
ON A TOPOLOGICAL GENERALIZATION OF A
THEOREM OF TVERBERG

I. BARANY, S. B. SHLOSMAN AND A. SZUCS

1. Introduction

Let Aj denote the ./-dimensional simplex. The support of the point x e Aj is the
minimal face of Aj containing x. A face of Aj is understood to be closed.

The well-known theorem of Radon [3] can be formulated as follows.

PROPOSITION 1. For any linear map f: An + 1 -> R" there exist two disjoint faces A"
and A'2 of A" + l whose images /(A") and /(A'2) are not disjoint.

This proposition is generalised in [1].

PROPOSITION 2. The statement of Proposition 1 holds for any continuous map
/ : A " + 1 -+R".

Proposition 2 is a simple corollary of the following two statements.

STATEMENT A. There exists a continuous map g : 5" -»• A" + 1 such that for every
xeS" the supports ofg(x) and g{-x) are disjoint.

STATEMENT B (Borsuk's and Ulam's antipodal theorem [2]). For any continuous
map h: S" -• R" there exists x e Sn with h(x) = h( — x).

To see that the Statements A and B together imply Proposition 2 suppose that
/ : An + 1 -> R" does not satisfy Proposition 2. Then the composition fog:S"^R"
would not satisfy Statement B and this would be a contradiction.

Another generalization of Proposition 1 is proved in [5].

PROPOSITION 3. For any linear map f: AN -+ R", where N = (p — l)(n + l), there
exist p pairwise disjoint faces A",..., A'p £ AN such that /(A") n ... n/(A'p) is
nonempty.

The aim of this paper is to prove the following.

THEOREM. Suppose p is prime, n ^ 1, N = (p — l)(/i + l) and / : AN -> R" is a
continuous map. Then there exist p pairwise disjoint faces A'1,..., A(p of AN such that
/(A'1) n ... n/(A'p) is nonempty.

We mention that if it were not for the restriction that p be prime, then this
theorem would be a common generalization of Propositions 2 and 3. We do not
know whether the Theorem holds for any p or not.
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2. The scheme of the proof

We shall deal with the odd primes only (for p = 2 see [1]). The idea of the proof
of the Theorem is the same as in Proposition 2 with only the change that in both
Statements A and B, instead of the sphere Sn, we shall take a CW-complex
X = Xnp, and, instead of the antipodal map, we shall have the cyclic group Zp

acting freely on X. The action of its generator is denoted by a>.

Definition. Let us take p disjoint copies of the n(p — l)-dimensional disc and
identify their boundaries. This is the CW-complex Xn p. The identified boundary,

)-i^ i s embecjded into Xnp via

Suppose the cyclic group Zp acts freely on the sphere sn(p~l)~x, and let co denote the
action of its generator. This map co can be extended from sn{p~l)~x to Xn p as
follows. If {y,r,q) denotes the point of Xn p from the q-th disc with radius r and
Sn(P-i)-i coorcjinate y, then put

u(y,r, q) = {(oy,r,q + l ) ,

where q + l is reduced modulo p. Clearly, this map co defines a free Zp action on

Note that on the odd dimensional sphere Sk there always exists a free Zp action.
So here we only need p to be odd. In Section 4 we shall specify co.

We remark further that Xnp is defined for every n,p ^ 1. It is clear that
dimX,, p = n(p — \) and Xnp is [n(p —1) —1]-connected.

We shall prove the following two statements.

STATEMENT A'. There exists a continuous map g : X -> AN such that for every
x e X the supports of the points g(x), g(cox),..., g(cop~1x) are pairwise disjoint.

STATEMENT B'. For the map co defined in Section 4 and for any continuous map
h.X^R" there exists an xeX such that h(x) = h(cox) = ... = h{cop~xx).

Clearly, the Theorem follows from Statements A' and B'.

3. The proof of Statement A'

We shall prove this statement for every odd p. We define the CW-complex YNp as

YN, P = {(.Vi. • • •. yP) '• yi > • • •» yP
 e A", and the supports

of y1,..., yp are pairwise disjoint}.

Clearly, there exists a free Zp action on YN p: its generator maps ( j ^ , . . . , yp) e YN p into

Now the existence of the map g: X -* AN of Statement A' is equivalent to the
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existence of a Zp equivariant map G : X -> YN p. The existence of such a map follows
from homotopy theory if dimX —1 is not greater than the connectedness of YNp.
Indeed, given a Zp equivariant cell subdivision of the space X one can construct an
equivariant map G: X -> YNp by induction on the dimension of the cells in the
following way.

Step 0. Choose a 0-cell from each orbit of 0-cells (that is vertices). Define the
map G on these vertices arbitrarily and extend this map to a Zp equivariant map of
all vertices.

