On the Difference between Consecutive Ramsey Numbers

S.A. Burr¹ City College, C.U.N.Y

P. Erdos Hungarian Academy of Sciences

R.J. Faudree, R.H. Schelp Memphis State University

Abstract. It is shown that the classical Ramsey numbers r(m, n) satisfy

 $r(m,n) \geq r(m,n-1) + 2m - 3,$

and, for $1 \leq k \leq n-2$,

$$r(m,n) \ge r(m,n-k) + r(m,k+1) - 1.$$

Consequences of the first result for some generalized Ramsey numbers will be considered.

If m and n are integers ≥ 2 , define the (classical) Ramsey number r(m, n) to be at least integer t such that if the edges of the complete graph K_t are colored red and blue, either a red K_m or a blue K_n must occur. These numbers have been extensively studied; see [2] for a survey. Various inequalities for r(m, n) are known; for example,

$$\sqrt{2} \cdot n \cdot 2^{n/2} / e \leq r(n,n) \leq \binom{2n-2}{n-1}.$$
(1)

However, very little is known about the differences involving r(m, n), such as r(m, n) - r(m, n-1) or r(m, n) - r(m-1, n-1). It seems very difficult to estimate these differences, but we have been able to establish the following.

Theorem 1. $r(m, n) \ge r(m, n-1) + 2m - 3$ for $m, n \ge 2$.

Corollary. $r(m, n) \ge r(m-1, n-1) + 2m + 2n - 8$ for $m, n \le 2$.

The case m = 3 of Theorem 1 was proved by Graver and Yackel; see Corollary 4 on page 149 of [3]. We also note that Theorem 1 strengthens the trivial result

$$r(m,n) \ge r(m,n-1) + m - 1$$
,

which was noted in [2]. In turn, this is a special case of the following.

¹Work supported in part by NSF Grant MCS82-02955 and PSC-CUNY Grant 6-65227.

Theorem 2. If $1 \le k \le n-2$, then

$$r(m,n) \ge r(m,n-k) + r(m,k+1) - 1.$$

This theorem is nearly trivial, so we prove it first. Before giving the proof, we make the following definition. Call a coloring of K_t (m, n)-good if no red K_m or blue K_n occurs.

Proof of Theorem 2: Set $r_1 = (m, n-k)$, $r_2 = (m, k+1)$. Take a K_{r_1-1} with a (m, n-k)-good coloring, and a disjoint K_{r_2-1} with a (m, k+1)-good coloring. Join these two complete graphs entirely by blue edges, producing an edge-colored $K_{r_1+r_2-2}$. It is clear that this complete graph contains no red K_m , and the largest blue complete graph that occurs has no more than (n-k-1)+(k+1-1) = n-1 vertices. Therefore, $r(m, n) > r_1 + r_2 - 2$, completeing the proof.

We now turn to the less-trivial Theorem 1.

Proof of Theorem 1: We begin with a (m, n-1)-good colored $G = K_{r-1}$, where r = r(m, n-1). G must contain a red K_{m-1} , since otherwise we could add a new vertex and join it to all of G with red edges, yielding a (m, n-1)-good coloring of $K_{r(m,n-1)}$. We actually use only the fact that G contains a red K_{m-2} . Denote the vertices of this K_{m-2} by u_1, \ldots, u_{m-2} . As a first step, adjoin m-2 more vertices, denoting them by v_1, \ldots, v_{m-2} . For each *i*, join v_i to u_i with a blue edge; for each other vertex x in G, join v_i to x with the same color as u_i is joined to x. Thus, $u_i v_j$ is red for each $i \neq j$. Likewise, color $v_i v_j$ red for each $i \neq j$. So far, we have colored a graph $H = K_{r+m-3}$, in effect by duplicating the u_i .

In H, no red K_m occurs, since a u and v could not both be used in any such K_m , and therefore and red K_m found could be converted to one that used only the u_i , contradicting the assumption that the original coloring was (m, n - 1)-good. On the other hand, blue K_{n-1} does occur; but any such must use exactly one pair (u_i, v_j) , and no other u or v.

We now adjoin m-1 more vertices, labeling them x_1, \ldots, x_{m-1} , and we must describe the coloring of all the edges involving the x_i . First, color $x_i x_j$ red for all $i \neq j$, and color $x_i y$ blue for all vertices y that are not a u_j, v_j , or an x_j . It remains to color the edges $u_i x_j$ and $v_i x_j$. Color $u_i x_j$ red if $i \geq j$; otherwise blue. On the other hand, color $v_i x_j$ red if i < j; otherwise blue.

To finish the proof we must show that this 2-colored K_{r+2m-4} contains no red K_m and no blue K_n . Suppose first that, on the contrary, there exists a red K_m . Since H contains no such subgraph, this red K_m must use some vertices x_i , and hence only these and some of the u's and v's. Let x_k and x_l be the x's of minimum and maximum index respectively in this red K_m ; thus there are no more than l-k+1 such x's. Furthermore, the u_i that could occur must satisfy $i \ge l$, and the v_j that could occur must satisfy j < k. Therefore, we can use at most m-1-l u's and k-1 v's, so that the x's, u's, and v's amount to at most m-1 vertices, a contradiction.

Now suppose that there exists a blue K_n , which clearly must use exactly one x, say x_i . Therefore, this K_n must use a blue K_{n-1} from H. But as noted above, this K_{n-1} must use a pair (u_j, v_j) . However, this is impossible, since either $x_i u_j$ or $x_i v_j$ must be red. This completes the proof.

