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Abstract. Continuing the study of divisibility theory of arithmetical rings started in [1]
and [2] we show that the divisibility theory of arithmetical rings with one minimal prime
ideal is axiomatizable as Bezout monoids with one minimal m-prime filter. In particular,
every Bezout monoid with one minimal m-prime filter is order-isomorphic to the partially
ordered monoid with respect to inverse inclusion, of principal ideals in a Bezout ring with
a smallest prime ideal. Although this result can be considered as a satisfactory answer
to the divisibility theory of both semi-hereditary domains and valuation rings, the general
representation theory of Bezout monoids is still open.

1. Introduction

One of the main results in the general valuation theory developed by Krull is a dictionary
between valued fields and ordered abelian groups. This dictionary was later extended by
Jaffard, Kaplansky and Ohm to the larger class of Bezout domains and lattice-ordered abelian
groups. This one-to-one correspondence can be considered in some sense as a local theory
because all rings considered, being domains, have just one minimal prime ideal! The aim of
the present note is to make this local theory complete by showing that the divisibility theory
of arithmetical rings with one minimal prime ideal can be axiomatized as Bezout monoids
with one minimal m-prime filter. The subclass of Bezout rings with one minimal prime ideal
appears naturally in the solution of Kaplansky’s question on describing commutative rings
whose finitely generated modules decompose into direct sums of cyclics (see e.g. [5] .) To
achieve our goal, we develop first the structure theory of Bezout monoids with one minimal
m-prime filter and then, with a fairly good structural description in hand, we can complete the
job by constructing, for each Bezout monoid S with one minimal m-prime filter, a Bezout ring
whose monoid of divisibility is order-isomorphic to S. Our approach is primarily influenced
by the treatment of Kaplansky’s problem on valuation rings presented in [7]. For the general,
axiomatic theory of divisibility we refer to the fairly up-to-date presentation in Halter-Koch’s
book [8].
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A word about terminology. All structures are commutative. Rings have the identity element
1. The monoid of divisibility, or divisibility theory of a ring is simply the monoid of principal
ideals under ideal multiplication partially ordered by reverse containment. A ring is called
an arithmetical ring if its ideals form a distributive lattice. Every Bezout ring, i.e., a ring
whose finitely generated ideals are principal, is arithmetical, but arithmetical rings needn’t
be Bezout rings. The set of nontrivial (i.e. different from 1 and 0) elements of a subset X in
a monoid is denoted by X?. Moreover, X• will be the extension of X by the new extra zero
element 0. Thus 1• is the monoid consisting of exactly two elements 1 and 0. The positive
cone of a lattice-ordered abelian group is the set of elements bigger than or equal to the
identity.

2. Basic notions and preliminary results

For the benefit of the reader and for the sake of completeness we recall some easy, but basic
results, notation and definitions from [1] and [2]. The development of and comments on this
supporting material can be found in full detail in [1] and partly in [2].

Definition 2.1 (cf. Definition 1.1 [2]). A Bezout monoid S (in short a B-monoid) is a
commutative monoid S with 0 such that the divisibility relation a|b ⇐⇒ aS ⊇ bS is a
partial order, called a natural partial order, inducing a distributive lattice on S, with a
multiplication distributive on both meets and joins; and S is hyper-normal, meaning that for
any a, b, d = a ∧ b ∈ S, a = da1 there is b1 ∈ S satisfying a1 ∧ b1 = 1, b = db1. A monoid
with 0 is called 0-cancellative if ax = ay 6= 0 ⇒ x = y.

By Proposition 1.1 [2] the divisibility theory of a Bezout ring is a B-monoid. Moreover, by
Corollary 3.4 [2] a monoid S is the divisibility theory of a semi-hereditary ring if and only if
it is a semi-hereditary B-monoid. Using hyper-normality, one can easily see

Corollary 2.1 (cf. Proposition 1.3 [1]). If 1 is a meet-irreducible element of a B-monoid
S, that is, s ∧ t = 1 ⇒ s = 1 or t = 1, then S is a 0-cancellative naturally totally ordered
monoid.

This statement corresponds to a well-known result that local Bezout rings are valuation (or
chained) rings. For this reason, a B-monoid is called local if 1 is meet-irreducible. Recall that
a filter F of a B-monoid S is a subset closed under ∧ such that a ∈ F and a ≤ b ∈ S imply
b ∈ F . Hence filters are also ideals in the usual sense, but the converse is in general not true.
For example, the set of multiples of 3 or 5 is an ideal in the B-monoid of non-negative integers
under multiplication, but it is not a filter. A filter F is called an m-prime filter if ab ∈ F
implies a ∈ F or b ∈ F . It turns out (see [1] and [2]) that m-prime filters play a decisive
role in working with B-monoids. As in the case of rings, one can define the nil radical of S
as the intersection of all m-prime filters, and is also the intersection of all minimal m-prime
filters (with respect to inclusion). As shown for commutative rings by Krull, one can see in
the setting of B-monoids that the nil radical is just the set of all nilpotent elements. The
general theory of m-prime filters in B-monoids can be found in [1], Sections 2 and 3.

