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Abstract. We investigate the class of commutative unital rings in which
principal ideals have unique generators. We prove that this class forms a
finitely axiomatizable, relatively ideal distributive quasivariety, and also
that it equals the quasivariety generated by the class of integral domains
with trivial unit group.
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1 Introduction

What can be said about the class of commutative rings in which, if a differs from
b, the set of elements divisible by a differs from the set of elements divisible by
b? Equivalently, what can be said about the class of rings where a 6= b implies
(a) 6= (b)? In this paper we show that this class is a relatively ideal distributive
quasivariety, and we give a set of axioms for the quasivariety. Along the way
we learn that this quasivariety is exactly the quasivariety of commutative rings
generated by the class of integral domains with trivial unit group.

2 The Quasivariety of Rings Whose Principal Ideals Have
Unique Generators

Our goal in this section is to describe the class of commutative rings whose princi-
pal ideals have unique generators. The main result is that this class is a relatively
ideal distributive quasivariety, so let us explain now what that means. (For more
details about relatively congruence distributive/modular quasivarieties, we refer
to [1], [2], and [3].)
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A quasi-identity in the language of commutative rings is a universally quan-
tified implication of the form

(s1 = t1) ∧ · · · ∧ (sn = tn)→ (s0 = t0)

where si and ti are ring terms (= “words”, or “polynomials”). We allow n = 0,
in which case the quasi-identity reduces to an identity: s0 = t0 (universally
quantified). To emphasize this last point: identities are special quasi-identities.

A variety is a class axiomatized by identities. A quasi-variety is a class axiom-
atized by quasi-identities. For an example of the former, the class of commutative
rings is a variety. For an example of the latter, the class of rings axiomatized
by the identities defining commutative rings together with the quasi-identity
(x2 = 0)→ (x = 0) is the quasivariety of reduced commutative rings (rings with
no nonzero nilpotent elements).

If Q is a quasivariety of commutative rings, R ∈ Q, and I �R is an ideal of
R, then I is a Q-ideal (or a relative ideal) if R/I ∈ Q. For example, if Q is the
quasivariety of commutative reduced rings and R ∈ Q, then I is a relative ideal
of R exactly when I is a semiprime ideal of R.

The collection of Q-ideals of some R ∈ Q, when ordered by inclusion, forms
an algebraic lattice. It is not a sublattice of the ordinary ideal lattice, but it is
a subset of the ordinary ideal lattice that is closed under arbitrary meet.

A quasivariety Q of commutative rings is relatively ideal distributive if the
Q-ideal lattice of any member of Q satisfies the distributive law:

I ∧ (J ∨K) = (I ∧ J) ∨ (I ∧K).

Here, the meet operation is just intersection (I ∧ J = I ∩ J) while the join
operation depends on Q; all that can be said is that I ∨ J is the least Q-ideal
that contains I ∪ J (or, equivalently, contains I + J).

It is interesting to find that some particular quasivariety of rings is relatively
ideal distributive. Any distributive algebraic lattice is isomorphic to the lattice
of open sets of a topology defined on the set of meet irreducible lattice elements.
Therefore, if Q is relatively ideal distributive, then to each member of Q there is
a naturally associated topological space, its Q-spectrum. It is possible to treat
a member R ∈ Q as a ring of functions defined over its Q-spectrum. It turns
out that the quasivariety of commutative reduced rings, mentioned earlier as an
example, is relatively ideal distributive, and for this Q the Q-spectrum of any
R ∈ Q is just the ordinary prime spectrum of R.

The main result of this section is that the class of commutative rings whose
principal ideals have unique generators is a relatively ideal distributive quasiva-
riety, and for which we provide an axiomatization.

Theorem 1. Let Q be the class of all commutative rings (with 1) having the
property that each principal ideal has a unique generator. Let D be the class of
domains in Q.

(1) Q is a quasivariety. It is exactly the class of rings axiomatized by the quasi-
identity (xyz = z) → (yz = z) along with the identities defining the variety
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of all commutative rings. All rings in Q have trivial unit group and are
reduced. Such rings are F2-algebras.

(2) D is exactly the class of domains with trivial unit group.
(3) Q consist of the subrings of products of members of D (we write Q = SP(D)).
(4) Q is a relatively ideal distributive quasivariety.
(5) The class of locally finite algebras in Q is the class of Boolean rings. This

class is the largest subvariety of Q.

