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Abstract. We extend a construction of Stipsicz-Szabó ([13]) of infinitely
many irreducible exotic smooth structures of some closed four-manifolds with
even b+2 and fundamental group Z/2Z. We use the double node surgery and
rational blow down constructions of Fintushel-Stern ([6, 4]) on some elliptic
fibrations equipped with a free involution. The construction is done in an
equivariant manner and the factor manifolds are distinguished by the Seiberg-
Witten invariants of their universal covers.

1. Introduction

Two smooth manifolds are said to be exotic if they are homeomorphic but not
diffeomorphic to each other. In this case, we call the two smooth structures exotic,
and a manifold invariant is usually used to distinguish smooth structures, i.e.,
to show non-diffeomorphism of the two manifolds. In the following, we use the
Seiberg-Witten invariants [15] given by the function

SWX : H2(X;Z) → Z

where X is a smooth, closed, oriented four-manifold with b+2 > 1. This is encoded
in a formal series SWX :=

∑
α∈H2(X;Z) SWX(α)eα. Note, that the number of “basic

classes”, i.e. classes α with SWX(α) ̸= 0, is finite, and so the sum is also finite.
Indeed, if two manifolds are diffeomorphic, then their Seiberg-Witten invariants
have to agree (up to automorphism). On the other hand, the homeomorphism of
the two manifolds will arise from the generalization of Freedman’s classification
theorem to manifolds with fundamental group Z/2Z (see [8]).

In this paper, we will expand the construction given in [13, Theorem 4.6] by
exploiting the extra two E(n) pieces of the fibration described below. The follow-
ing theorem relies on the rational blow down construction, knot and double node
surgery constructions of Fintushel-Stern (see [4, 5, 6] respectively).

Theorem 1.1. The manifold Z1#2nCP2 #lCP2 where l ∈ {5n+6, 5n+12, . . . , 8n}
if n = 2q ̸≡ 6 (mod 8) and l ∈ {5n + 9, 5n + 15, . . . , 8n} if 1 < n = 2q + 1 ̸≡ 5
(mod 8), admits infinitely many irreducible smooth structures.

Here, Z1 denotes the quotient of S2 × S2 with the fixed point free involution ι,
which applies the antipodal map on the two S2 components. We conjecture that
the same theorem is valid in the remaining n ≡ 5, 6 (mod 8) cases as well.
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2. Preliminaries

2.1. Topological results. We will make use of the homeomorphism classification
of oriented smooth manifolds with π1 = Z/2Z, to this end consider X and its two-
fold universal cover X̃. There are 3 possibilities with regards to the spinness of
these two manifolds:

I) neither are spin
II) both are spin

III) X is not spin, but X̃ is.
This is called the w2-type of the manifold X. Note, that these are the only possi-
bilities, since spinness is equivalent with having w2 = 0, and naturality of this class
means, that if X is spin, then so is X̃. Now we can state

Theorem 2.1 ([8, Theorem C]). Let X1, X2 be two closed oriented smooth 4-
manifolds with fundamental group Z/2Z. The manifolds are homeomorphic if and
only if their Euler characteristic, signature and w2-type agree.

2.2. Knot surgery. Consider a knot K ⊂ S3, and a simply connected smooth
manifold X with b+2 > 1, and with an embedded homologically essential torus T (in
the following we denote the n-torus Tn) of self-intersection 0 and simply connected
complement. The manifold XK := (X\νT )∪ϕ(S

3\νK)×S1 is called a knot surgery
of X using K, where ϕ : T 3 → T 3 is chosen so that the longitude of K is identified
with the normal circle of T . Note that this does not determine ϕ completely: we
pick and fix such a function.

The following theorem shows the importance of this construction:

Theorem 2.2 ([5]). With the setup as above SWXK
= SWX · ∆K(e2[T ]) holds,

where ∆K is the symmetric Alexander polynomial of K.

In the special case of elliptic fibrations over the sphere, which we will be using,
more can be done ([6]). Let K be any genus one knot, and pick a minimal genus
Seifert surface Σ and a non-separating loop Γ inside Σ satisfying:

(1) Γ bounds a disc which intersects K in two points.
(2) Γ has linking number +1 in S3 with its pushoff on Σ.

Definition 2.3. Consider a neighborhood of a smooth fiber F in an elliptic fibration
containing exactly two nodal fibers with the same monodromy, and with all other
fibers smooth. Such a neighborhood is called a double node neighborhood.

With K as previously and T a smooth fiber in a double node neighborhood, we do
knot surgery with the map ϕ picked so that the meridian of K is identified with
the vanishing cycle of the singular fibers (both are the same, since they have the
same monodromy).