Proposition 2.2 (cf. Theorem 2.10 [1]). If F is an m-prime filter of a B-monoid S, then

∀x, y ∈ S : x ∼ y ⇐⇒ ∃ s ∈ S \ F : x ≤ ys & y ≤ xs
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defines a congruence whose factor SF is a local B-monoid, and the congruence class of 0 is
the set {x ∈ S | ∃ s /∈ I : sx = 0}.

SF is called the localization of S at an m-prime filter F or at the complement S \ F (by
identifying its elements with 1). Using localization one can make clear the relation between
annihilators and cancellation in the next assertion.

Proposition 2.3 (cf. Proposition 2.14 [1]). For arbitrary elements v, x, y of a B-monoid
S the equality xv = yv holds if and only if there is s ∈ v⊥ = {z ∈ S | vz = 0} such that
x ∧ s = y ∧ s.

Factor lattices associated to filters are also B-monoids in view of the following result.

Proposition 2.4 (cf. Theorem 2.15 [1]). For every filter F of a B-monoid S a relation

x ∼ y ⇐⇒ ∃ s ∈ F : x∧ s = y ∧ s
defines a congruence whose factor, denoted as S/F , is a B-monoid, called the factor B-monoid
by a filter F of S.

The key notions in our investigation are the following.

Definition 2.2. A factor set of a local B-monoid Σ in a lattice-ordered abelian group G is
is the function f : Σ× Σ −→ G• satisfying

(FS1) f(α, β) = f(β, α) ∀α, β ∈ Σ
(FS2) f(α, βγ)f(β, γ) = f(α, β)f(αβ, γ) ∀α, β, γ ∈ Σ
(FS3) f(1, α) = 1, f(0, α) = 0 ∀α ∈ Σ
(FS4) f(α, β) = 0 if and only if αβ = 0.

Two factor sets f and h are called associated if there is a function g : Σ −→ G• with
g(1) = 1, g(α) = 0⇐⇒ α = 0 such that

h(α, β) =
g(α)g(β)

g(αβ)
f(α, β)

holds in the case αβ 6= 0.
Let T be the positive cone of G, i.e., the set of those elements in G which are equal or

bigger than the identity element of G. The (generalized) crossed product T ∗
f
Σ is

S = T ∗
f
Σ := {(1, t) | t ∈ T}

.
∪ {(α, g) |α ∈ Σ?, g ∈ G}

.
∪ 0,

a disjoint union of 0, T and copies of G indexed by Σ? endowed with the multiplication

(α, x)× (β, y) =

{
(αβ, f(α, β)xy), if αβ 6= 0; α, β ∈ Σ

0, if αβ = 0; α, β ∈ Σ.

One can easily check that T ∗
f
Σ is a B-monoid with one minimal m-prime filter where the

natural partial order is exactly the lexicographic order. Two crossed products T ∗
f
Σ and

T ∗
h

Σ are isomorphic if and only if f and h are associated. F = S \ T after identifying t ∈ T
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with (1, t), is an m-prime (but not necessarily minimal) filter of S and elements of T are
non-zero-divisors. T ∗

f
Σ is also a pullback in view of the next diagram

S = T ∗
f
Σ

r−−−→ Tyl

yl

Σ −−−→
r

1•

where l denotes the localization maps and r is the canonical map to a Rees factor.

Remark 2.3. Generalized crossed products can be formally defined as universal constructions
by using factor sets in terms of arbitrary monoids Σ and T ⊆ U .

3. Structure theory

Throughout this section S is always a B-monoid with one minimal m-prime filter M ,
with one exception in Corollary 3.2, and T = S \M . By Proposition 2.1 the localization
Σ of S at M is a local B-monoid such that all non-unital elements are nilpotent. The
set Z = {x ∈ S | ∃ s /∈ M : sx = 0} is precisely the set of elements mapped to 0 in Σ. Let
N = M \Z. Although N is a distributive sublattice of S; it is not, in general, a subsemigroup,
i.e., not closed under multiplication. Its induced partial order also fails to be natural. We
shall write aσ for the image in Σ of a ∈ S and denote elements of Σ by Greek letters α, β, ... A
complete set of (pairwise different) elements of S representing Σ is called a transversal of Σ in
S. A transversal is normalized if 1, 0 ∈ S are representatives of 1, 0 ∈ Σ, respectively. In what
follows we chose an arbitrary normalized transversal {aα ∈ S |α ∈ Σ, a1 = 1, a0 = 0} and fix
this transversal throughout this section. Moreover, for each α ∈ Σ put Sα = {b ∈ S | bσ = α}.
Thus S1 = T, S0 = Z hold. Furthermore, for an element a ∈ S we also use the notation
Sa = {x ∈ S|xσ = aσ = Saσ}.