Step k. Suppose that G has been defined on the (k — l)-skeleton of X. Choose a
cell from each orbit of /c-cells. The map G is defined on the boundary of these cells.
By the (/c — 1 ̂ connectedness of Y the map G can be extended to the /c-cells chosen
from each orbit. Now define G on the other /c-cells to be Zp equivariant.

So in order to prove Statement A' it suffices to prove the following.

LEMMA 1. For all natural numbers N and p with N ^ p + 1 ,

*j(YN,p) = 0 for 1 ^j^N-p.

Proof. (For this elementary proof we are indebted to the referee. Our original
proof used the Leray spectral sequence.) Let 0,..., N denote the vertices of A". The
Cartesian power (A")p has a natural structure as a cell complex, a typical cell being
<7j x...xop, with each o{ a face of AN. The cell is also described by the p-tuple
{Ay,..., Ap), where At is the set of vertices of a^ Those p-tuples where the Ax are
pairwise disjoint form a subcomplex (isomorphic to) YN p.

In view of Hurewicz's theorem it suffices to prove that nx(YN p) = 0 (this would
imply that H ^ , , ) = 0) and that H2(YNp) = ... = HN_p{YNtP) = 0. The case where
p = 1 is trivial because YNl is the same as AN. When p is greater than one it is
convenient to consider, for i = 0, ...,N, that subcomplex YNpi of YN p which one
gets by requiring Ax to be a subset of {i, i + l,..., iV}. Thus

v — Y —i y —i - ^ Y
IN,p — IN,p,0 —' IN,p,\ —' ••• —' *N,p,N •

We shall show that the groups in question vanish for every YN p, and so in particular
for YNiP.

The proof is by double induction, on p and N — i. We assume that our assertion
holds for YN. p. r whenever either 2 ^ p' < p or p' = p and N' — i' < N — i.

If i = N, then YN pi = YN pN is homeomorphic to yN_, p_,, and so we can
assume that i < N.

In order to prove that 7^(7^ p,) = 0 it suffices to show that any given closed
edge-path in the 1-skeleton of YNpJ can be deformed by homotopies in YN p,- until it
lies in YNpi+x. Let ux,..., um = ux be the vertices of the given path. Thus each uk is
described by a p-vector with distinct components from 0, ...,N (each Ax is a
singleton), and uk + 1 differs from uk in at most one component.

The deformation will be done in four steps, each step consisting of several small
deformations on short subpaths.

In the first step one "separates" those neighbouring pairs uk,uk + 1 for which i + l
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occurs as second, third,..., or p-th component in both uk and uk + l. Clearly we can
assume that uk =£ uk + l. Let uk — (...,x,..., i + l,...) and ufc+1 = (...,y,..., i + l , . . . ) ,
say with x ^ y, where only the changing component and the component equal to
i + l are indicated. Put u'k — {...,x,..., z,...) and u'k + l = {--.,y, ••-, z,...) where z is
chosen among those elements of {0,..., N] which are not components of ukor uk + l.
In view of the assumption that N ^ p + 1, such a number z exists. It is easy to see
that the deformation of the subpath ukuk + l into uku'ku'k+luk + l is a homotopy over
the 2-cell (..., {x,y},..., {z, i + l},...) in YNpJ. Let vlt..., vx be the path obtained by
the first step.

In the second step one deletes each vk which has i + l among its last p-\
components. In this case, as a result of the first step, vk_l = (...,x,...),
vk = ( . . . , i+l, . . .) and vk + l = (...,3/,...), and x j= i+l, y j= i + l . It is clear that the
deletion of vk is a homotopy over the 2-cell (..., {x, y, i +1},...) in YN pJ (or over a
1-cell if x = y). Let wi,...,w1 be the path obtained.

The third step is similar to the first one and consists of insertion of a pair of
vertices of the form (i + l,...) between every pair wfc = (i,...), wfc + 1 = (i,...). In the
fourth step, which is similar to the second one, all vertices of the form (i,...) are
deleted. This gives a path in YN pJ+] as desired.

It remains to prove that Hj{YN pi) = 0 when 2 ^ y < N — p. We compute the
homology using the given cell complex. The boundary operator d is defined on cells
by

= lt(-lF*\Al,...,AHx)\{x},...,A,).

Here the sum is taken over those x in Ax u ... u Ap which belong to an Ar = Ar(x)

with \Ar\ ^ 2, and e(x) is defined by

)_l\ + \{y:yeArlx) and y < x}\.

