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Abstract 

Ue conaider . sequ.ace of parametw. y, .*, a** , .* stmciat- 

ed with e fireph G. lor exuple, e fee be the maximm ntir of 

indopbndont verticer in G and eech ei ia then the number of inde- 

pendent seto of order i. Sorting tbia Hat into aondecreasinR order 

determines a permutation w on the indicecr m that 

er(lP 'r(2) S *+. 
in 

r(a)' 
UC? call a sequence constrained if certain 

pereutatiom I cannot be realized by eey Kmph. It is well koova 

that the odge independence sequence ir constrained to be uniwdol. The 

wmtex independence sequenca VP.B coniectured to be likevise, but we 

show that, quite the contrary, it is totelly unconstreinod. That ie, 

every pereutetion is reelized by moae RrWh. 

1. Constrained Sequences. 

We wish to study sequences of parameters associated with a spec- 

ific graph. For example, in the vertex independence sequence 

al9 a2' -** , am, each ai denotes the number of independent sets of 

order i of vertices in G and m is the maximum order of any inde- 

pendent set. Similarly, in the edge independence sequence, 

bl, b2, *.* , b,, each bi counts the number of ways to select i 

independent edges. ARain m denotes the maximum order, but it is 

probably a different numerical value than m in the vertex inde- 

pendence sequence. The approach we shall develop to study the vertex 

independence sequence might well be applied to other graphical se- 

quences, for example, to c3, ~4, **I , cm where ci counts the 

number of i-cycles in G. 

The edge independence sequence was shown.[l] to be unimodal, that 

is bl<b2<..-<brLbr+l'br+2>B="bm. 

Ii. Wilf asked whether the vertex independence sequence was likewise 

unimodal. He seemed to be somewhat sceptical of this conjectured uni- 

modality. We shall not only show that the unimodal conjecture is 

false, but that, unlike the edge sequence, the numbers in the vertex 

independence sequence are totally unconstrained in the following sense: 
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Sort the sequence into nondecreasing order. This defines a 

permutation I on the indices such that 

We call the family of sequences beinq investigated constrained if 

certain permutations I are never realized by any graph. The family 

is unconstrained if, for each P, every permutation on m indices can 

be realized by some graph. 

We know the edge sequence must be unimodal. Which permutations I 

correspond to unimodal sequences? To characterize them, let Sl be 

the set {l, 2, .s. , m} and let St+1 * Si - {x(i)). Each Si+l is 

the set of indices remaining after the i smallest terms have been 

removed. It is not hard to see that the sequence is unimodal if and 

only if r(i) * min Si or max 'i 

for each i. After all, uhere can the smalleat term in a unimodal 

sequence be located? It must be either first or last, for otherwise, 

if j gives the smallest term, we have 'j-1 ' aj < a.j+l 
and the 

sequence cannot be unimodal. Having selected one end term to be small- 

est, me observe that the second smallest must be at either end of the 

remaining terms. In this way we find that exactly 2m-1 of the xl! 

permutations can be associated with unimodal sequences. As already 

noted, the edge independence sequence is known to be unimodal. Thus, 

I is constrained to be amonK the 2 
m-l permutations that Kive uni- 

modal sequences. We do not, however, know if all 2*1 inimodal n's 

can actually be realized. Quite possibly the edge independence 

sequence is even more constrained than the unimodal property requires. 

We leave this question for future research. We may now state the main 

theorem of this article. 

Theorem; The vertex independence sequence for graphs is totally un- 

constrained. That is for each a and for each permutation I on 

{l, 2, a-* 9 81, there exists a graph G with vertex independence 

number equal to m and a,(,lJ < a*(2) < a%(3) < l a- < an(m). 