Proposition 3.1. t < m, or equivalently M ⊆ St for all m ∈M, t ∈ T .

Proof. Put d = t ∧m = d(t1 ∧m1), t = dt1 ∈ T, m = dm1 ∈M, t1 ∧m1 = 1. d ≤ t /∈M and
dm1 = m ∈ M imply d /∈ M and m1 ∈ M because M is an m-prime filter. Thus mn

1 = 0 for
some n ∈ N. Hence t1 = t1 ∧mn

1 ≤ (t1 ∧m1)
n = 1 whence t = dt1 = d < m. �

A careful analysis of the above proof leads to the following more general result.

Corollary 3.2. Let S be a B-monoid with the nil radical N . Then for each element m ∈ N
and t ∈ S which is not an element of the union of minimal m-prime filters of S, t < m, or
equivalently, N ⊆ St. In particular, if t is a non-zero-divisor (i.e., t⊥ = 0), then N ⊆ St.

Proof. The only somewhat non-obvious claim to prove is that a non-zero-divisor t is not
contained in any minimal m-prime filter. Assume indirectly that there is a non-zero-divisor
t and a minimal m-prime filter F with t ∈ F . Then the image tϕ of t in the localisation Sϕ
is nilpotent contradicting the fact that tnϕ 6= 0 for every n ∈ N. �

Proposition 3.3. T is cancellative, that is, for any a, x, y ∈ T an equality ax = ay implies
x = y.
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Proof. Suppose ax = ay for a, x, y ∈ T . By putting b = x∧y, c = x∨y we have b, c = bd ∈ T
for some d ∈ T because M is m-prime. Thus ab = abd, i.e., de = e for e = ab. Assume
indirectly x 6= y. Then b 6= c and hence d 6= 1. Since e /∈M , one obtains e⊥ ⊆M . Therefore
by Proposition 3.1, e⊥ ⊆ dS. If F is a maximal proper filter containing dS, then in the
localisation Sϕ of S at F we have dϕ 6= 1, dϕeϕ = eγ 6= 0, a contradiction to Corollary
2.1. �

Corollary 3.4. The quotient group G of T is lattice-ordered and T is the positive cone of G.

Proof. By Proposition 3.3 the quotient group G of T exists. Write elements of G in the form
s−1t; s, t ∈ T . It is a tedious but routine task to check that meets and joins in G obtained
by putting

s−1t∧u−1v = (su)−1(tu∧ sv), s−1t ∨ u−1v = (su)−1(tu ∨ sv)

are well-defined, i.e., independent of the way we write g = s−1t, g ∈ G; and to verify a flock
of axioms ensuring that G is lattice-ordered. If s−1t∧ 1 = s−1(s∧ t) = 1, then s = s∧ t ≤ t
whence t = su for some u ∈ T . Consequently s−1t = u ∈ T , thus T is indeed, the positive
cone of G. �

Proposition 3.5. The equality ZM = 0 holds.

Proof. Let z ∈ Z, x ∈ M . Then there is s /∈ M with sz = 0. Since sM = M , there is y ∈ M
with sy = x. Hence zx = z(sy) = (sz)y = 0. �

Proposition 3.6. If x ∈M \ Z, z ∈ Z, then x < z.

Proof. Put x ∧ z = y and x = yx1, z = yz1, x1 ∧ z1 = 1. y /∈ Z holds by y ≤ x /∈ Z. z ∈ Z
implies tz = 0 for some t ∈ T . If z1 /∈M , then 0 = tz = (tz1)y shows y ∈ Z because tz1 ∈ T ,
a contradiction. Thus z1 ∈ M and hence x1 /∈ M . By Proposition 3.1 x1 ≤ z1 and hence
x1 = x1 ∧ zz = 1 whence x = y < z holds. �

Proposition 3.5 implies that Z can be considered as a B−act over both S and T • in the
following sense.

Definition 3.1. Let U be a B-monoid. A Bezout act over U , shortly a B-act, is a distributive
lattice A with the greatest element denoted also by 0 and a multiplication U × A −→ A :
(u, a) 7→ ua ∈ A such that

(BA0) u(va) = (uv)a for all u, v ∈ U ; a ∈ A,
(BA1) 1a = a, 0a = 0 and u0 = 0 for every a ∈ A and u ∈ U ,
(BA2) a ≤ b; a, b ∈ A if and only if b = sa for some s ∈ U ,
(BA3) ∀ s, t ∈ U ; a, b ∈ A : s(a∧b) = sa∧sb, s(a∨b) = sa∨sb, (s∧ t)a = sa∧ sb, (s∨t)a =

sa ∨ ta,
(BA4) for any two a, b ∈ A and d = a∧ b and u ∈ U with a = ud there is v ∈ U that satisfies

u∧ v = 1, b = vd.

