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Abstract

Giving a (partial) solution to a problem of S. Fekete [3] and S.
Fekete and G.J. Woeginger [4] we show that given a finite set X of
points in the plane, it is possible to find a polygonal path with |X|−1
segments and with vertex set X so that every angle on the polygonal
path is at least π/9. According to a conjecture of Fekete and Woegin-
ger, π/9 can be replaced by π/6. Previously, the result has not been
known with any positive constant. We show further that the same
result holds, with an angle smaller than π/9, in higher dimensions.
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1 Introduction and results

1.1 The plane

The aim of this paper is to answer the following beautiful and inspiring
question which appeared first in S. Fekete’s thesis in [3] in 1992, and later in
the paper by Fekete and Woeginger [4] in 1997. The question is this. Given
a finite set X of points in the plane, is it possible to find a polygonal path
with |X| − 1 segments and with vertex set X so that every angle on the
path is at least α (for some universal constant α > 0)? The answer is, as we
shall see soon, yes. This might be a first step toward proving a conjecture of
S. Fekete and G.J. Woeginger [3, 4] that this result holds with α = π/6. We
prove the result with the constant α = π/9. First we introduce notation and
terminology.

Let A0, A1, . . . , An be n+1 distinct points in the plane (or, more generally,
in d-dimensional space). We denote the path consisting of the segments A0A1,
A1A2, . . . , An−1An by A0A1 . . . An. This is a polygonal path with vertices
A0, A1, . . . , An. The angle of this path at Ai is the angle of the triangle
Ai−1AiAi+1 at vertex Ai, 1 ≤ i < n.

Definition. Let α > 0. We call the path A0A1 . . . An α-good if the angle at
Ai is at least α for every 1 ≤ i < n. A path in the plane is called good, if it
is π/9-good.

The main result of this paper is the following

Theorem 1. For every finite set of points X in the plane there exists a good
path on the points of X (containing each point of X as a vertex exactly once).

We mention that π/9 in the theorem cannot be replaced by anything
larger than π/6. This is shown when X consists of the center and the three
vertices of a regular triangle (see Figure 1) when |X| = 4. This can be
extended to arbitrarily large (even infinite) |X| by placing a small copy of
the 4-point example near the origin, and adding points of the form (k, 0) to
X where k is an integer.

Figure 1: A 4-point configuration and its two paths
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Another example, depicted in Figure 2, shows that Theorem 1 cannot be
strengthened to paths with no self-intersections. It also shows that paths
minimizing various quantities (such as total length, total turning angle) may
have an arbitrarily small angle.

Figure 2: Every good path on this point set is self–intersecting (the set
consists of points on a huge circle and one extra point inside the circle)

We will prove a slightly stronger statement which is more convenient for
the induction argument. We will need two additional definitions.

Definition. We call the (oriented) directions of the vectors A1A0 and
An−1An the two end directions of the path A0 . . . An. We identify the (ori-
ented) directions with points of the unit circle S1.

In the following definition and in the proof of Theorem 1 we fix α = π/9.

Definition. We call a subset R of the unit circle a restriction if it is the
disjoint union of two intervals R1, R2 ⊂ S1 such that both have length 4α =
4π/9 and their distance from each other (along the unit circle) is at least
2α = 2π/9. We call the path A0 . . . An R-avoiding if the two end directions
are not in the same Ri (i = 1, 2) and the path is good (see Figure 3).

4α
4α

> 2α

> 2α

R1

R2

S1

Figure 3: A restriction R = R1 ∪ R2 and two (good) paths that are not
R-avoiding.

The following theorem is a strengthening of Theorem 1.

Theorem 2. Let X be a finite set of points in the plane. For every restriction
R there is an R-avoiding path on all the points of X.
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The proof of this theorem goes by induction on n = |X|, giving a straight-
forward O(n2 log n) algorithm for finding a π/9-good path. The running time
can be improved to O(n2), when one uses the convex hull algorithm of [5],
say. A sketch of an O(n2) algorithm can be found in the conference version
[1] of this paper.

