The congruences (5.6) are to 

hold if no prime powers that divide i divide also 

F = =I 'J P’ l *=PJ l 
If this condition is not satisfied, and 

if e.g. some p B (B 2 2) divides i and F, then the 
8 corresponding fa&or pi 1 is to be omitted in (5.6). 

I 
This procedure is necessary, since in view of (5.5) the 

numbers n + i are automatically divisible by i if ilF, 

6 and therefore the omission of suitable pi l's will I 
ensure that the pattern (cx,,~~,...,cx~) of each n + i is 

preserved. To elucidate this idea, take k = 40. Then the 
643 754 pattern is (2,2,3,4,5), we choose n G 2 3 5 (mod 2 3 5 >, 
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n +1 z 72112133174195 (mod 73113134175196)~ 

and analogously for n +2 and ti3 we introduce 10 new 

consecutive primes. But since 2 2 divides F = 263453, we 

shall have 

n+4 - 2 3 4 5 
p4,1p4,2p4,3p4,4 

Cd p4,1p4,2p4,3p4,4)' 3 4 5 6 

similarly 

n+32 E 2 2 3 4 
p32,1p32,2p32,3p32,4 

(Izlod p32,1p32,2p32,3p32,4) 3 3 4 5 

n+36 3 4 5 4 5 6 
' p36,1p36,2p36,3 lmoa p36,1p36,2p36,3)' 

and so on. Note that the moduli in (5.5) and (5.6) are 

all pairwise coprime, hence by the Chinese remainder 

theorem the system of congruences will have a unique 

solution modulo A(k), say. From (5.3) and (5.4) it 

follow that 

B= c jr s Glogkloglogk . 
2lr<logk/log2 

For each n + i we introduce at most R new primes, so 

that A(k) is the product of at most Gklogkloglogk 

consecutive primes exceeding k J/2 , some of which may 

have exponents as large as logk/log2. For our purpose, 

however, it is desirable to have A(k) as small as 

possible, and therefore in constructing the congruences 
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(5.6) we shall make the following stipulation. For 

numbers r appearing in the pattern (a,,c%2,...#aR) such 

that 2 S r I clogk/loglogk (this corresponds to (5.3)), 

we choose the primes pi r (for each i = l,...,k) as I 
small as possible, and then we "fill in" the larger 

primes for the r's appearing with smaller multiplicities 

(this corresponds to (5.4)). Thus for r > elogk/loglogk 

we obtain jr c<,loglogk in (5.4). Moreover we have from 

(5.3), as k - 00~ 

c 
2lr&logk/loglogk 

jr s 2&Wk-e = (l+o(l))logk . 

Hence it follows, for some C = C(&) > 0, that 

if k = [logxlogloglogx/(4010glogx)2] as in theorem 6. 

All solutions of (5.5) and (5.6) are of the form 

n 3: A(k)m + B(k),0 I B(k) < A(k), hence there are 

x/A(k) + O(1) such n from [x,2x]. It remains yet to 

show that at least x 112 of these n are of the form 
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(5.1) (i.e. that li in (5.1) is squarefree). This means 

that we have to omit those n which are E -i (modp2), 

0 4 i I k,p > A(k). For a fixed prime p (> A(k)) we omit 

x/(qp2) + O(1) numbers, since p2 may divide only one 

n + i for a fixed n. This is so, because if n + i = m p2 i 
and n + j = mjp2, then A(k) 2 Ii - jl = p21mi - mjl 2 p2f 

which is obviously impossible. Hence the total number of 

omitted n's does not exceed 

A(k):&"(a 
+ o(1)) <x/g + x 1'2 = 0(x/q , 

consequently the number of n's such that (5.1) holds is 

(1 + o(l))x/Ak > x"~. This completes the proof of 

Theorem 6. 

PROOF OF THEOREM 7. We shall develop first a 

general method, which gives the conclusion of Theorem 7 

with a slightly poorer value t = [C(logx) 1'2/loglogxl 

for a large class of arithmetical functions, including 

d,(n). Then we shall refine the argument in the case of 

aPI 8 where we are dealing with an s-function, and obtain 

the full assertion of Theorem 7. 
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By the Chinese remainder theorem the system of 

congruences 

(s.7) 

n+l: 22 
PlP2.** r 

33 3 
P2 Cd PlP2'**Pr) 

n+2: 2 2 
pr+lpr+2"'p3r 3 (- P~1P;+2-~P;r) 

. . . . . . 

n+tE 2 2 
P&k-1 Jr "'P$t(t+l >r lmod p&(t-l)r"' 

"'p&(t+l)r) 

has a unique solution modulo B = (p,p,...p, &(t+l >r j3 ' 
where r = [Cloglogx] with a suitable C > 0, which will 

be specified later. Thus 

n+ 

(5.8) : 

n+ 

and n = Bm + A for some 0 S A < B. Moreover, 

B = 

I 

exp(30(p&t(t+l)r )> S e&t2rlog(3t2)) I 

exp(2c2 - c(loglogx)2) = x1'25 
' ~l~lq42 

1 2 2 
= mlple~~prt hl,pl.a.pr) = 1 

. 