A B-act A is divisible if uA = A for each non-zero-divisor u ∈ U . A is called cyclic if A = Ua
holds for some a ∈ A, called a generator of A. A U-act map or morphism f : A→ C between
two acts A and C over U is a lattice morphism satisfying f(ua) = uf(a) for all u ∈ U, a ∈ A.
In particular, a B-act morphism between cyclic B-acts over U is obviously a multiplication
by an appropriate element of U .
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Remark 3.2. Although the same symbol 0 is used for the greatest element in different
structures, there is no confusion of its meaning in particular cases.

In view of Definition 3.1 Z is a divisible B-act over T •. In particular, Z is a waist filter
of S in the sense that every principal filter either contains Z or is a subset of Z. On the
other hand, if Z is any divisible B-act over T • where T is a positive cone of an abelian
lattice-ordered group, then the disjoint union S = T

.
∪ Z becomes a B-monoid with the

smallest m-prime filter Z with respect to the extended multiplication by putting Z2 = 0.
This B-monoid S is called the trivial extension of T by Z (see Example 1.9 [7].) It is
important to emphasize the divisibility of Z which makes all elements of T smaller than
those of Z. This means that the trivial extension of a B-monoid S by an S-act A can be
defined without difficulty by taking the disjoint union of S and M after identifying their
greatest elements 0 and obviously extending the multiplication; but this new monoid is, in
general, not a B-monoid. Conversely, every B-monoid with one minimal m-prime filter M
satisfying M = Z = {s ∈ S |∃t ∈ T = S \M : ts = 0}, is clearly a trivial extension of T by a
B-act Z = M over T •. Proposition 3.6 can be sharpened as

Proposition 3.7. If x, y ∈ S such that xσ < yσ, then x < y.

Proof. Put u = x ∧ y = u(x1 ∧ y1), x = ux1, y = uy1, x1 ∧ y1 = 1. Then one of x1, y1 is in M
otherwise we have yσ = xσ ∨ yσ = (x ∨ y)σ = (ux1y1)σ = uσ = xσ, a contradiction. On the
other hand, one of x1, y1 is not in M by x1 ∧ y1 = 1. Thus, either x1 = 1 or y1 = 1. The
latter is impossible because y = uy1 = u would imply yσ = uσ = xσ, a contradiction. Thus
x1 = 1 and hence x < y. �

The following weak cancellation property is important in the structural study of B-monoids
with one minimal m-prime filter.

Proposition 3.8. Let x ∈ M \ Z, i.e., x⊥ ⊆ M . For any s, t ∈ T there is precisely one
y ∈ M satisfying tx = sy. Moreover, an equality tx = sx for t, s ∈ T implies t = s. In
particular, xy = y /∈ Z implies x = 1.

Proof. Assume indirectly tx = sy1 = sy2 and y1 6= y2. If v = y1 ∨ y2 > u = y1 ∧ y2 ∈ M ,
then v = uz with 1 6= z. Furthermore, we have su = sv = (su)z = tx 6= 0. Therefore
(su)⊥ = (tx)⊥ ⊆ M . The filter generated by z ∧ M is proper because either z ∈ M or
M ⊆ Sz. Hence this filter can be extended to an m-prime filter F . In the localization SF of
S at F we have (su)ϕzϕ = (su)ϕ = (tx)ϕ 6= 0 with zϕ 6= 1, a contradiction. For the second
assertion, Proposition 2.3 implies t∧ y = s∧ y for some y ∈ x⊥. Since y < s and y < t by
Proposition 3.7, one has t = s. �

For every element s ∈ T we have M ⊆ sS. Hence for any element x ∈M there is an element
y ∈ M with x = sy. Therefore, one can define the action of G on the distributive lattice
N = M \ Z by putting gx = y for every g = s−1t ∈ G and x ∈ N if tx = sy. This definition
is well-defined, i.e., y is independent of the representation of g in the form g = s−1t. For, if
g = s−1t = u−1v with s, t, u, v ∈ T , then ut = sv holds and the equalities tx = sy, vx = uz
imply y, z ∈ N and svy = tvx = tuz = svz showing y = z by Proposition 3.7. It is obvious
that for each a ∈ N the orbit of a is just Sa. Moreover, for any y = gx = s−1tx, a ∈ N we
have ta = sb for b = ga ∈ N . By putting d = s∧t = d(s1∧t1), s = ds1, t = dt1, s1∧t1 = 1 we
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obtain g = s−1t = (ds1)
−1(dt1) = s−11 t1. Therefore one can assume without loss of generality

that g = s−1t with s ∧ t = 1. Consequently we have

(gx)a = ya = ya(s ∧ t) = yas ∧ yat = txa ∧ yat =

= sbx ∧ sby = sbx ∧ btx = bx(s ∧ t) = xb = x(ag).