1.2 Higher dimensions

The natural question is what happens in higher dimensions. In the final
section of this paper we prove the following result.

Theorem 3. There is a positive α such that for every d ≥ 2 and for every
finite set of points X in d-dimensional space there exists an α-good path on
X.

Actually, the proof method of Theorem 2 works but some extra difficulties
have to be overcome. We get α = π/42 from the proof. Perhaps the example
in Figure 1 is the extremal case in all dimensions:

Conjecture. Theorem 3 holds with α = π/6.

1.3 An open problem

Another problem that we encountered while working on this paper seems
interesting and nontrivial. Call a finite set X in the d-dimensional space α-
flat if every triangle with vertices from X has an angle smaller than α. One
example of an α-flat set is a finite set X0 of collinear points. Each point of X0

can be moved freely in a small enough neighbourhood so that the resulting
set X1 is still α-flat. Next, each point of X1 can be replaced by a very small
but otherwise arbitrary α-flat set, and the resulting set is still α-flat if the
replacements are small enough. Perhaps all α-flat sets can be obtained by
repeating this process a finite number of times.

Next, call the set X β-separable if it can be partitioned as X = U ∪ V
with U, V disjoint and nonempty so that the angle between the line through
u1, v1 and the line through u2, v2 is smaller than β for every u1, u2 ∈ U and
every v1, v2 ∈ V .

Conjecture. For every d ≥ 2 and for every positive β there is a positive
αd(β) such that every α-flat set X in d-dimensional space is β-separable.

We have a proof of this conjecture for d = 2.
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2 Proof of Theorem 2

We prove the theorem by induction on the number of points in X. In this
section we fix α as π/9.

If |X| = 2 then the two end directions are the opposite to each other.
Since the length of Ri, 4α = 4π/9, is smaller than π the two end directions
cannot be in the same interval Ri.

Assume |X| > 2. Let K be the convex hull of X and let V ⊆ X be the
vertex set of K. Next let R = R1 ∪ R2 be a restriction. We distinguish two
cases depending on the smallest angle of the polygon K.

< 2α
conv(XA)

Q1

Q2 = Rx

I

Q2
Q1I

A

Figure 4: Case 1

Case 1: The smallest angle of K is smaller than 2α. Let A be the
vertex where that smallest angle occurs and let XA = X \ {A}. We can
assume, without loss of generality, that XA is contained in the wedge of
angle 2α whose vertex is A and whose line of symmetry is the x-axis, see
Figure 4. Then for each point B ∈ XA the direction BA is in the interval
I = (π − α, π + α) ⊂ S1. Since the length of I is 2α it can only intersect
one of the two intervals R1 and R2. Let Q1 = [−2α, 2α] ⊂ S1. If one of the
sets R1 or R2 intersects I, then let Q2 be equal to the one that intersects I.
Otherwise set Q2 = [π − 2α, π + 2α]. It is easy to see that Q = Q1 ∪ Q2 is
a restriction; this is the point where the bound α ≤ 200 = π

9
comes from.

By induction we find a Q-avoiding path p = A0A1 . . . An on XA. If the end
direction A1A0 is not in Q1, then we can extend this path to the good path
Ap = AA0 . . . An on X. Analogously, if the end direction An−1An is not in
Q1, then we can extend this path to the good path pA = A0 . . . AnA on X.

So at least one of the extended paths pA, Ap is α-good. The end direction
at A is always in I. Therefore, if both end directions of Ap or of pA are in
R1 (or R2), then both have to be in Q2. In this case we can extend p at both
ends. But only one of the end directions of p is in Q2. So we extend p at the
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end which is in Q2 and we get an R-avoiding path on X.