In the local picture a section of the elliptic fibration looks like a disc; the result
of knot surgery is to remove a smaller disc from the section and replace it with
the Seifert surface of K, thus, we obtain a punctured torus afterwards. Inside
this torus sits the loop Γ, which by (1) bounds a twice punctured disc D′ with
boundary ∂D′ = Γ ∪ m1 ∪ m2, where the mi are meridians of K. By the choice
of ϕ the meridians mi bound disjoint vanishing discs Di (corresponding to the two
nodal singularities), hence Γ bounds a disc D = D′ ∪D1 ∪D2. With respect to the
framing of Γ given by the push-off on the surface Σ, the relative self-intersection of
D is −1.
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Remove now an annular neighborhood of Γ inside Σ, and close the resulting
surface with two copies B1 and B2 of the disc D described above. These two discs
intersect each other in one point, so the capped off surface is an immersed disc with
a double point. To get the sign of the double point notice that B1 and B2 intersect
with negative sign, but we have to change the orientation of B2 in order to get an
oriented surface, so the immersed disc has a positive double point. Thus in a double
node neighborhood we can replace the genus introduced by the knot surgery with
a positive double point if we use knots satisfying the conditions above.

2.3. Rational blow down. The final ingredient is the rational blow down ([4, 10]).
Denote by Cp a linear plumbing (consecutive terms intersect transversely at a single
point) of p− 1 spheres with self-intersections −(p+ 2),−2, . . . ,−2. The boundary
of this linear plumbing is the lens space ∂Cp = L(p2, p− 1). The main observation
is that there is a manifold Bp with the same boundary, and with H∗(Bp;Q) =
H∗({pt};Q) ([7, Figure 8.42.]). If Cp ⊂ X for some simply connected 4-manifold
X, we call Xp := (X \ νCp) ∪Bp the rational blow down of X.

t t t t−(p+ 2) −2 −2 −2

u1 u2 u3 up−1

Figure 1. The configuration Cp

In special circumstances it is possible to follow the Seiberg-Witten invariants
after a rational blow down. It is true in general, that if Xp is simply connected,
then the Seiberg-Witten invariants of X completely determine those of Xp, but the
computation is not always simple. A more manageable case which we will need is
the following:

Definition 2.4. Cp is Seiberg-Witten tautly embedded if |α(u1)| ≤ p (where u1 ⊂ Cp

is the sphere with self-intersection −p − 2), and α(ui) = 0 (for the −2 spheres of
the configuration) is satisfied for all basic classes α.

To obtain the Seiberg-Witten invariants after the blow down, one needs to find
extensions of certain cohomology classes from X \ νCp to Xp, and vice versa. If an
extension exists, and the expected dimension of the moduli space (defined by the
right hand side of Equation (1)) stays non-negative, then the value of the invariant
is unchanged after the blow down [4, Theorem 8.2]. In our case, the expected
dimension of the moduli space is always zero.

In the tautly embedded case this extension process simplifies further, and one
only has to consider the basic classes which evaluate maximally on u1:

Theorem 2.5. Let X be a simply connected 4-manifold with b+2 ≥ 2, and Cp

tautly embedded into it. If α′ is a basic class of Xp, and α|X\νCp
= α′|Xp\Bp

, then
|α(u1)| = p where u1 ⊂ Cp is the sphere with [u1]

2 = −p− 2.

Finally the standard blow up formula also needs to be mentioned, as we will be
relying on it in the following.

Theorem 2.6 ([3, Theorem 1.4]). Let X be a 4-manifold of Seiberg-Witten simple
type with b+2 > 1, and X ′ = X#CP2 its blow up, then SWX(α) = SWX′(α ± E),
with the (Poincaré dual of the) new exceptional sphere denoted E ∈ H2(X#CP2;Z).
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Remark 2.7. For the reader unfamiliar with Seiberg-Witten invariants, the simple
type condition, i.e. that for every basic class α

(1)
α2 − (3σ(X) + 2χ(X))

4
= 0

can be safely ignored, since E(n) is of simple type for all n > 1 and simple type
manifolds stay simple type under knot surgeries and rational blow downs. For an
exposition, see e.g. [4, Section 8].

2.4. An involution on E(2n + 1). We briefly recall the construction of the ex-
tended involution, still denoted by ι : E(1) → E(1) from [13, Section 3]. Consider
S2 × S2 and the antipodal map on both factors, denoted by p × p. Now take two
fibers and two constant sections, which are not mapped into each other by the
respective p’s, call the union of these 4 spheres C0, and C1 = (p×p)(C0) is another
set of 4 spheres.

S2

S2

C0

C1

Figure 2. S2 × S2 and the generators of the pencil C0, C1.

Note, that the involution p × p extends if we blow up S2 × S2 at pairs of these
intersection points, thus getting a well defined fibration S2 × S2#8CP2 → S2,
still equipped with an involution, which we still call ι. This fibration is an elliptic
fibration E(1).