Note that an equality (gx)a = g(xa) with a, x ∈ N does in general, not hold. The reason is
that although the left hand side is always meaningful, the right hand side is not defined for
the case when 0 6= xa ∈ Z. In fact, it is impossible to define an action of G on Z in the case
Z 6= 0. For example, there are B-monoids S with Z 6= 0 and some elements a, x ∈ N, g ∈ G
such that 0 6= (ga)x = a(gx) ∈ Z, but ax = 0. However, the equality (gx)a = x(ag) always
holds, as we have already seen above. Furthermore, each x ∈ Sa defines a bijective map
x : Sa −→ G, sending y = gx ∈ Sα (i.e., y satisfies tx = sy if g = s−1t) to g ∈ G. We
summarize these results in the following theorem.

Theorem 3.9. For a B-monoid S with one minimal m-prime filter M put N = M \Z. The
quotient group G of T = S \M acts on N by putting ga = b for a ∈ N, g = s−1t if ta = sb.
The orbit of a ∈ N is just Sa. Each x ∈ Sa induces the lattice isomorphism

x : Sa −→ G : y = gx ∈ Sa 7→ x(y) = g.

Moreover, for every g ∈ G; a, b ∈ N the action of G on N satisfies the equality

(ga)b = a(gb).

If ab /∈ Z, then (ga)b = g(ab) = a(bg).

The already fixed transversal {aα, α ∈ Σ} immediately defines a factor set f : Σ × Σ −→
G

.
∪ 0 by putting f(α, β) = 0 if αβ = 0 ∈ Σ, or equivalently aαaβ ∈ Z and requiring

aαaβ = f(α, β)aαβ for the case 0 6= αβ ∈ Σ, or equivalently aαaβ /∈ Z. If h is a factor set
induced by another normalized transversal {bα |α ∈ Σ}, then for each element α ∈ Σ? there
is a uniquely determined element g(α) ∈ G such that bα = g(α)aα. If in addition we put
g(1) = 1, g(0) = 0 we obtain the function g : Σ −→ G•. For αβ 6= 0 ∈ Σ the equalities

h(α, β)g(αβ)aαβ = h(α, β)bαβ = bαbβ = g(α)g(β)aαaβ =

= g(α)g(β)f(α, β)aαβ,

imply

h(α, β) =
g(α)g(β)

g(αβ)
f(α, β),

hence f and h are associated. Therefore we have proved, in every detail, the next theorem.

Theorem 3.10. The Rees factor R of S by Z is isomorphic to the generalized crossed product
T ∗

f
Σ of T by Σ with the factor set f induced by a normalized transversal of Σ in S. Conversely,

if P is the positive cone of a lattice-ordered group G, ∆ is a local B-monoid whose non-unital
elements are nilpotent, and f is a factor set of ∆ in G•, then the crossed product C = P ∗

f
∆

is a B-monoid having one minimal m-prime filter MC = C \ P , the localisation Cδ of C at
MC satisfies Cδ ∼= ∆, and every element of a ∈ P ⊆ C is a non-zero-divisor.

Remark 3.3. The Rees factor of S by Z is exactly the factor of S by the filter Z in view of
Propositions 2.4 and 3.6.
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The following result provides some more information about the structure of Z.

Proposition 3.11. Let S be a B-monoid with the smallest m-prime ideal M . Let Z = {x ∈
S | ∃s /∈ M : sx = 0}, T = S \M . If there is u ∈ M such that su 6= 0 for all s ∈ T , or
equivalently Σ 6= 1•, then Z is a factor of the quotient group G of T by an appropriate filter
F of G: g, h ∈ G map to the same element of Z iff there is an element k ∈ F satisfying
g ∧ k = h∧ k.

Proof. The case Z = 0 is obvious. Thus without loss of generality one can assume that Z 6= 0.
By the assumption as well as by Propositions 3.5, 3.6 there are two elements a, b ∈ M \ Z
with 0 6= ab ∈ Z. In view of Propositions 3.5 and 3.7 we have ac = 0 if cσ > bσ, and aSb = Z
from which the assertion follows immediately by Proposition 2.3. �

The above statement suggests the divison of B-monoids with one minimal m-prime filter
into three types.

Definition 3.4. Let S be a B-monoid with one minimal m-prime filter M and consider
Z = {x ∈ S | ∃ s /∈M : sx = 0} ⊆M . S is said to be of

(1) type I if Z = 0,
(2) type II if 0 6= Z = M , and
(3) type III if 0 6= Z 6= M .