A

B

K = conv(X)

R1

R2

Figure 5: Case 2

Case 2: Every angle of K is at least 2α. See Figure 5. Without loss
of generality we can assume that R1 and R2 are symmetric to the horizontal
line. Let A and B be the vertices of K with the largest and smallest y-
coordinate, respectively. We will distinguish three subcases depending on
the size of Y = X \ V .

Case 2a: The set Y is empty. As a first attempt we try to find an R-
avoiding path that contains only edges of K. Such a path can be identified
by the missing edge of K. All these paths are clearly α-good. If there is an
edge on the perimeter of K with a direction not in R1 or R2, then the path
missing the next edge will have that direction as end direction. In this case
we have found an R-avoiding path.

Now we assume that for each edge in K one direction is in R1 and the
other in R2. If |X| > 4, then there is a path along the perimeter of K between
A and B of length at least three. Take the path that misses an edge disjoint
from A and B — see Figure 6 (left). One of the end directions will be in the
interval [0, π] (upwards) and the other one will be in [π, 2π] (downwards).
This path is R-avoiding since R1 ⊂ (0, π) and R2 ⊂ (π, 2π).

A

B

A

B

C

D

Figure 6: Case 2a
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If |X| = 3 then the path missing edge AB from K is R-avoiding since it
has one upward and one downward end direction.

If |X| = 4 and AB is an edge of the convex hull, then the path missing
this edge is R-avoiding. If A and B are opposite vertices of K (which is a
quadrilateral now), then we connect the four vertices from top to bottom
starting with A and ending with B. Let this path be ACDB — see Figure 6
(right). We have CA in R1 and CD is pointing downwards. That is CA ∈
[α, π − α] and CD ∈ [π, 2π] and therefore the angle at C is at least α.
Similarly the angle at D is at least α as well which shows that this path is
good. The end directions are again upward and downward therefore the path
ACDB is an R-avoiding path.

Case 2b. The set Y consists of one point: Y = {F}, say. Take a path that
contains all edges of K except one and the segment from F to one of the
endpoints of the missing edge. If the angle at the vertex which is connected
to F is at least α we have a good path.

In this way every segment from F to a vertex of K can be extended to a
good path since each angle of K is at least 2α and therefore the angle toward
one of the neighbours along the perimeter of K has to be at least α.

Consider the extended path starting with FB — see Figure 7 (left). The
end direction BF is upwards. If BF or the other end direction is not in R1

we have an R-avoiding path.

A

B

A

B

F F

Figure 7: Case 2b

If the other end direction is in R1, then it directs upwards which can only
occur if AB is an edge of the convex hull and the path extended from FB
ends at A.

Similarly the path extended from FA will end in B so we found an α-good
Hamiltonian cycle — see Figure 7 (right). If X has at least five elements,
then there is an edge of K which is disjoint from A and B and we can use a
previous argument. If X has four elements, then we take the path going from
top to bottom starting at A and ending at B. In both cases the arguments
are identical to the ones in Case 2a.
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Case 2c. The set Y has at least two elements. By induction we find an
R-avoiding path p = A0 . . . An on Y . We will extend this path as follows.
Let F ∈ V , that is, F a vertex of K. Connect A0 (resp. An) to F and then
connect F to one of its neighbours, G say, on the convex hull. Continue the
path along the convex hull, we get a new path p∗. This path can be written as
p∗ = ..GFp or pFG.., where the two dots represent the unique continuation
of the path along the perimeter of K. The path p∗ will be good if the angles
at A0 (resp. An) and at F are at least α.

F

A0

A1

w0

G An

p

Figure 8: The wedge wo

Consider first the angle at A0 (resp. An). Let w0 be the set of all points
W for which the angle A1A0W is smaller than α — see Figure 8. Similarly
let wn be the set of all points W for which the angle An−1AnW is smaller
than α. Both sets w0 and wn are wedges with an angle of 2α. The angle
of p∗ at A0 (resp. An) is at least α if and only if F is not in the wedge w0

(resp. wn). Observe that V is not contained in w0 as otherwise A0 would be
a vertex of K. Thus we can choose F ∈ V so that the angle at A0 is at least
α — see Figure 8. Similarly, V is not contained in wn, and we can choose F
so that the angle at An is at least α.

