Algebraic Geometry and Differential Topology Seminar

Spring 2021



The Algebraic Geometry and Differential Topology Seminars take place on Fridays at 10:30 - 11:30 in the Main Lecture Hall of the Alfréd Rényi Institute of Mathematics or on Zoom.

All are welcome to attend.

Schedule of upcoming talks

video recordings             past talks

February 12 Balázs Szendrői University of Oxford Hilbert schemes of points on surfaces and threefolds: combinatorics, geometry and representation theory
February 19 Alberto Cavallo Rényi Institute L-space links and link Floer homology
February 26 No seminar
March 5 Szilárd Szabó Rényi Institute Asymptotic analysis of non-abelian Hodge theory in rank 2
March 12 Anne Pichon Université d'Aix-Marseille Inner rates in Lipschitz geometry of complex singularities
March 19 R. İnanç Baykur, UNUSUAL TIME AT 15:00 University of Massachusetts Lefschetz fibrations and symplectic geography
March 26 Anne Pichon Université d'Aix-Marseille Lipschitz normal embedding of complex surface singularities
April 2 NATIONAL HOLIDAY
April 9 Ádám Gyenge Rényi Institute The Heisenberg category of a category
April 16 Antonio Alfieri, UNUSUAL TIME AT 17:30 University of British Columbia Symmetric knots and Floer homologies
April 23 Lenhard Ng, UNUSUAL TIME AT 15:00 Duke University Infinitely many Lagrangian fillings
April 30 No seminar
May 7 Lisa Piccirillo, UNUSUAL TIME AT 15:00 MIT Knot concordance and exotica
May 14 No seminar
May 21 Samuel Stark Imperial College The Quot scheme Quotˡ(E)
May 28 Carlo Collari New York University Abu Dhabi On slice-torus invariants and positivity conditions


----------------------------------

ARCHIVE:
2020: Spring, Fall
2019: Spring, Fall
2018: Spring, Fall
2017: Spring, Fall
2016: Spring, Fall
2015: Spring, Fall
2014: Spring, Fall
2013: Spring, Fall
2012: Spring, Fall
2011: Spring, Fall
2010: Spring, Fall
2009: Spring, Fall
2008: Spring, Fall
2007: Spring, Fall
2006: Spring, Fall

Click here to get to the homepage of the Algebraic Geometry and Differential Topology Department

----------------------------------