Proof. We argue the first two claims of Item (1) together. Namely, we show
that R ∈ Q if and only if R belongs to the quasivariety of commutative rings
satisfying (xyz = z)→ (yz = z).

For the “if” part, let R be a commutative ring satisfying (xyz = z) →
(yz = z). Choose r ∈ R and assume that (r) = (s) for some s. Then s = qr
and r = ps for some p, q ∈ R. Since pqr = r, the quasi-identity yields qr = r,
or s = r. Thus, (r) = (s) implies r = s, showing that R satisfies the unique
generator property for principal ideals. Conversely, for “only if”, suppose that
R does not satisfy (xyz = z)→ (yz = z). R must have elements p, q, r such that
pqr = r and qr 6= r, Then (r) = (qr) and qr 6= r, so R does not have the unique
generator property.

For the second to last statement of Item (1), suppose that R ∈ Q and that u
is a unit in R. Then (u) = R = (1), so by the unique generator property u = 1.
Also, to see that R is reduced, assume that n ∈ R satisfies n2 = 0. Then 1 + n
is a unit (with inverse 1− n), so 1 + n = 1, so n = 0.

For the final statement of Item (1), the fact that any R ∈ Q is an F2-algebra
follows from the fact that −1 is a unit, so 1 = −1. Then the prime subring of R
is isomorphic to F2, which is enough to establish that R is an F2-algebra.

For Item (2), if D ∈ D, then D is a domain by definition, and it has trivial
unit group by Item (1). Conversely, suppose that D is a domain with trivial unit
group. If (a) = (b) in D, then a and b must differ by a unit, hence a = b, showing
that D has the unique generator property, so D is a domain inQ, yielding D ∈ D.

In order to establish Item (3) we first prove a claim.

Claim 2. If R ∈ Q and S ⊆ R is a subset, then the annihilator A = ann(S) is
a Q-ideal (meaning that R/A ∈ Q).

Proof of claim. For this we must verify that R/A satisfies the quasi-identity
(xyz = z) → (yz = z). Equivalently, we must show that if x, y, z ∈ R and
xyz ≡ z (mod A), then yz ≡ z (mod A). We begin: If xyz ≡ z (mod A), then
(xyz − z) ∈ A, so (xyz − z)s = 0 for any s ∈ S. This means that xy(zs) = (zs)
for any s ∈ S. Applying the quasi-identity from Item (1) with zs in place of z
we derive that yzs = zs, or (yz− z)s = 0 for any r ∈ I. Hence yz ≡ z (mod A),
as desired.

Next we argue that if R ∈ Q is not a domain, then R has disjoint nonzero
Q-ideals I and J . If R is not a domain, then there exist nonzero r and s such
that rs = 0. Take I = ann(r) and J = ann(I). I is nonzero since it contains
s, and J is nonzero since it contains r. Both I and J are Q-ideals by Claim 2.
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If t ∈ I ∩ J , then t2 ∈ IJ = {0}, so t is nilpotent. According to Item (1), any
R ∈ Q is reduced, so t = 0. Thus I and J are indeed disjoint nonzero Q-ideals.

The argument for Item (3) is completed by noting that any quasi-variety Q is
expressible as SP(K) where K is the subclass of relatively subdirectly irreducible
members of Q. This is a version of Birkhoff’s Subdirect Representation The-
orem, stated for quasivarieties, and it holds for quasivarieties because relative
ideal/congruence lattices are algebraic. The previous paragraph shows that the
only members of Q that could possibly be relatively subdirectly irreducible are
the domains. (That is, R not a domain ⇒ R has disjoint nonzero Q-ideals ⇒ R
is not relatively subdirectly irreducible.)

To prove Item (4), we refer to general criteria from [3] for proving that a
quasivariety is relatively congruence distributive. Specifically we will use Theo-
rems 4.1 and 4.3 of that paper, along with some of the remarks between those
theorems.

Here is a summary of what we are citing. From Theorem 4.1 of [3], a quasi-
variety is relatively congruence modular if and only if it satisfies the “extension
principle” and the “relative shifting lemma”. From remarks following the proof of
Theorem 4.1, the “extension principle” can be replaced by the “weak extension
principle”. From Theorem 2.1 of that paper, the “relative shifting lemma” can
be replaced by the “existence of quasi-Day terms”. Finally, from Theorem 4.3 of
that paper, a quasivariety is relatively congruence distributive if and only if it is
relatively congruence modular and no member has a nonzero abelian congruence.

