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ABSTRACT 

The chromatic sum of a graph is introduced in the dissertation of Ewa 
Kubicka. It is the smallest possible total among all proper colorings of G 
using natural numbers. In this article we determine tight bounds on the 
chromatic sum of a connected graph with e edges, 

1. THE CHROMATIC SUM 

A proper coloring of the vertices of the graph G must assign different colors 
to adjacent vertices. The chromatic number x(G) is just the smallest number of 
colors in any proper coloring of G. The chromatic number is well known and 
much studied. The reader may seek background in any graph theory text, for 
example, Chartrand and Lesniak [l]. The chromatic sum Z(G) is a recent 
variation introduced in the dissertation of Ewa Kubicka [2]. It is defined as the 
smallest possible total over all vertices that can occur among all proper color- 
ings of G using natural numbers for the colors (as is customary). It is tempting 
to suspect that we will attain the minimum sum by first selecting a coloring that 
achieves the chromatic number and then arranging the color classes so that the 
largest is color 1, the next largest is color 2, and so on. But it is shown in [2] 
that even among trees (whose chromatic number is clearly 2) the chromatic sum 
sometimes requires the use of more than 2 colors; in fact, it is shown that for 
every positive integer k nearly all trees require the use of at least k colors to 
attain the chromatic sum. Thus, in the long run, we cannot expect a coloring 
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that achieves the chromatic number to provide the chromatic sum as well. In 
fact, it is also shown in [2] that, just as in determining the chromatic number, 
computing the chromatic sum for arbitrary graphs is an NP-complete problem, 
but in the case of trees, a linear algorithm has been found. 

We wish to bound the chromatic sum for graphs with e edges. One bound is 
based on n, the number of vertices, as well as e. The degree di of vertex i is 
just the number of edges incident at i. For a specified ordering of the vertices, 
we define the lower degree li to be the number of lower indexed neighbors of i, 
while the upper degree ui is the number of higher indexed neighbors. Of 
course, this means that li + ui = di. Since each edge is counted only once 
among the lower degrees, we have e = Eli = E ui = i E di. 

Lemma 1. For any graph G, the chromatic sum is bounded by X (G) I n f e. 

Proof. Consider a coloring C that attains the minimum sum. We write 2 C 
for the sum over all vertices of the colors used in C. Order the vertices so that 
the colors are in nondecreasing order, that is, if ci denotes the color on vertex i, 
the ordering requires that c, 5 c2 I cj 5 . * * 5 c,. Think of assigning the col- 
ors in the order given. When we reach vertex i, it is joined to Zi earlier vertices, 
so at most 1; small colors are forbidden. Thus at least one color less than or 
equal to 1 + li is available. Indeed, if no such available color is used in the 
minimum coloring, we could substitute it to reduce the sum. Thus, we have 
shown that ci 5 1 -I- li for each vertex ,I’. We sum over all vertices to obtain 
E(G) = EC = EC; 5 X(1 + Zi) = n + e. I 

Observe that the upper bound is attained if and only if each vertex i is colored 
with c, = 1 + 1, because it is joined to exactly one vertex of each smaller color. 
In particular, any graph with all components complete will attain the bound. 

However, our goal is to bound the chromatic sum for all graphs in terms of 
the number of edges only. We begin with connected graphs. It is then an easy 
corollary to modify the upper bound for arbitrary disconnected graphs. 

Theorem 2. For any connected graph C with e edges, the chromatic sum is 
bounded by 

rfil 5 C(G) I: L:(e + l)]. 

Moreover, for each value of e there exist graphs that attain these bounds. 

Proof. First, we shall show that for each e, the lower bound can be achieved 
by a bipartite graph (bigraph) using only 2 colors. Then we proceed to identify 
which bigraphs are minimal. Among all graphs with e edges and minimum 
value for the chromatic sum, select G and its optimal coloring C to have the 
largest number of vertices with color 1. In fact, for each i let a, depote the 
number of vertices with color i in C. We shall show that G must be bipartite. 
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Suppose a minimum coloring C uses color 3, and let j be a vertex of color 3. 
Now delete vertex j and insert a new vertex of color 1 and another of color 2. 
Join the new vertices to all vertices of different color to form a new graph G’. 
We already have G’ colored with the sum E (G). But how many edges does G’ 
have? We deleted at most n - a3 edges and then added n - 1 - a, edges and 
n - a2 edges. The net increase is at least (n - 1 - a, - a2) + a3. But the 
terms in parentheses have a nonnegative total because n = Eai 2 Q, + a2 + 
a3 2 a, -l- a, + 1. That is, G’ has at least a3 edges more than G. Delete edges 
until we form a graph G” with exactly e edges. Now G” is already colored with 
sum 2 (G), so its chromatic sum is bounded above by E (G ). Since G gives the 
minimum X(G) among all graphs with e edges, we must have C (G”) = I: (G). 
But-the coloring we have produced uses one more vertex of color 1, contradict- 
ing the selection of G. Hence, the assumption that G might have a vertex with 
color 3 is false. Since G must be 2 colored, it must be a bigraph as claimed. 
However, it should be noted that sometimes nonbigraphs attain the same sum. 
For example, when e = 2a2 + 1, the minimum sum of 4a + 1 is attained both 
by subgraphs of Kzo+,,a and by the graph K20,0 with one edge added to the 
smaller set to form a tripartite graph. 