We extend this involution further by taking a smooth fiber and its pair under
ι. Taking a fiber sum with a copy of E(n) along this fiber, and its pair, the
involution extends by exchanging the two copies of E(n) in the manifold E(2n+1) =
E(n)#fE(1)#fE(n).

3. Construction

Now putting the above results together, we will do a number of double node
surgeries on some elliptic surface E(2n + 1) using the twist knots Km and K1 de-
picted on Figure 4. Here, m denotes the parameter of our infinite exotic families
on the fixed topological type, and n is the coefficient in the main theorem which
determines the topological type. After the double node surgeries, we blow up the
double points, and modify the fibration to produce a configuration Cp which will
be rationally blown down.

More precisely, consider the fibration E(2n + 1) described in Subsection 2.4.
Choose a section s ∈ Γ(E(2n + 1)), and consider the image ι(s) of that section
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under the involution map ι (they have self-intersection −2n − 1). Choose two
smooth fibers (again equivariantly) of our fibration, and do knot surgery along
them using the twist knot Km.

Z/2Z-action

ι(s)

s

Figure 3. The elliptic surface E(2n+ 1) seen as the fiber sum of
E(1) with two copies of E(n).

Since g3(Km) = 1, the sections become genus two surfaces after the surgery, and
since

(2) 1 = (ab)6 = (a3b)3 = a9(ba
6

ba
3

b)

in the monodromy group (see [14] for further details) we can assume that there are
two I4 fibers in our E(1), positioned symmetrically with respect to ι.

2m− 1

Figure 4. The twist knot Km, where the box represents (2m−1)-
many half twists. The genus 1 Seifert surface is obtained from the
immersed disc bounded by the two parallel strands.

According to [6] we can use these fibers to exchange the genera for two positive
double points on both fibers and both sections. Blowing up the four double points,
the sections now have self-intersection −2n− 9.

Next, we do 2k additional double node surgeries along the trefoil knot (we choose
the left-handed trefoil K1) positioned symmetrically with respect to ι in the two
E(n) parts of our E(2n + 1) (note that a number of other knots would work, but
we choose the trefoil to keep the computations of the Seiberg-Witten invariants
simple). As before, g3(K1) = 1 and its Alexander polynomial is ∆K1

= t− 1+ t−1,
allowing us to apply additional double node surgeries to produce double points on
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the spheres and blow them up. The existence of the necessary I4 fibers for this con-
struction follows from the monodromy factorisation in the next paragraph. This
lowers the self-intersection of both sections to −2n− 9− 8k.

Next we produce a singular I8n−2 fiber, where the dual intersection graph of the
fiber and the two sections looks like Figure 5.

s ι(s)

8n− 6

Figure 5. Dual graph of the fiber with the two sections mapped
to each-other.

This can be achieved using a result of Korkmaz-Ozbagci ([9]). From this, we
compute the following factorisation in the mapping class group of the twice punc-
tured torus, where β denotes a right handed Dehn twist along the longitude, and
β is its inverse (see Figure 6):

δ1δ2 = (α1α2β)
4 = (α3

1α
β
2α1β)

2 = α8
1α

βα5
1

2 βα4
1αβα1

2 β.

As we can see, this decomposition does not contain any α2. In the fibration cor-
responding to this decomposition, the two sections would intersect the same (−2)-
curve of the singular fiber. In order to separate the two sections we also need the
decomposition δ1δ2 = α6

1α
3
2β

α4
1α

2
2βα2

1α2β.
Using the two relations, we get that

δn1 δ
n
2 = α8n−2

1 α3
2

(
(4n− 1)-many right handed Dehn twists

)
(3)

which implies that in the space E(n) we can indeed achieve the configuration of
Figure 5.

Finally, we perform two rational blow downs, one on this configuration and
one on its pair under ι. The fibers were chosen to be longer than needed for a
C2n+7+8k; two additional spheres of the singular fiber obtained from this choice
are used to make the configuration disjoint from its pair under ι, and to guarantee
that the resulting manifold is simply connected. The fundamental group of the
complement is generated by a normal circle of one of the endpoints of the linear
plumbing C2n+7+8k, the longer chain guarantees a bounding disc to this generator
in the complement inside E(2n+ 1), and by Van Kampen’s theorem we get simple
connectivity (the complement of a section and a fiber in E(2n + 1) is also simply
connected [7, Section 3.1]).