It is clear that Theorem 1 is far short of what must be true. For instance, in view of (1), the value of r(n, n) - r(n - 1, n - 1) must be exponentially large in n on the average, and it seems almost certain that this difference has an exponential lower bound as well.

However, Theorem 1 is strong enough to have consequences for generalized Ramsey numbers. (If G and H are graphs, r(G, H) is defined like r(m, n), but with G and H in place of K_m and K_n respectively.) For instance define $K_{k,l}^*$ to be a K_k with vertex-disjoint stars having a total of l edges emanating from the vertices of the K_k . There is not a unique way to adjoin the l edges of K_k , but we will take $K_{k,l}^*$ to be an arbitrary but fixed member of this family of possibilities. Of course, one of the possibilities is that all l edges are adjacent to just one vertex of the K_k .

We have the following consequence of Theorem 1.

Theorem 3. For $m, n \ge 3$ and $m + n \ge 8$,

$$r(K_{m,m-3}^*, K_{n,n-3}^*) = r(m, n).$$

Proof: The proof will be by induction on m + n with the m = n = 4 and the $\{m, n\} = \{3, 5\}$ cases left to the reader. Suppose the result fails and begin with a $(K_{m,n-3}^*, K_{n,n-3}^*)$ -good coloring of K_r with r = r(m, n). We can assume that there is a red K_m . Some vertex v of the K_m is adjacent in red to at most m - 4 vertices not in K_m , for otherwise there would be a red $K_{m,m-3}^*$. Therefore, v has a blue neighborhood N with at least r(m, n) - 2m - 4 > r(m, n-1) vertices. If $n \ge 4$, then by induction N contains either a red $K_{m,m-3}^*$ or a blue $K_{n-1,n-4}^*$. In the first case we are done, and in the second case the vertex v and some additional blue adjacencies of v in N along with the blue $K_{n-1,n-4}^*$ gives the desired result. If n = 3, we use the fact that $r(m, 3) \ge 4m - 7$, which follows by induction from $r(m, 3) \ge r(m - 8, 3) + r(9, 3) - 1$ and known bounds on r(m, 3) for $3 \le m \le 10$ [2]. Therefore N has at least 2m - 3 vertices. A blue edge in N gives a blue $K_{n,n-3}^*$, and otherwise there is a red K_{2m-3} in N, which completes the proof.

Let $\hat{K}_{k,l}$ be the graph obtained from a K_k by adjoining a vertex adjacent to l vertices of K_k . Thus, in particular, $\hat{K}_{k,k} = K_{k+1}$. Another consequence of Theorem 1 is the following.

Theorem 4. For $m, n \ge 3$ and $m + n \ge 8$,

$$r(\widehat{K}_{m,p},\widehat{K}_{n,q}) = r(m,n)$$
with $p = \left\lceil \frac{m}{n-1} \right\rceil$ and $q = \left\lceil \frac{n}{m-1} \right\rceil$.

Proof: The three cases when m+n=8 can be verified directly using r(3,3)=6, r(3,4)=9, r(3,5)=13, and r(4,4)=18, so we will proceed by induction on m+n.

We first verify the weaker result $r(m, n) = r(K_m, \hat{K}_{n,q})$. Start with a $(K_m, \hat{K}_{n,q})$ -good coloring of a K_r with r = r(m, n). There is a blue K_n , and since $r - n \ge r(m - 1, n)$, there is a red K_{m-1} (even in the case when m = 3) that is vertex disjoint from the blue K_n . Each vertex of the K_n is adjacent in blue to at least one vertex of the K_{m-1} , so some vertex of the K_{m-1} is adjacent in blue to at least $\lfloor n/(m-1) \rfloor$ vertices of the K_n . This proves the weaker result.

This weaker result and the same strategy will yield a proof of Theorem 4.

In Theorem 4 the full strength of Theorem 1 was not needed in fact, only $r(m, n) \ge r(m, n-1) + m$. With this in mind, let $\widehat{\mathcal{K}}_{m,l}$ be the family of graphs obtained from K_m by adjoining m-3 independent vertices such that each is adjacent to l vertices of K_m . (if \mathcal{G} and \mathcal{H} are families of graphs, then $r(\mathcal{G}, \mathcal{H})$ only requires the existence of some graph in \mathcal{G} or some graph in \mathcal{H} .) The same strategy used in the proof of Theorem 4 (induction with a weaker one-sided intermediate statement $r(\widehat{\mathcal{K}}_{m,p}, K_n) = r(m, n)$ proved), along with the full strength of Theorem 1, gives the following.

Theorem 5. For $m, n \ge 3$ and $m + n \ge 8$,

$$r(\widehat{\mathcal{K}}_{m,p},\widehat{\mathcal{K}}_{n,q}) = r(m,n)$$
with $p = \left\lceil \frac{m}{n-1} \right\rceil$ and $q = \left\lceil \frac{n}{m-1} \right\rceil$.

References

- S.A. Burr and P. Erdos, Extremal Ramsey Theory for Graphs, Utilitas Math. 9 (1976), 247–258.
- F.R.K. Chung and C.M. Grinstead, A Survey of Bounds for Classical Ramsey Numbers, J. Graph Theory 7 (1983), 25–37.
- 3. J.E. Graver and J. Yackel, Some Graph Theoretic Results Associated with Ramsey's Theorem, J. Comb. Th. 4 (1968), 125–175.