ADDENDA
SOLUTION OF A PROBLEM OF DIRAC

P. ERDOS and T. GALLAI

In the graph-theoretic colloquium at Smolenice, DIRAC conjectured (see Problem 5.)
that the chromatic number of a proper regular subgraph of a complete n-gon is
< 3n/5. We shall prove this conjecture. In fact we shall prove the following theo-
rem (G™ always denotes a graph with n vertices).

Theorem. Let G'™ be a regular graph of valency r <n — 1 and chromatic
number k. Then
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with equality if and only if the components of the complementary graph G*™ of G®
are pentagons.

Proof. Clearly G is regular of valency #F =n — 1 — r > 0. The fact that
the chromatic number of G™ is k is equivalent with the statement that the minimal
number of complete subgraphs of G™ covering all of its vertices is k (i.c. that the
covering number of G™ is k). We shall call a graph point-critical with respect to
covering if the omission of any of its vertices decreases its covering number. For
these graphs the following theorem holds (T. GALLAI, Publ. Math. Inst. Hung.
Acad. Sci. 8 (1963}): Let G be point-critical with respcct to covering, let its cove-
ring number be k, let n; < -:":;k. Then the number of its isolated vertices s satisfies
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with equality if and only if the components of G§*’ are ;(5k — 3n,) isolated vertices
and 3(n, — k) pentagons.

Now assume k 2 3n (.. n S 3k). Evidently there exists a subset 4 of the vertices
of G™ so0 that if we omit from G™ the vertices of A and all the incident edges, we
abtain a graph G{™ which has covering number k and is point-critical with respect to
covering. Let s be the number of isolated vertices of G$), and n — n, = J. By (1),
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If s = O then by (2) j = 0 (i.e. GJ') = §™)and 5k = 3n; furthermore all components
of G™ are pentagons.

Now we show that s > 0 leads to a contradiction, Denote by B the set of isolated
vertices of G{'"). By our assumption B is non-empty. Since G is a regular graph of
valency 7 > 0, every vertex of B is connected with precisely 7 vertices of 4. Now A
has fewer vertices than B(s > gj > 0), therefore A has at least one vertex x which is
connected with more than 7 vertices of B. Clearly the valency of this vertex x in G*'
is greater than F, which contradicts the regularity of G™; thus the proof of our theorem

is complete.
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