By definition S is of type II if every element of the least minimal m-prime filter M 6= 0 is
annihilated by some element in T = S \M . This is equivalent to saying that Σ is just the
trivial B-monoid 1•. By Proposition 3.5, M2 = MZ = 0. Therefore M can be considered as a
divisible B-act over T • and S is a trivial extension of T by M = Z. Therefore every B-monoid
with one minimal m-prime ideal of type II can be obtained in this manner. The structure of
B-monoids with one minimal m-prime filter of type II can be described more precisely with
the help of direct limits as follows. First note that the set I = M? = Z? of nonzero elements
of M = Z can be identified with the set of all nonzero cyclic acts Sa = Ta, 0 6= a ∈ M
and the partial order given by set-theoretic inclusion on I is just the reverse order of the
original ordering on I. I is indeed a down-directed set and for any a ≤ b in I there is
tab ∈ T with atab = b. Therefore by assigning to each a ∈ I the factor B-act Ta of T via
t ∼ s⇐⇒ ∃u ∈ a⊥∩T : t∧u = s∧u and the B-act map τab : Tb → Ta given by multiplication
with tab for any pair a ≤ b, b = btab , t

a
b ∈ T one obtains a direct system of B-acts over T •

whose limit is canonically isomorphic to M . In fact, the element a ∈ I is identified with the
equivalence class of the image of 1 ∈ T in Ta. We have therefore the following description of
type II.

Proposition 3.12. If S is a B-monoid with one minimal m-prime filter M of type II, then
there is a direct system of nonzero cyclic B-acts Ta, 0 6= a ∈ M over T • together with the
injective B-act maps τab : Tb → Ta given by multiplication with elements tab ∈ T such that
b = atab for any pair of elements a ≤ b = atab and S is isomorphic to the trivial extension

T
.
∪ lim−→Ta sending M to lim−→Ta. In particular, every B-monoid with one minimal m-prime

filter of type II can be obtained in this manner.

For type II we do not know if Z is also a factor (as a B-act over T ) of the quotient group
G of T . For type III we need the following preparation.
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Proposition 3.13. Let S be of type III, that is, 0 6= Z = {x ∈ S | ∃s /∈ M : sx = 0} 6= M .
Then for each α ∈ Σ? there is exactly one αi ∈ Σ? such that for every a ∈ Sα there is b ∈ Sαi
with 0 6= ab ∈ Z. In particular, the assignment ı : α ∈ Σ? 7→ αi ∈ Σ? is a bijection of Σ?

satisfying ı2 = ı.

Proof. Let a ∈ Sα be an arbitrary element. Then a ∈ N = M \ Z holds. By Proposition 3.6
a < z for any non-zero element z ∈ Z, hence there is b ∈ S with ab = z 6= 0. By Proposition
3.5, b /∈ Z. On the other hand, if b /∈ M , then bσ = 1 and thus 0 = (ab)σ = aσbσ = aσ 6= 0,
a contradiction. Consequently we have b ∈ M , hence αi = bσ ∈ Σ?. If αi < β and c ∈ Sβ
is an arbitrary element, then by Proposition 3.7 there is x ∈ M with c = bx, from which
ac = abx = 0 holds by Proposition 3.5. Thus ac = 0 for all a ∈ Sα and c ∈ Sβ if αi < β.
If β < αi and c ∈ Sβ, then by the same argument as above one obtains ac /∈ Z, otherwise
ab = 0 results which is impossible by the choice of b. Thus we have shown the uniqueness of
αi which completes the proof if we interchange the roles of α and αi. �

As an immediate consequence of the above proof we obtain

Corollary 3.14. Let Σ� = Σ
.
∪ ∞ be the commutative extension of Σ by the greatest nonzero

element ∞ subject to ααi =∞ and α∞ = 0 = αβ for all α ∈ Σ, β ∈ Σ, αi < β. Then Σ� is
a local B-monoid and its Rees factor by the filter {∞, 0} is Σ.

For the sake of simplicity we will write α instead of aα for maps x defined in Theorem 3.9.
Note that {aα, α ∈ Σ} is the transversal of Σ in S already under consideration throughout
this section. For each α ∈ Σ? we define, by using the bijection ı : α 7→ αi established in
Proposition 3.13, the G-pairing

mα : Sα × Sαi −→ G : (a, b) 7→ mα(a, b) = α(a)αi(b) ∈ G

and the T -act epimorphism

cα : G −→ Z : g ∈ G 7→ aα(gaαi) ∈ Z.

In view of Propositions 3.13 and 2.3 one can see immediately that factors of G by the
congruences g∼αh ⇐⇒ ∃k ∈ Cα : g ∧ k = h∧ k are isomorphic to Z as B-acts over T •

where Cα = {g ∈ G|cα(g) = 0}. By Theorem 3.9, for any α ∈ Σ? and arbitrary elements
a ∈ Sα, b ∈ Sαi it follows that

cα(mα(a, b)) = cα(α(a)αi(b)) = aα[α(a)(αi(b)aαi)] = aα(α(a)b) = (aαα(a))b = ab ∈ Z.