. 

t 2 2 
= mtP~t(t-l)r"'P~t(t+l)r' 

if t = kl(logx~1'2 /loglogx] and 2CfC = l/25. Therefore 
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there are x/B + O(1) > x 19/20 solutions of (5.7) such 

that x S n 5 2x. We wish to establish that for 

'sufficiently many of these solutions n each m. 
3 

(j = 1 ,...,t) in (5.8) has relatively few prime factors, 

since by the classical result of Ha,rdy-Ramanujan 

loglogn is the normal order of Q(n). By a result of J.-L. 

Nicolas 6271 we have, uniformly for 3 S k I logx/log2, 

(5.9) c 1 << x20klog x. 
nSx,SI(n)Zk 

This means that the number of n's from [x,2x] which 

satisfy (5.7) and (5.8) with Q(m,) > 1OOloglog x is 

<cx/(p: . . .p;log30x), consequently the number of these n 

for which fi(m,) I 1OOloglog x is 

X 
2 2 (1 + o( I30 1) . 

Pl"'Pr log x 

The n's which satisfy n + 1 E 0 (mod p:...p:) and 

n+2r 0 (mod P:+,...p& ) lie in a unique arithmetic 
22 2 progression modulo p,~~...p~~, hence using again (5.9) 

it is seen that the number of n's for which both 

G(m,) I 1OOloglogx and SI(m,) S IOOloglogx is 

x 
2 2 (1 + O(--- 2 11, 

Pl"'P3r log30x 
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where the O-constant is absolute. Continuing this 

analysis, we finally obtain that the number of n's from 

[x,2x] for which (5.7) and (5.8) hold with 

Q(m,) S 1OOloglog x ,...,Q(m,) S IOOloglogx is equal to 

$(1+0( t )) 2 5 > x1'2 
log30x 

Let us define now the function b(n) by the relation 
@n) In (i.e., b(n) is the exponent of the highest power 

of 2 which divides n). We shall prove that 

(5.10) b(a(n + 1)) < b(a(n + 2))<... < b(a(n + t)), 

which implies that the values a(n + l),...,a(n + t) are 

all distinct, hence Theorem 7 is proved. 

In view of (5.8) and a(p2) = 2 we have 

ah + = ab, = aimI P, 

a(n + 2) = a(m2)22r ,...,a(n + t) = a(mt)2 tr . 

But from (4.9) it easily follows that a(p'> = P(a) < 

< exp(cc!t lJ2) for 01 2 1 and some suitable c >'O. Thus if 
a4 

the canonical decomposition of n ak is n = ql . ..qk 1 

then for n 1 1 
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(5.11) a(n) = P(",) . ..P(cxk) < exp(c(a, 112 + 
l a* + c$ 1'2)) c 

< eqbh-d) . 

Hence a(m,) <e IOOcloglogx < 2r/4 if r = [Cloglogx] with 

with C > IOOOc, and analogously a(m,) < 2r'4,...,a(mt) < 

< 2r'4 for x 2 x0. This implies 

2r S b(a(n + I)) S 2r+r'4 < 22r I; b(a(n + 2))S22r+r'4< 

< 23r S . . . < 2tr S b(a(n + t)), 

proving (5.10) and completing the proof of the weaker 

version of Theorem 7. 

Analyzing the above proof it becomes clear that the 

most important property of a(n) that we used is the bound 

(5.11). However, this type of bound holds for all 

positive, integer-valued, multiplicative, prime-indepen- 

dent functions f(n) such that f(p") = g(a), g(ao) > 1 

for some 01~ and da> < exp(W for some c = cf > 0. 

Repeating the proof of Theorem 7 with obvious modifica- 

tions we find that there exist at least x 112 numbers from 

[x,2x] such that all the values f(n +I), f(n +2) I*** I 

. . . . f(n+t> are distinct if t = [C,(logx) 1'2/loglogxl 

with a suitable Cl = C,(f) > 0. In particular, 

d#) <<k akcl, hence this result holds for the function 
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d,(n). In the special case k = 2 this was already 

established, by a different method, by P. Erdiis and 

L. Mirsky [5], but for general d,(n) it appears to be 

new. 

Finally we point out how in the case of a(n) one 

can obtain that the values a(n+l),...,a(n +t> are all 

distinct for t = [C(logx/loglogx)"2]. For this it 

suffices to note that, analogously to the discussion 

made in proving Theorem 6, we may take all the m i 's in 

(5.8) to be squarefree. In view of a(mi) = 1 this 

immediately implies (5.10), but now we can take r = r. 
and not as large as [Cloglogx], which we had before. 

Thus now B I x1125 will be satisfied for 

t = [C(logx/loglogx)"21 and a suitable C > 0, and 

Theorem 7 follows. This improves the previous t bya 

factor of (loglogx)"2. 
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