Consider now the angle at F . To continue the path from F we have two
choices for G to go along the perimeter of K. Since the angle at each vertex
of K is at least 2α, one of the choices certainly yields a path whose angle at
F is at least α. Consequently there is at least one good path p∗ of the form
..GFp and one of the form pFG.. (the two Gs may be distinct).

One end of such a p∗ is an edge of K and the other one is A1A0 or An−1An.
If A1A0 or An−1An is not in R, then we keep the end which is not in R and
extend the path through the other end to get a good path on X which will
be R-avoiding.

Thus we can assume that A1A0 is in R1 and An−1An is in R2, say. This
has the beneficial consequence that A is not in w0 as the wedge w0 lies
completely below the horizontal line trough A, further denoted by l — see
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Figure 9 (left). Thus A can be taken for F and there is a good path of the
form p∗ = ..GAp. Similarly, B /∈ wn and there is a good path p∗ = pBG...

A

B

A0

A1

w0
An

ℓ A

B

A0

A1

An

ℓ

C1

C2

Ck

Figure 9: Case 2c

Notice now that p∗ = ..GAp is R-avoiding unless both of its end directions
are in R2. This can only happen if AB is an edge of K and the angle A0AB
is smaller than α. Similarly, p∗ = pBG.. is R-avoiding unless both of its end
directions are in R1. This can only happen if AB is an edge of K and the
angle AnBA is smaller than α.

In this situation let A,C1 . . . , Ck, B,A be the vertices of K in this order.
It follows that all angles along the Hamiltonian cycle

A,C1, . . . , Ck, B, An, An−1 . . . , A0, A

are at least α. See Figure 9 (right). As we have seen in Case 2b, such a
cycle produces an R-avoiding path unless k = 1.

The only remaining case is when k = 1, then K is the triangle ABC
where we set C = C1. Observe now that |V ∩ w0| ≤ 1, since the angle at
A of K is at least 2α and so w0 cannot contain both B and C. Similarly,
|V ∩ wn| ≤ 1.

We assume next that the angle A1A0C is at least α, that is C /∈ w0. If
the angle A0CB is at least α, then the path An . . . A0CBA is R-avoiding —
see Figure 10 (left). Otherwise the angle A0CA is at least α and the path
BAn . . . A0CA is R-avoiding. From now on we can assume that C ∈ w0.

Similarly we can find an R-avoiding path if the angle An−1AnC is at least
α. From now on we can assume that C ∈ wn.

This implies V ∩w0 = V ∩wn = {C}. Thus p can be extended to a good
path p∗ at both ends through both A and B.

The angle AnAC has to be smaller than α as otherwise A0 . . . AnACB is
an R-avoiding path. Similarly the angle A0BC is smaller than α. We have
seen above that



10

A

B

CA0

A1

An

A0

An

B

C

A

fA

fB

h

Figure 10: Case 2c when the convex hull is a triangle

∠A0AB < α and ∠AnBA < α.
Now let fA (resp. fB) be line through A (and B) halving the angle

BAC (and the angle ABC). See Figure 10 (right). Let h be the horizontal
line through the intersection of fA and fB. What we established so far
implies that A0 (resp. An) is in the triangle delimited by fA, fB, BC and by
fA, fB, AC.

It follows then that A0 is below and An is above h. Now w0 lies entirely
below h and wn lies entirely above h, contradicting C ∈ w0 ∩ wn.

3 Higher dimensions

Throughout this section we consider α very small, say α = 0.1o. We do
so in order to simplify the computations. Actually, the proof below gives
α = π/42 = 4.2857 . . .o, when the computations are done properly. We
mention without proof that a more complicated argument gives a somewhat
bigger α.