Now the cells are of four different types according to whether

(1) ieAt and \AX\ > 2,

(2) ieAx and \A^\ = 2,

(3) {i} =AU

(4) Ax

Now put a~ = (At\{i}, A2, •.., Ap) if a is of the first or the second type,
a* = ({i}, A2,..., Ap) if a is of the second type and a+ = {Ax u {i}, A2,..., Ap) if a is
of the fourth type and i^ A2 u ... u Ap. Let C be a j-chain in 5̂ , p,-. Now
C = Cj + C2 + C3 + C4 where Ch is the sum of those cells of C which are of the h-th
type (h = 1, 2, 3, 4), and clearly

Assume now that dC = 0. We must prove that C bounds in YNpJ and we start by
observing that (5((C! +C2)"))+ = 0, so that a((Cx + C2)~) = 0. Now (Cx + C2)~ is a
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(j — l)-chain in YN pi+], and it is even isomorphic to a (j-l)-chain in YN_i p l+1, as
the vertex i does not appear in it. Thus, by the hypothesis of induction,
(C, + C2)~ = dD, where D is a;-chain in YN p i+l, not involving the vertex i. (Here we
have made use of the fact that N > p + 1 for we are finished with the case where
N = p + 1.) This means that

d(D+) = D-{Cl+C2) + terms of the third type,

and so C + d{D+) has only terms of the third and fourth types. Put
C + d{D+) = C'3 + Q . Then dC2 = bC\ = 0, as dC = 0. But C3 bounds in VN<pJ,
because HJ{YN_lmP_l) = 0, and C\ bounds in YN p t because Hj(YN p i+l) = 0. This
finishes the proof.

4. Proof of Statement B'

First we shall specify the map co: X,, p -> Xn p. As we have seen, it is enough top > Xn p.

specify a : Sn(p" n " 1 - S^'1^1. Now let d : f ] R" -> [ ] ^" b e defined by
1

Put D = {(u,i;)...,i))Gf]«":i)6/{'1}. Then 6 acts freely on f ] Rn\D (this is the
1 1

point where we need p to be prime). So 6 acts freely on the unit sphere of the
p

orthogonal complement of D (relative to f ] R"), or, what is the same thing, on the
1

sphere S"ip~ l)~l. Now we define co as the restriction of the map 6 to this sphere. It is
clear that s"^'^'1 is 0-invariant and it is a 0-equivariant deformation retract of the

p

space [] R"\D.
1

Now we prove Statement B' with this co. Suppose, on the contrary, that there
exists a map h : X -*• R" for which Statement B' does not hold. Then the image of the

p
map H : X -* f j R" defined by H(x) = (h{x), h{cox),..., h{cop~xx)) is disjoint from the

1

diagonal D. It is obvious that H is equivariant, that is Hco = OH.
Further, the injection i:s

n{p~l)~l -• X is w-equivariant and, in view of the
[n{p — 1)— l]-connectedness of X, homotopic to zero. Thus the diagram

i H P retr.
5 « ( P - I ) - I > x > ["I

1

co I co Q\ co
i 4- H P 4 retr .
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is commutative. Then the composition of the horizontal maps,
^ . £n(p-i)-i _> ^n(p-i)-i^ j s eqUivariant and homotopic to zero. This implies that i
must have degree zero. But the following lemma will show that deg£ = 1 modp,
thus providing a contradiction.

LEMMA 2. Suppose that k ^ l , p ^ 2 and we are given a free Zp action on the

sphere Sk. Then an arbitrary equivariant map a : Sk -> Sk has degree 1 modulo p.

Remark. Note that here we do not need p to be prime.

Lemma 2 is proved in [4; Theorem 8.3, p.42]. Here we present a simple proof.

Proof. Write 6 for the action of the generator of Zp and choose a ^-invariant cell
subdivision on the sphere Sk. Since itj{Sk) = 0 for j < k the restrictions of the map
a and the identity map Sk -* Sk to the (k — l)-skeleton of Sk are equivariantly
homotopic. Hence one can assume that 6 coincides with the identity on the
(k — l)-skeleton. (To see this more precisely one can use an argument from homotopy
theory which is similar to the one in the proof of Statement A'.)

P

Let us consider the map F: (J Sk —• Sk of the disjoint union of p copies of
j=i

/c-spheres Sk
l,...,S

k
p into the sphere Sk defined by the formula

( a(x) if x E Sk ,
Fix) =

{ x otherwise.

It is clear that deg F = deg a + p — 1.
The ^-invariant cell subdivision of Sk obviously has the property that the orbit of

an arbitrary cell a consists of p cells. (These are o, 6(a),..., 6p~1(<r).)
Now let (3: Sk -*• Sk be a continuous map which coincides with a on one of the

/c-cells of each orbit and with the identity on the others. Define the map

G : U Sk -> Sk

b y

G(x) = Podj(x) i f xeSk (j= l , . . . , p ) .

Then on the one hand deg F = deg G and on the other hand deg G = 0 mod p. This
proves the lemma.
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