What this reduces to in our setting is this: to prove that our quasivariety Q
is relatively ideal distributive (Item (4)) it suffices to show that Q

(i) has “quasi-Day terms”,
(ii) satisfies the “weak extension principle”, and
(iii) has no member with a nontrivial abelian congruence (i.e., with a nonzero

ideal A satisfying A2 = 0).

Condition (i) holds since Q has ordinary Day terms, in fact a Maltsev term.
(More explicitly, the singleton set Σs := {(p(w, x, y, z), q(w, x, y, z)} where
p(w, x, y, z) := w − x + y and q(w, x, y, z) := z meets the defining conditions
from Theorem 2.1(2) of [3] for “quasi-Day terms”.)

Condition (iii) holds since if A�R ∈ Q and A2 = 0, then the elements of A
are nilpotent. As argued in the proof of Item (1), the only nilpotent element in
R is 0, hence A = 0.

Condition (ii) means that if R ∈ Q has disjoint ideals I and J , then I and
J can be extended to Q-ideals I ⊇ I and J ⊇ J that are also disjoint. To prove
that Condition (ii) holds we modify an argument from above: If R has ideals I
and J such that I ∩ J = 0, then IJ = 0. The Q-ideal J = ann(I) contains J ,
the Q-ideal I = ann(J) contains I, both are Q-ideals, and I ∩ J = 0 (since the
elements in this intersection square to zero and R is reduced). This shows that
disjoint ideals I and J may be extended to disjoint Q-ideals.

For Item (5), to show that a locally finite ring in Q is a Boolean ring it
suffices to show that any finite ring F ∈ Q is Boolean. (The reason this reduction
is permitted is that the property of being a Boolean ring is expressible by the
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identity x2 = x, and a locally finite structure satisfies a universal sentence if and
only if its finite substructures satisfy the sentence.)

So choose a finite F ∈ Q. As F has trivial unit group, and 1+rad(F ) ⊆ U(F ),
we get that F must be semiprimitive. Since F is finite it must be a product of
fields. Since F has only trivial units, each factor field must have size 2, so F is
Boolean.

Conversely, if B is any Boolean ring, then multiplication is a semilattice
operation, so xyz ≤ yz ≤ z in the semilattice order for any x, y, z ∈ B. If, in
B, we have first = last (xyz = z), then we must have middle = last (yz = z).
Hence B ∈ Q.

To complete the proof of Item (5) we must show that if V is a variety and
V ⊆ Q, then V consists of Boolean rings. For this it suffices to show that if R ∈ Q
is not Boolean (i.e., R has an element r satisfying r 6= r2), then R /∈ V. This
holds because 〈r2〉 ( 〈r〉 by the unique generator property, so r/〈r2〉 is a nonzero
nilpotent element of R/〈r2〉, establishing that some homomorphic image of R is
not in Q. ut

By substituting z = 1 in the quasi-identity (xyz = z) → (yz = z) we ob-
tain the consequence (xy = 1) → (y = 1), which expresses that the unit group
is trivial. Since a consequence can be no stronger than the original statement,
this is enough to deduce that the quasivariety of commutative rings with triv-
ial unit group contains the quasivariety of commutative rings whose principal
ideals have unique generators. This containment is proper, and the following
example describes a commutative ring satisfying (xy = 1) → (y = 1) but not
(xyz = z)→ (yz = z).

Example 3. Let R be the commutative F2-algebra presented by

〈X,Y, Z | XY Z = Z〉.

That is, R is the quotient of the polynomial ring F2[X,Y, Z] by the ideal
(XY Z − Z).

We may view the relation XY Z − Z = 0 as a reduction rule XY Z → Z to
produce a normal form for elements of R. This single rule is applied as follows:
choose a monomial of the form XY ZW (W is a product of variables) of an
element in a coset of (XY Z − Z) ⊆ F2[X,Y, Z] and replace XY ZW by ZW
That is, if each of X,Y, Z appear in a monomial, we delete one instance of X
and one instance of Y from that monomial.