We identify the unit sphere Sd−1 with the set of (oriented) directions
in the d-dimensional space. A subset R of the unit sphere Sd−1 is called a
restriction if it is the disjoint union of two spherical caps, R1 and R2, each
of (spherical) diameter 10α such that the (spherical) distance of R1 and R2

is at least 8α. More precisely, each Ri is a set of directions differing from
a fixed direction by at most 5α, and each direction in R1 differs from each
direction in R2 by at least 8α. Again, a path is R-avoiding if it is α-good
and its two end directions are not in the same Ri. If a path is α-good then
we say shortly that it is good.



11

Theorem 4. Let X be a finite set of points in some Euclidean space (of
dimension d). For every restriction R there is an R-avoiding path on all the
points of X.

Proof: We proceed by induction on |X|. Proving the starting steps (|X| <
6) of the induction is tiresome and not quite simple. We postpone it to the
next section because it uses the proof scheme of the general induction step
which follows now.

So we assume that |X| ≥ 6. Let A,B ∈ X be two points of X such that
AB is a diameter of X. We will distinguish three cases.

Case 1. For any point P ∈ X different from A,B the angle ∠BAP ≤ 4α.
Or analogously, ∠ABP ≤ 4α for all P ∈ X, different from A, B.

In this case we basically repeat the proof of Theorem 2 in Case 1. For a
direction d ∈ Sd−1 and for an angle φ ∈ (0, π), we denote by C(d; φ) the cap
of Sd−1 consisting of (oriented) directions differing from d by at most φ. The
roles of the intervals I and Q1 are now played by the caps C(BA; 4α) and
C(AB; 5α), respectively, and the role of Q2 is now played either by an Ri

intersecting C(BA; 4α) (if such an Ri exists, in which case it is unique) or by
the cap C(BA; 5α) (otherwise). We remark that we now need α ≤ π/27 to
make sure that Q1 ∪Q2 is a restriction. Then we may use exactly the same
arguments as in the plane.

Case 2. We find two points C,D ∈ X such that the following hold
(see Figure 11). The angles ∠DAB, ∠ABC, ∠DAC and ∠DBC are at least
2α. Further, the angles ∠BCD and ∠CDA are at least α. (Note that
∠BDA, ∠BCA ≥ 60o > α since AB is the diameter of X.)

A

C

B

DPSfrag replacements

A
B
C
D

Figure 11: Case 2

This case is fairly straightforward. First we find an R-avoiding path p
on X \ {A,B,C,D}. The argument from Section 2 shows that either pA or
pB is a good path. We assume without loss of generality that pA is a good
path. If we can continue it toward D, then both pADBC and pADCB are
full extensions. Obviously one of them is R-avoiding. If pA does not extend
toward D, then both pABCD and pACBD are full extensions. One of them
is R-avoiding unless CD, BD, and the first end direction of p lie in the same
Ri, say R1.
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If both ends of p extend to A, then the same arguments apply. We
conclude that both pABCD and DCBAp are good paths. One of them is
clearly R-avoiding (we use that the end directions of p cannot lie in the same
Ri).

Thus p cannot be extended to A at both ends implying that Bp is a good
path. The same arguments apply again showing that DC, AC, and the last
end direction of p all lie in R2. We observe, finally, that DBpAC is a good
path which is R-avoiding as well since BD ∈ R1 and AC ∈ R2.

Case 3 When the conditions of Case 1 and 2 fail to hold.
First we show that there exists a point F in X such that the angles ∠FAB

and ∠ABF are both at least 2α.
Since we are not in Case 1 we have a point C such that ∠ABC ≥ 4α and

a point D such that ∠BAD ≥ 4α. If the two points C and D coincide, then
this point will do for F . If the angle ∠BAC or ∠ABD is at least 2α, then C
or D will do as F . Otherwise ∠BAD, ∠CAD, ∠ABC, ∠CBD are all at least
2α. A little elementary 3-dimensional calculation (we omit the details) shows
that ∠ADC, ∠DCB ≥ α implying that C and D are two points satisfying
the conditions of Case 2.