Proof. For each permutation n we shall realize I by a graph of 

the form 

G - 1K t 2K + 3K 
"1 a2 "3 

t a** t mKn . 
is 
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That is, G is the join of m subqrapha, and the .jth SubRraph is j 

copies of a complete qrapb K . 
“.i 

We must aSSign the parametem 

n17 nz3 **a , nm carefully to assure that G realizes a. How can 

we select k independent vertices in G? If we try to use vertices 

from more than one of the II subgraphs, the join operation prevents 

them from being independent. Thua, all k mst come from a single 

dKn - Horeover, if .i < k, there do not exist k independent 
1 

vertices. but for j Zz k we select k of the j components, and 

then choose on vertex from each component to find ,:)n: independent 

k-sets in jK . 
?i 

Summing over .i L k we have 

We can now explain our strategy to realize a. Let T be a lame 

parameter (to be specified soon). Choose 

nk = ((r(k) - l)TJ . (2) 

Of course, nk must be rounded to the nearest integer, but we have 

neglected this in our notation because the formulas are already quite 

involved. When T is larKa, this round off effect ie neqliRible. We 

must make one other adjustment. If rCla)-1, equation (2) River 

n -0 
la 

and ve would have ax, * 0. Since we promised to construct a 

graph vith vertex independence number equal to m, in this one case 

redefine 

n -1 
m 

whenever x(m) 9 1. (3) 

Each nk has been defined so that the first term in (1) for ak Rives 

(n(k) - 1)T. That is, each ak has a leadinE term in (1) Riving a 

distinct integral multiple of 1. Moreover, these terms fall in the 

proper order to realize I, provided that the remaining terms do not 

scramble the order. This will be true if we can shov that for each 

k < m, 
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In other words, the first term (.j l k) throws ak onto the number 

line at (v(k) - 111 and the remaininK terms t.i > lcj do not total 

enough to reach the next integral multiple of T. In this way we 

guarantee a has been realieed by the graph G defined by (2) and 

(3). 

If we set T very large, (4) is easy to verify, but the order of 

G may be extravaqently large. As we reduce T, more work is required 

to verify (4). Although ve know it is not the smallest T that works, 

we have found that T * II 
2m is roughly the smallest T that leaves 

the task of verifying (4) manageable. For this value of T, notice 

that if v(k) > 1 equation (2) gives nk 2 m2. 

We shall verify (4) first for k = m and then work backwards down 

the list. For k-m, the sum is empty and hence equals 0. For k - 

m - 1, we have a Single term. 

(zl)nr' = m ni/nm I n(*(m) - 'jT . 
n 1 

Wow either a(m) = 1 and the term is 0, or 2 S #(ID) S m and so 
2 

11. 2 l and we have 
( t < T. 

m 

Do not despair. We 

at a tima. For all k S 

F 
j-k+1 

are not going to continue to verify one ak 

m - 2 ue may estimate quite crudely: 

@.i) - l)T/nj-' . 

Replace *(.I) -1Sm and ni2m2, so 

; &k .g ; (.i, T,m?i-2k-l . 
j=k+l k 1 j-k+1 

how the binomial coefficient is at most (i) = tiik) < (k + 1)&l"" 

since there are j - k factors in the numerator, the smallest equals 

k + 1, and each of the rest is at most m. We have generously sup- 

pressed (j - k)! in the denominator. This gives 

; ($nk 5 T ; (k + l~lj-k-Q,,2.i-2k-l, 
j-k+1 ' d j=k+l 
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Finally, letting the upper summation limit of m be replaced by 

infinity allows us to make the inequality strict, and we evaluate the 

geometric series to Ret 

< T(k + l)/(m - 1). 

Since this case required k < II - 2, we have obtained T aa the re- 

quired bound. We have demonstrated that the graph constructed by (2) 

and (3) doea in fact realize the permutation x. 

Examples. Table 1 illustrates our construction for each permutation of 

length 3, and Table 3 shows the construction for length 4. Noticing 

that al is just the number of vertices in G, we see that our con- 

struction uses as many as 1515 for e * 3 and 197456 for II = 4. 

In general, to obtain the sequence with al > a2 > a3 > a*. > am we 

it.98 order 

where the last term of a results from condition (3). For T = mZa 

this is on the order of al % m 
2m+1 

. 