The Diamond Lemma applies to show that there is a normal form for elements
of R, and the elements in normal form are exactly the polynomials over F2 in
the generators X,Y, Z where no monomial is divisible by each of X,Y , and Z.

Note that each application of the reduction rule reduces the X-degree and the
Y -degree of some monomial, but does not alter the Z-degree of any monomial.
This is enough to prove that the unit group of R is trivial. For if R had a unit
u with inverse v, then the Z-degree of the product uv = 1 is zero, but it is also
the sum of the Z-degrees of u and v. Hence the normal form of a unit must be
Z-free. But then u and v would then be inverse units in the subring F2[X,Y ],
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where all elements are in normal form. Now one can argue in this subring, using
X-degree and Y -degree, to conclude that none of X,Y, Z appear in the normal
form of a unit. We are left with u = v = 1 as the only possibility.

Notice also that Y Z −Z is in normal form, so Y Z −Z 6= 0 in R. This shows
that R fails to satisfy (xyz = z)→ (yz = z), but does satisfy (xy = 1)→ (y = 1).
In particular, the fact that XY Z = Z while Y Z 6= Z means that (Y Z) = (Z),
while Y Z 6= Z, so the principal ideal (Z) does not have a unique generator.

3 Some Related Quasivarieties

We saw in the previous section that the class of commutative rings whose
principal ideals have unique generators is the quasivariety generated by the
class of domains with trivial unit group. We also saw that this quasivariety
is relatively ideal distributive, and that it is axiomatized by the quasi-identity
(xyz = z)→ (yz = z).

In this section we will show that the quasivariety Q|n generated by those
domains D whose unit group U(D) is cyclic of order dividing n is also relatively
ideal distributive, and we shall provide an axiomatization for Q|n.

Write D|n for the class of domains whose unit group is cyclic of order dividing
n.

Theorem 4. By definition, we have that Q|n is the quasivariety generated by
D|n.

(1) Q|n is axiomatized by
(a) the identities defining commutative rings,
(b) the quasi-identity (x2 = 0) → (x = 0), which expresses that the only

nilpotent element is 0, and
(c) the quasi-identity (xyz = z)→ (ynz = z).

(2) Q|n is a relatively ideal distributive quasivariety.

Proof. To prove Item (1), let K be the quasivariety axiomatized by the sentences
in (a), (b), and (c). It is easy to see that D|n satisfies the quasi-identities in (a),
(b) and (c), so D|n ⊆ K, and therefore Q|n ⊆ K.

Conversely, we must show that K ⊆ Q|n For this, we need the analogue of
Claim 2 for K:

Claim 5. If R ∈ K and S ⊆ R is a subset, then the annihilator A = ann(S) is
a K-ideal.

Proof of claim. Our goal is to prove that R/A ∈ K, so we must prove that
R/A is a commutative ring satisfying (x2 = 0) → (x = 0) and (xyz = z) →
(ynz = z). It is clear that R/A is a commutative ring (identities are preserved
under quotients), so we only need to verify that R/A satisfies (x2 = 0)→ (x = 0)
and (xyz = z) → (ynz = z). For the second of these, the proof is exactly like
the proof of Claim 2, while for the first there is an extra idea. We prove the first
only.
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To prove that R/A satisfies (x2 = 0) → (x = 0), we must show that R
satisfies x2 ≡ 0 (mod A) implies x ≡ 0 (mod A). If x2 ≡ 0 (mod A), or x2 ∈ A,
then x2s = 0 for all s ∈ S. This implies (xs)2 = (x2s)s = 0 for all s ∈ S. (This
is the “extra idea”.) But R satisfies (x2 = 0) → (x = 0), so from (xs)2 = 0 we
deduce xs = 0 for all s ∈ S. This proves that x ∈ A or x ≡ 0 (mod A).

We will use Claim 5 the same way we used Claim 2 in the proof of Theorem 1.
If R ∈ K is not a domain, then there exist nonzero r and s such that rs = 0.
Take I = ann(r) and J = ann(I). I is nonzero since it contains s, and J is
nonzero since it contains r. By Claim 5, I and J are K-ideals. Any element in
I ∩ J must square to zero, so since K satisfies axiom (b) we get I ∩ J = {0}.
Thus, if R is not a domain, then it has a pair of nonzero, disjoint, K-ideals. This
is enough to guarantee that R is not subdirectly irreducible relative to K.