Let p = ED . . . D′E ′ be an R-avoiding path on X \ {A,B, F}. We can
extend p at either end to A or B and then to a good path on X. Obviously
one of them will be R-avoiding except when DE is in one of R1 and R2 and
D′E ′ is in the other one. Assume (without loss of generality) that DE ∈ R1

and D′E ′ ∈ R2.
First we show how to find an R-avoiding path if one of the Ri, say R1,

has a direction closer than α to a direction perpendicular to AB. One of
the paths pA or pB is good. We assume, again without loss of generality,
that pA is good. One of the paths pABF or pAFB is certainly good and
then it is R-avoiding except if BF or FB is in R1. Therefore BF is almost
perpendicular to AB, meaning that ∠ABF > π/2− 11α.

As p can be extended at the other end, one of the paths Ap or Bp is
good. Assume first that Ap is good, then so is FBAp or BFAp. Then one
direction of the line BF is in R1 and the other one is in R2.

We claim that in this case Bp cannot be a good path. If it were, then its
full extension would have an end direction in the line AF . We may suppose
that this end direction is in R1 or in R2. Now AB is a diameter of X so
∠AFB ≥ ∠ABF > π/2− 11α. On the other hand, ∠AFB < π −∠ABF <
π/2 + 11α. Thus each of the two directions of line AF differs from each
of the directions of line BF by more than π/2 − 11α ≥ 10α, which is a
contradiction, since R1 or R2 contains one direction of each of the lines AF ,
BF (note that this is the place where we needed α ≤ π/42). This proves
our claim and shows, further, that ∠DEB < α, implying further that the
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directions DE and BE differ by at most α.
We have to consider two simple cases now. We write cone(P, UV, γ) for

the circular cone with apex P , axis going in direction UV , and half-angle γ.
Case a. FB ∈ R1 and BF ∈ R2. Then BFAp is not good so ∠EAF < α.

So E ∈ cone(A, AF, α). Both DE and FB lie in R1. So direction BE
differing from DE by at most α differs from FB by at most 11α, implying
E ∈ cone(B, FB, 11α). This is impossible: the two cones have no point in
common since ∠BAF > 2α, see Figure 12 where β = 11α.

a

b

B

F

A

PSfrag replacements

A
B
F
α
β

Figure 12: The two cones have no common point

Case b. BF ∈ R1 and FB ∈ R2. Then FBAp is not good, thus
∠EAB < α and so E ∈ cone(A,AB, α). Also, E ∈ cone(B, BF, 11α) as
BF, DE ∈ R1 and DE and BE differ by at most α. It is easy to check that
in this case Fp is a good path, which has a full extension since the angle at
F is large. But this extension is R-avoiding since one of its end directions is
contained in the line AB which is almost perpendicular to both R1 and R2,
see Figure 13 where β = 11α, again.

F

A Ba

b

PSfrag replacements

A
B
F
α
β

Figure 13: The two cones intersect

We are finished with the case when Ap is a good path. Assume now
that Ap is not a good path. Then ∠DEA < α and therefore AE is almost
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perpendicular to AB. By elementary geometry we get that E and F satisfy
the conditions of Case 2, which is a contradiction, again.

From now on we assume that both R1 and R2 are at distance at least α
from the great sphere h ⊂ Sd−1 which is perpendicular to AB. The sphere
Sd−1 is cut by h into two halfspheres hA and hB where hA contains the
direction BA. Obviously, each Ri is contained in hA or hB, and if R1 ⊂ hA,
say, then Ap is a good path.

If both R1, R2 ⊂ hA, then both ends of p can be extended to A and then
to full extensions with opposite end directions BF and FB, and at least one
of them is neither in R1 nor in R2, and we have an R-avoiding path.