If α < β;α, β ∈ Σ?, then β = αγ for some γ ∈ Σ? and so αi = γβi holds. Hence

aαaγ = f(α, γ)aβ & aβiaγ = f(βi, γ)aαi .

To aid the exposition, we write

hβ = f(α, γ)−1f(βi, γ).

One has for each g ∈ G, the following equalities

cβ(g) = aβ(gaβi) = (f(α, γ)−1aαaγ)(gaβi) = aα(f(α, γ)−1gaγaβi) = aα(f(α, γ)−1f(βi, γ)gaαi) =

= aα(hβgaαi) = cα(hβg)
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whence cβ = cαhβ and cα = cβf(α, γ)f(βi, γ)−1 holds for all α < β;α, β ∈ Σ?. Therefore, for
arbitary elements α, β ∈ Σ? one has

(∗) cβ = cαhβ where hβ =

{
f(α, γ)−1f(βi, γ) if α < β = αγ

f(αi, γ)−1f(β, γ) if β < α = βγ

The above considerations allow us to define a new B-monoid S with one minimal m-
prime filter of type I having the epimorphic image S as follows. Consider the disjoint union
S = S

.
∪ S∞ where S∞ = G, and define SβS∞ = 0 for all β ∈ Σ?. For s ∈ T = S1 and

g ∈ S∞ define their product as the usual group product sg ∈ S∞. We fix now one (arbitrarily
chosen) element α ∈ Σ? and define for each β ∈ Σ? and arbitrary elements x ∈ Sβ, y ∈ Sβi the
(commutative) product xy = hββ(x)βi(y) according to the equality (∗). Note that SβSγ = 0
for all γ > βi and xy ∈ S \ Z for all x ∈ Sβ, y ∈ Sγ with γ < βi. Furthermore, T is the set

of all non-zero-divisors of S and the localization of S at T is Σ� = Σ
.
∪ ∞ with the greatest

non-zero element ∞. Moreover, for this fixed element α ∈ Σ?, the factor of S by the filter
Cα = {g ∈ G = S∞ | cα(g) = 0} is S. Note that this factor is in general, not a Rees factor
unless G is a totally ordered abelian group. Thus we have shown that B-monoids with one
minimal m-prime filter of type III are factors of particular B-monoids with one minimal m-
prime filter of type I. Therefore one can describe a structure of B-monoids with one minimal
m-prime filter as follows.

Theorem 3.15. Let S be a B-monoid with one minimal m-prime filter M , T = S \M and
Z = {x ∈ S | ∃s /∈ M : sx = 0}. Let Σ be a localization of S at M . Then S belongs exactly
to one of the following three cases.

(1) Z = 0. Then S is a crossed product of T with Σ.
(2) Z = M . Then S ∼= T n lim−→{Ta, t

a
b} where the latter term is a divisible direct limit

of factors Ta of T by x ∼= y ⇐⇒ ∃ z ∈ La = a⊥ ∩ T : x ∧ z = y ∧ z given by a
down-directed set I = M? = {0 6= a ∈ M} with elements tab ∈ T such that b = atab for
all a < b in I.

(3) 0 6= Z 6= M . Then Σ is the factor of the local B-monoid Σ� extended by the greatest
nonzero element ∞. Moreover S is the factor of the B-monoid S with one minimal
m-prime filter of type I by a filter contained in S∞.

4. A representation theorem

The aim of this section is to prove the following theorem, main result of this note.

Theorem 4.1. The divisibility theory of an arithmetical ring with one minimal prime ideal
is a Bezout monoid with one minimal m-prime filter. Conversely, every Bezout monoid with
one minimal m-prime filter is order-isomorphic to the divisibility theory of an appropriate
Bezout ring.

Proof. Let R be an arithmetical ring with one minimal prime ideal I and S(R) its monoid of
divisibility. It is shown in [1] Proposition 1.1 that S(R) is a B-monoid, and hence S(R) has
only one minimal m-prime filter F consisting of principal ideals contained in I, as is easy to
check. For the sufficiency, let S be an arbitrary B-monoid with one minimal m-prime filter
M and K an arbitrary field. As a first step we need



DIVISIBILITY THEORY OF ARITHMETICAL RINGS WITH ONE MINIMAL PRIME IDEAL 11

Lemma 4.2 (cf. Gauss’ Lemma on primitive polynomials). Let R be the 0-contracted monoid
algebra of S over K, i.e., R consists of all linear combinations of nonzero elements of S with
non-zero coefficients from K where the zero elements of both S and K are identified. Then
the set of primitive elements of R is multiplicatively closed.