This is equivalent to raying m -, O( 
10~ al 

2 loR loR a, 1. But this is 
1 

certainly a much larger value of a 1 than necessary. By examining the 

permutations one by one, we can produce the parameters in Table 2 

requiting no more than 65 vertices. In fact, the use of jK in 

the construction is a convenience, not a necessity. 
3 

If we allow the 

union of j complete graphs of varying sixes we can Ret even smaller 

examples. Thus K24 t 2K3 U K4 realizes 'I = 213 with 34 vertices 

and K2, t 2K3 U K4 realizes 231 with 37 vertices. Similar 

careful choices for m = 4 ate shown in Table 4 where every permute- 

tion is achieved using at most 302 vertices. However it is quite 

possible that even smaller graphs might succeed if we liberalize the 

conrtruction to allow graphs other than joins of unions of compl%te 

graphs. Determining the smallest order that is large enough to realize 

every permutation of order l ia likely to remain exceedingly 

difficult. 
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It appearr that permutations starting with m - 1 followed by II 

require the most vertices. Each independent m-set contains m 

independent m - 1 subsets, Thus t-1 tends to exceed a unless 
111 

a m is quite large and there is lots of overlap. For mK we have 
111 

1 
awl = am = m . We suspect awl < am requires a*1 > P. If so, 

then any permutation of the form r = m - 1 m a-+ 1 must have at 

least d + m. This suggests lower bounds of 30 for m = 3 and 260 

for m-t. Perhaps our best examples are not eo far from the truth. 

2. Related Problems 

It is natural to wonder if the sequence el, e2, -a* , em giving 

the number of maximal independent sets of vertices of each order be- 

haves similar to the ordinary independence sequence. An independent 

i-set that is always counted in ai is also counted in ei only if it 

happens to be maximal, that is, no vertex can be added to it to form an 

independent (i + l)-set. In some contexts, maximal independent sets 

are harder to analyze because an additional property is involved. How- 

ever, in the present context it happens that the maximal independence 

sequence is easier to control. Not only is the maximal independence 

sequence totally unconstrained, but we can even select 

e13 e2, -*- , em to be a nonnegative sequence and construct a 

graph having this specified maximal independence sequence. Specifical- 

ly,welet G-H +H +***+H 
12 

where each subKraph Hi = 

fi - l)Ri U K . 
‘I 

As constructed,*each Hi contains precisely ei 

independent i-sets, each of which is maximal, and no other Ii 
.i 

con- 

tains a maximal independent i-set. This last feature of the graph 

allows each Hi to be selected to produce ei without affectinK 

any other terms in the sequence. 

Ifany open problems remain in this area. The first two we list 

have already been mentioned above: 

Problem 1. Determine the smallest order 1arRe enough to realize every 

permutation of order ‘II as the sorted indices of the vertex inde- 

pendence sequence of some Kraph. 

Problem 2. Characterize the permutations realized by the edqe inde- 

pendence sequence. In particular, can all 2 
m-l 

unimodal pemuta- 

tions be realized? 



It is possible that the nature of the vertex independence sequence 

is totally different for trees or forests. 

Problem 3. For trees (or perhaps forests?, is the vertex independence 

sequence unirodal? 

At one point we suspected that unimodality of G and H would 

imply G U Ii is unimodal. If so, the unimodal conjecture for trees 

would imply the one for forests. This is temptinK because it is easy 

to verify that settinE a0 - 1 by convention gives 

%(G U H) - t 
14 

ai(G)akei(H) . 

But such a convolution of unimodal sequences need not be uniaodal. For 

example, G = Kg5 + f7 has the u&modal sequence aG - 1, al - 116, 

a2 = 147, a3 * 343, whereas G U G has the nonunimodal sequence 

a0 = 1, al - 232, a2 * 13750, a3 - 34790, a4 = 101185, 

a5 - 100842, a6 - 117649. Thus, it would seem that the tree and 

forest conjectures need to be attacked separately. 