Suppose finally that R1 ⊂ hA and R2 ⊂ hB. Both paths pB and Ap are
good. If FBAp (or pBAF ) is a good path, then it is R-avoiding because
BF ∈ hA (or AF ∈ hB). Otherwise the Hamiltonian cycle FApBF is good,
that is, all the angles along the cycle are at least α.

Everything is under control now. Removing any edge from this cycle
produces a good path. If none of these yield an R-avoiding path, then
all edges of this cycle belong to R1 in one direction, and to R2 in the
other. Thus, any two edges of this cycle are almost parallel. Moreover,
going along one direction in this cycle the direction of the edges is as follows
R1, R1, R2, R2, R1, R1, R2, R2, . . .. Indeed, if there were consecutive Ri, Rj, Ri

in the sequence of directions (with i = j or not), then deleting the middle
edge would produce an R-avoiding path.

Observe now that AB ∈ R2 since AF, FB ∈ R2, and the vector AB is
the sum of the vectors AF and FB. This shows that every direction in R2

is closer than 10α to AB. Similarly, every direction in R1 is closer than 10α
to BA.

Assume now that EF ∈ hA. Then the path AFpB is R-avoiding: the
only angle to be checked is ∠EFA but there FA is close to BA and the angle
between directions EF and BA is at most π/2.

Thus, finally, EF ∈ R2. Set p∗ = p\E. We claim that the path p∗BFEA
is R-avoiding. The only critical angle is ∠FEA and here AF is close to AB
and the angle between directions FE and AB is at most π/2.

4 Starting the induction

The case |X| = 2 is trivial. If X = {A,B, C} and AB is a diameter of X
then ∠ACB ≥ π/3 > 10α and thus the path ACB is R-avoiding for any
restriction R.

Consider next the case |X| = 4. Then X lies, of course, in 3-dimensional
space. If we are in Case 1 of the preceding section, then we need the
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induction basis for X \ A, which has three elements and that case has been
covered. So assume |X| = 4 and we are not in Case 1. Then at most one
angle is smaller than α at every vertex: this is clear at the endpoints of the
diameter AB, and if at vertex C, say, both ∠ACD and ∠DCB are smaller
than α, then ∠ACB < 2α, yet ∠ACB ≥ π/3 as AB is the diameter.

We assume now that R1 and R2 are symmetric with respect to a horizontal
plane. Let T, U, V, Z be the points of X in vertically decreasing order. (We
need new notation for the points, and we will only use the fact that at most
one angle is smaller than α at every vertex.)

If the path TUV Z is not R-avoiding, then ∠TUV < α or ∠UV Z < α.
Without loss of generality we can assume that ∠TUV < α. Then, just as in
Case 2a of the planar case, the line TU is almost horizontal implying that
UT /∈ R1 and TU /∈ R2. Next, TUZV is R-avoiding unless ∠UZV < α.
Then V ZTU is R-avoiding unless ∠ZTU < α. But in this case the path
V TZU is R-avoiding.

Consider now the case |X| = 5. If we are in Case 1 of the preceeding
section, then we need the induction basis for X \ A, which has only four
elements, and we are done with that. Assume that it is Case 2. Denote the
point in X \ {A,B,C,D} by P . The angle ∠PAD is smaller than α, since
otherwise the paths PADBC and PADCB are good and thus at least one
of them is R-avoiding. Analogously, the angle ∠PBC is smaller than α. It
follows that the path CAPBD is good. Thus, its end directions AC, BD
are in the same Ri, say in R1.

The paths PABCD and PBADC are good, so each of the opposite direc-
tions CD, DC is in some Ri, say CD ∈ R1 and DC ∈ R2. Now R1 contains
AC and CD, thus it contains also AD. So R1 contains AD and BD. It
follows that the angle ∠ADB is at most 10α < π/3, contradicting that AB
is a diameter of X.

Finally, if |X| = 5 is neither in Case 1 nor in Case 2, then we use the
induction basis on X \ {A,B, F} which has two elements.
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