In the contrapositive form, we have shown that any relatively subdirectly
irreducible member of K is a domain. Hence K is generated by its subclass of
domains.

But if D ∈ K is a domain, then by substituting z = 1 in the quasi-identity
(1)(c) we obtain that D satisfies (xy = 1) → (yn = 1). This implies that the
unit group U(D) of D is a cyclic group of order dividing n. The reason for this
is that U(D) is an abelian group satisfying xn = 1, hence U(D) is a locally
finite abelian group. If U(D) is not cyclic, then it contains a finite noncyclic
subgroup G ⊆ U(D). But now G is a finite noncyclic subgroup of the field of
fractions of D, and we all know that the multiplicative group of a field contains
no finite noncyclic subgroup. This shows that the domains in K lie in D|n, so K
is contained in the quasivariety generated by D|n, which is Q|n.

Item (2) of this theorem is proved exactly like Item (4) of Theorem 1. ut

Observation 6. A quick test to rule out that some nonzero ring R belongs to
some quasivariety Q|n is to show that the prime subring of R does not belong
to Q|n. Since the prime subring of R is isomorphic either to Z or to Zk for some
k > 1, and since the units of Z and Zk are easy to determine, it is not hard to
derive some consequences.

Namely, Zk satisfies the quasi-identity in Theorem 4(1)(b) if and only if k is
square-free, and hence k = p1 . . . pm and Zk

∼= Zp1
×· · ·×Zpm

for distinct primes
p1, . . . , pm. Now, for such a k, Zk satisfies the quasi-identity in Theorem 4(1)(c)
if and only if pi − 1 divides n for each i. Therefore, these conditions on k are
necessary for R to belong to Q|n whenever the prime subring of R is isomorphic
to Zk. Similarly, Z satisfies the quasi-identity in Theorem 4(1)(c) if and only if
n is even. Hence, if the prime subring of R is isomorphic to Z, then for R to
belong to Q|n the number n must be even.

These considerations imply, in particular, that if n is odd, then Zk /∈ Q|n
unless k = 2, and Z /∈ Q|n. Hence, each ring in Q|n may be thought of as an
F2-algebra.

Notice also that, when n is odd, the axiom (x2 = 0) → (x = 0) from The-
orem 4(1)(b) is a consequence of the axiom (xyz = z) → (ynz = z) from
Theorem 4(1)(c). For if R satisfies (xyz = z)→ (ynz = z) for some odd n, and
some r ∈ R satisfies r2 = 0, then as observed in the previous paragraph the
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characteristic of R must be 2, so (1 + r)2 = 1. This implies that 1 + r is a unit of
order dividing 2 (and also n), so necessarily 1 + r = 1, which implies that r = 0.

We can use Observation 6 to show that not all the quasivarieties Q|n are
distinct, in particular

Theorem 7. If p is an odd prime, then Q|p = Q|1 unless p is a Mersenne
prime.

Proof. To prove that Q|p = Q|1 when p is an odd non-Mersenne prime, it will
suffice to show that these quasivarieties contain the same domains. We always
have Q|m ⊆ Q|n when m | n, from the definition of these quasivarieties, so we
must show that any domain D ∈ Q|p is contained in Q|1 (i.e. has a trivial unit
group).

Choose D ∈ Q|p. From Observation 6, we know (since p is odd) that D
is an F2-algebra. Suppose that θ ∈ D is a nontrivial unit. Since θ has finite
multiplicative order, and the prime subring of D is finite, the subring S ⊆ D
generated by θ is finite. S is a subring of a domain itself, hence it is a field, and
U(S) = S×. S belongs to Q|p, so S× has order dividing p, and it must therefore
be that |S×| = p. This shows that S is a finite field of characteristic 2 and of
cardinality |S| = p+ 1. We derive that p+ 1 = 2s for some s, or p = 2s− 1. This
completes the proof that Q|p = Q|1 unless p is a Mersenne prime.

The primality of p did not play a big role in the proof. The same argument
shows that if n is any odd number, then Q|n = Q|1 unless n is divisible by some
number x > 1 of the form x = 2s − 1. So, for example, Q|55 = Q|25 = Q|1. But
if n is divisible by some number x > 1 of the form x = 2s − 1, then Q|n will
contain some finite fields that are not in Q|1.
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