Remark 4.1.
i=n∑
i=1

kisi ∈ R (0 6= ki ∈ K?, i = 1, ..., n) is called primitive if ∧ni=1 si = 1.

Primitive elements are in general not regular, that is, they are not necessarily non-zero-
divisors. For example, if st = t 6= 0; t, s ∈ S, then 1 − s is obviously primitive and a zero-
divisor by t(1−s) = 0. Let P be the monoid of principal ideals of the ring ZnQ/Z, i.e., P is
generated by sp, tp−n ; n ∈ N, p ∈ P = {prime numbers} subject to sptp = tptq = 0∀ p, q ∈ P
and sptp−n = tpn−1 , sptq = tq ∀ p 6= q ∈ P; n > 1. P is a B-monoid with one minimal m-prime
filter M generated by all tp−n and every element of P different from 0 and 1 is a zero-divisor!
Thus in the 0-contracted monoid algebra KP there are many primitive elements which are
zero-divisors! For more on the important role of Gauss’ Lemma in valuation theory, we refer
to the forthcoming paper [3]

Proof. Since M ∈ sS for all s /∈ M , an element r =
i=n∑
i=1

kisi is primitive if and only if the

image of r in the monoid algebra KT, T = S \M is also primitive. By this observation,
the assertion follows immediately from the well-known corresponding statement for lattice
ordered groups, see for example [9], Theorem 8.1. For another short and conceptual proof of
this important result, see [3]. �

We are now in position to verify the main result. We have to provide a representation of S
as a monoid of divisibility of a Bezout ring in three cases according to the type of S in view
of Theorem 3.15.

Case 1: S is of type I. Let R be a 0-contracted monoid algebra of S over K. We claim
that primitive elements of R are non-zero-divisors. Consider an arbitrary primitive element

a =
i=n∑
i=1

kisi, (ki ∈ K?, 1 ≤ n ∈ N). Since products of primitive elements are again primitive

by Lemma 4.2 and each element of R can be written as a product of a primitive element
with a monoid element, it is enough to see as 6= 0 for any s ∈ S?. If s ∈ T , then sx 6= sy
for any two different elements x, y of S because S is of type I. Thus as 6= 0 for all s /∈ M .
Assume 0 6= s ∈ M . Write a = a1 + a2 where a1 and a2 are linear combinations of the kisi
with si /∈ M and si ∈ M , respectively. Since a is primitive, a1 6= 0 whence sa1 6= 0 in view
of Proposition 3.7. Observing that (ssi)α = sα for si /∈ M and ssi > s for si ∈ M , one gets
as 6= 0. Thus every primitive element of R is a non-zero-divisor. Let A be the localization of
R at the set of all primitive elements. It is clear that the monoid of principal ideals of A is
isomorphic to S and S can be considered as a submonoid with respect to the multiplication
of A.

Case 2: S is of type III. By Theorem 3.15 S is a factor of the B-monoid S with one
minimal m-prime filter of type I by a filter C contained in S∞. According to Case 1 there is
a Bezout ring R containing a submonoid S such that principal ideals of R are exactly those
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generated by elements of S. The factor ring A of R by the ideal generated by elements of C
obviously has divisibility theory isomorphic to S.

Case 3: S is of type II. We will use the notation and the description of S given in
Theorem 3.15 (2). Let T = S \M and B be the localisation of the monoid algebra KT at
the set of all primitive elements. Then B is a Bezout domain whose divisibility theory is
T •. For each 0 6= a ∈ M let Ba be the cyclic factor of B by the ideal generated by t ∈ a⊥.
Multiplication by tab ∈ T ⊆ KT induces an injective module homomorphism tab : Bb −→ Ba

for any two non-zero elements a ≤ b = tabb of M . Let C be the direct limit of the B-modules

BBa. Then it is routine to check that BC is divisible, and the lattice of B-submodules of C is
isomorphic to M = Z. Let Q be the trivial extension of B by C, then the divisibility theory
of Q is just S. �

The above proof suggests a broader and sharper version of Kaplansky’s original question
on valuation rings as follows.

Kaplansky’s problem. Describe all factors of Bezout domains or more generally, all
factors of semi-hereditary Bezout rings as well as of semi-hereditary Bezout monoids. In
particular, one can search for the description of all factors having one minimal prime ideal
(m-prime filter). For details on the original problem of Kaplansky, we refer to the book [7].
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Rényi Institute of Mathematics, Hungarian Academy of Sciences, 1364 Budapest, Pf. 127
Hungary

E-mail address: anh.pham.ngoc@renyi.mta.hu

Department of Mathematics and Computer Science, Colorado College, Colorado Springs,
CO 80903.

E-mail address: msiddoway@coloradocollege.edu