Now among all bigraphs B with e edges and using a = a, vertices of color 1 
and a2 = rz - a vertices of color 2 in the minimum coloring, the chromatic sum 
is unchanged upon adding edges to form a complete bigraph KU.,,-, . Thus, for 
e I u(n - a) and a 2 (n/2), we know that C(B) is at most E(K,,,-,) = a -t 
2(n - a) = 2n - a. For a chosen value of a, the minimum occurs for n - a = 
[e/al, giving C (B) = minniZco5n {a + 2re/ul}. Ignoring the ceiling function ields 
the function f(u) = a + (2e)/a, which attains its minimum value of Y- 8e by 
choosing a = 6. Thus we have verified the lower bound [V&l I C(B) as 
required in the theorem, 

We proceed to the upper bound. For any proper coloring C = {c, , c2, c3, . . . , c,}, 
the modified coloring C, is obtained by interchanging colors i and j wherever 
they occur in C. Recall that E C is the sum over all vertices of the colors in C. 
The first part of the theorem follows from the lemma below plus the observa- 
tion that 

C(G) i min{CC,CC,,} 5 k * 3(e + 1). 

Lemma 3. For any connected graph G with e edges, there exists a proper col- 
oring C such that CC + ECn I 3(e + 1). 

Proof. We prove the lemma by induction on the number of edges. The 
lemma is trivial if G is the unique connected graph with no edges. Let G be an 
arbitrary connected graph with e edges and select a non-cutvertex, say vertex i. 
The inductive hypothesis assures that the connected graph G - i has a coloring 
C* with EC* + XC;“, I 3(e - d, + 1). For d, 2 2, we achieve the desired 
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coloring C of G by coloring vertex i with the smallest available color common 
to both C * and C;. This increases C C* + 2 C;“, by at most 2(di + 1) so that 

CC -t- EC,, 5 3(e - d, + 1) + 2(di + 1) = 3(e + 1) + 2 - d, 5 3(e + 1). 

On the other hand, for d, = 1, we may color vertex i with one of 1 or 2 in C * 
(and with the other in C fr) so that 

EC+EC,,I3(e-1+1)+1+2=3(e+l). I 

It remains to be shown how to achieve the bounds in the theorem for each 
value of e. It is routine to verify that the upper bound is attained by all paths 
P, , odd cycles C2,,,+, , and also by the graph of order 3m + 1 formed by taking 
m copies of K3 and joining one vertex in each copy to a new vertex to form a 
graph in which e = 4m while =I: (G) can be shown to be 6m + 1. 

One bigraph B with e edges achieving the lower bound is found by setting b 
to be the closest integer to X@?. That is, let b = m + E where E lies be- 
tween -.5 < E < .5 and is chosen to make b an integer. Set a to be the in- 
te er 2b - L4al. The graph K,,, 
2- 

has chromatic sum C (Kn,h) = a + 2b = 
8e + 4~ - L4eJ. Since this differs from V% by less than 1, it must be equal 

to [V&l. But how many edges does it have? By considering values of E in 
each of the four subintervals (- .5, - -29, [-.25, O), [0, .25), and [.25, .5), it 
is easy to verify that in each case the graph Ko,b has ab > e - 1 edges. Since 
ab is an integer, we conclude that ab > e. Finally, we set B to be any subgraph 
of K, b with exactly e edges. This completes the proof of Theorem 2. I 

It is now easy to bound the chromatic sum for disconnected graphs. 

Corollary 4. For any graph G with no isolated vertices and e edges, 

[V&l 5 E(G) (c 3e. 

Proof. The lower bound has already been established in the main theorem 
and is never improved by having more than one connected component. For the 
upper bound, the connected components Gi have the ratio 

The largest value of 3 occurs precisely when e, = 1. Thus, choosing G = eKz, 
that is e independent edges, gives the largest possible chromatic sum, namely 3e. 
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