In closing, we suERest that permutation constraint offers a new 

perspective for investiqatinq other sequences associated with graphs. 
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ll nf n, n, 01 9 a3 

123 0 27 11 87 1092 1331 

132 0 38 9 103 1687 729 

213 729 0 11 762 363 1331 

231 1458 0 9 1485 243 729 

312 729 38 1 806 1447 1 

321 1458 27 1 1515 732 1 

Tablet For m-3 and T-36-729, 
themaximumorder - 1515 -12T +Zfi +31 
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n ni n;, rt;, at a2 bj 

123 0 0 4 12 48 64 

132 IO 2 7 12 8 

213 37 0 4 49 48 64 

231 53 0 4 65 48 64 

312 0 3 1 9 12 I 

321 1 0 1 4 3 1 

Table 2, For m -3 , more carefulLy chosen parameters grve maximum 
order - 65. 

1234 0 256 50 21 746 75682 182044 
1243 0 256 58 IQ 762 77794 222548 
1324 0 362 40 21 928 138490 101044 
1342 0 443 40 19 1082 203215 91436 
1423 036258 I6 962 142672 211496 
1432 0 443 50 I6 1lOO 2U5285 141384 
2134 65536 0 50 21 65770 10146 162044 
2143 65536 0 58 19 65786 12258 222548 
2314 131072 0 40 21 131276 7446 101044 
2341 196608 040 19 196804 6966 91436 
2413 13072 0 58 18 131310 11628 211496 
2431 196608 050 ?a 196822 9036 141384 
3r.24 65536 362 0 21 66344 133690 37044 
3142 65536 443 0 19 66498 198415 27436 
3214 131072 256 0 21 131668 68182 37044 
3241 196608 256 0 IQ 197196 67702 27436 
3412 I31072 443 0 16 132022 197785 16384 
3421 196608 362 0 16 197396 132580 16384 
4123 65536 362 58 1 66436 141142 195116 
4132 65536 443 50 1 66576 203755 125004 
4213 131072 256 58 1 131762 75634 195116 
4231 196608 254 50 1 197274 73042 125004 
4312 131072 443 40 1 132082 20'1055 64004 
4321 196608 362 40 1 197456 135850 64004 

194481 
130321 
194481 
130321 
65536 
65536 
194481 
130321 
194481 
130321 
65536 
65536 
194481 
130321 
194481 
130321 
65536 
65536 

TabLe3.Form-4and T-48- 65536, 
mwmumoraer - 197456 
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IT 

1234 3KdJKs 17 M8 304 320 
1243 4K3 I2 54 108 81 

1324 2KH + K+A,cR~ 45 303 295 300 
1342 W2 l 4K5 64 634 500 625 
1423 4k 8 24 32 16 
1432 X3 l 4K2 14 34 32 16 

2134 KS1 + Kffiu% lo8 107 295 300 

2143 k+ 4K3 55 54 lo8 81 

2314 Km+K~u2K6 296 107 2% 300 

2341 Kzer+K#.+2Kg 301 107 295 300 
2413 Km+ 4K3 82 54 108 81 

2431 Kg7 + 4K3 IO9 54 108 81 

3124 K~+K,&.KB+K~UK~U~K~ 296 297 295 300 

3142 Kz,+ 2KH* K3UKqu2Kg 296 303 295 300 

3214 Km+ K++, + K&u2Kg 297 296 295 300 

3241 Km+ K@C2,+ K&u2k 301 296 295 300 

3412 Km+ 2Ku+ K+&u2k 301 303 295 300 

3421 Kle6+K&*K&,u2& 302 301 295 300 
4123 3K, + 4K, 16 54 68 1 

4132 KS% 5 9 7 2 
4213 Kv* 4K2 25 24 32 16 

4231 KE + 4K2 33 24 32 16 

4312 K, l 4K, 5 6 4 I 

4321 K3 * 4K, 7 6 4 1 

Graph 4 

Table 4. Mm careful chokes for m - 4 glve maximum order - 302. 
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