Doing this procedure once requires an I4 for the double node surgery, and the
blowups force the configuration Cp to be longer by 8, so we use a12 from the
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α1 α2

δ1

δ2

β

δ1

δ2

8n− 2

α1 α2

Figure 6. Generators of the mapping class group of the twice
punctured torus and the configuration produced by the factorisa-
tion.

monodromy in total (from now on, a is a right handed Dehn twist in the mapping
class group of the torus of which α1 and α2 are lifts). By Equation (3), we can
produce a8n−2 in the monodromy factorization of E(n). Therefore, we have 8n−2 =
2n+7+12k, i.e. k = ⌊n

2 − 3
4⌋ gives the maximum number of times we can perform

the surgery. Note that this means the coefficient 8n− 6k is equal to 5n+ 6 if n is
even, and to 5n+ 9 if n is odd.

Remark 3.1. This choice leaves some singular fibers to work with, by using the
factorisation of Equation (2) for the double node surgeries, the results can be im-
proved by about 1 extra knot surgery for every fifth value of n, but the formulas
become much more convoluted.

Now, we are ready to prove the main result:

Theorem 3.2. There are infinitely many irreducible smooth structures on Z1#

2nCP2 # (8n− 6k)CP2 for n ∈ N and 0 ≤ k ≤ ⌊n
2 − 3

4⌋ where 4 ̸ | n− k.

Remark 3.3. In order to show that our manifolds are non-spin, we use Rohlin’s
theorem (a spin four-manifold has signature divisible by 16, [11]). By the calculation
below this means that we have to exclude those cases where n ≡ 5 or 6 (mod 8)
(i.e., when n − k is divisible by 4). Note that the construction remains valid in
these cases, and we suspect that the manifolds are non-spin as well.

Proof. The Seiberg-Witten invariant of E(2n+ 1) is

SWE(2n+1) = (ef − e−f )2n−1

where f ∈ H2(E(2n + 1);Z) is the fiber class ([4] [1, Example 1]). By [5], we
get that after both surgeries with Km the invariants get multiplied by me2f −
(2m − 1) +me−2f , and by e2f − 1 + e−2f after each additional K1-surgery. Since
E(2n+1) is of simple type, the potential basic classes become (2n−1−2r)f , where
r ∈ {−2k−2, . . . , 2n+2k+1} (and this new manifold, homeomorphic to E(2n+1)
is still of simple type).
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After the 4k + 4 blow ups the basic classes are of the form (2n − 1 − 2r)f +∑4k+4
i=1 ±Ei with r as before. The sections get blown up at double points, so the

sphere is represented by [s]−
∑2k+2

i=1 2Ei and its pair by [ι(s)]−
∑4k+4

i=2k+3 2Ei. Note
that the construction is done in an equivariant manner on two disjoint sections.

We compute:〈
(2n− 1− 2r)f +

4k+4∑
i=1

±Ei, [s]−
2k+2∑
i=1

Ei

〉
= 2n− 1− 2r + 2a,

where a represents the number of Ei’s with negative sign in the basic class, so it is
any even number satisfying |a| ≤ 2k + 2 and ⟨·, ·⟩ is the intersection pairing. Thus
the value above is at least 2n−1−4n−2−4k−4k−4 = −2n−8k−7 and at most
2n− 1+ 4k+4+4k+4 = 2n+8k+7 meaning that both configurations are tautly
embedded (see Definition 2.4), since the (−2)-spheres of the configuration are in a
fiber, so f evaluates on them as 0.

We apply [7, Theorem 8.5.18.] to get that the only basic classes which extend
to the rational blow down are α = (2n− 1+ 4k+4)f +

∑4k+4
i=1 Ei and its negative,

since this is the only class which evaluates maximally on both sections. This class
corresponds to the leading coefficient of the invariant before the rational blow down.
The leading coefficient of the product

(t− t−1)2n−1(mt2 − (2m− 1) +mt−2)2(t2 − 1 + t−2)2k

is m2, thus these manifolds are all smoothly distinct.
Topologically, χ(E(2n+1)) = 24n+12, which we change by 4k+4−4n−12−16k

with the blow ups and the rational blow downs to obtain 20n−12k+4. Furthermore,
b+2 (E(2n+1)) = 4n+1, b−2 (E(2n+1)) = 20n+9, we only add and remove negative
definite submanifolds, so the signature becomes 4n+ 1− (20n+ 9+ 4k + 4− 4n−
12 − 16k) = −12n + 12k. This number is not divisible by 16 by assumption, thus
our manifolds are not spin i.e., type I. Factorisation by ι halves both σ and χ, so
by the homeomorphism classification of π1 = Z/2Z smooth manifolds the factor
is homeomorphic to Z1#2nCP2 #(8n − 6k)CP2, but as detected by the Seiberg-
Witten invariant of its universal cover, they are not diffeomorphic.

Finally by the above calculation and Equation (1), we see that α2 = 3σ+2χ
4 =

4n+12k+8 for our basic class α. Irreducibility follows from this, since in a reducible
manifold there are two basic classes, the difference of which has square −4 by [12,
Lemma 2.3], but in our case this number is always positive. □
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