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1 ElsS elgadas

Stipsicz-Szabo jegyzetet hasznéljuk/olvasandé. Postnikov: Lectures in Geometry 1-5. A negyedik kell. Hattér:

o M difhaté sokasag, OM peremes sokasag, zart sokasag=kompakt peremtelen

n

e S" B

differencialformak A*T*M nyalabok, QF (M) = O (M; AFT* M)
o kiilsg derivalas d lineéris, gradalt leibniz és a négyzete nulla

wly = Y7 wlidz! jelsli lokalisan a k-formakat

dw=>"3T %“;‘I{ dz® A da!
e de Rahm kohomolégia H* (M)
Theorem 1.1 (Hodge). M kompakt, akkor dim H*(M) < oo.

Theorem 1.2. M zdrt, akkor H*(M) = (H™ *(M))*.
Ha M ésszefiiggs, akkor HO(M) = R.

[w] € H*(M)-el jelsljiik a kohomologiaosztilyokat. Legyen w,w’ € [w] tisztességes k-forma reprezentansok.
Ezek zartak lesznek, és létzni fog egy ¢ k—1 forma, hogy w’ = w+d¢. Ahhoz hogy nulla legyen valaki d¢ = w
kell, ehhez biztosan siizkséges, hogy zért legyen, és elegendd az, hogy elttinik a H*(M).

Theorem 1.3. (M, g) irdnyitott zdrt Riemann sokasdg, akkor H*(M) = ker V. kanonikusan.

A laplace xd x d + d * dx* elvileg, ez a kozonséges Laplace a fliggvényeken, és altalanosodik.

Integralas: egy M peremes sokasagon egy w m — 1 forma [, dw = [, w.

2 Second Lecture

2.1 Vector Bundles

Definition 2.1. Smooth vector bundle, finite dimensional and mostly over C.



Definition 2.2. Morphism of vector bundles. Isomorphism of vector bundles. Aut(F) is the gorup of invert-
ible endomorphisms.
We have a SES 1 — Gg — Aut(E) — Dif f(M) — 1, the kernel is called the gauge group. Le. it is the group

of bundle isomorphisms covering the identity.

G g will denote the sheaf (as a space), the C°° sections of which give back Gg. G is the group of fiberise
linear transformations of F, i.e. Ggl, = Aut(E,) = GL(n;C). This is indeed the case, all maps arise. Now
for g1,92 € Gg = C(M,GE) we an defined g1go as the products of sections, as linear maps. Lie(Gg) =
C>*(M, gg), where gg is the Lie-algebra bundle of Gg, i.e. Hom(E,).

Heads up, if the group is disconnected, its Lie algebra is only defined over the identity component.
Definition 2.3. Section.

HW: Prove that if E = A*T*M ®g C, then 1 — G — Aut(Ey) — Dif f(M) — 1 splits (and maybe is a

direct product?). (what do we know about pullbacks of forms under diffeomorphisms?)

2.2 Gluing construction

3 Third lecture

Remark 3.1. G is a Hilbert Lie group (over L?). Also Iso(E) = Aut(C*®(M, E)).

3.1 The covariant derivative on F

Motivation: we have a nice theory of analysis for exterior forms. We have a complex, the differentiation

operator is unique and so on. We want something similar with vector valued k-forms.

Definition 3.2. Let £ — M be a complex vector bundle, Q% (M, E) := C>° (M, A*T*M ®c F). We call these

FE-valued k-forms.

We want a dy : QF(M, E) — Q*1(M, E) with as many properties of the ordinary derivative as possible. We
sacrifice uniqueness in the process, there are many such operators. There is also no cohomology, d2v will be
the curvature.

Recall the glueing construction. A vectorbundle is the same as the choice of an open cover, and maps on the
elments of the cover with maps into Aut(F') satisfying the cocycle conditions. Similarly a section is a set of
local functions compatible with the gluing maps.

First we construct dy : Q°(M, E) — Q!(M, E). We can try coordinatewise differentiation, this does not work.
The Leibniz rule and the gluing rule conflict.

So we require V to take s to another section of a vector bundle Vs. It has to be a first order differential
operator, i.e. V(fs) =df ® s+ fVs.

The solution will be covariant differentiation. We can compute, that V|;; = d+Ay, where Ay € QY (U, End E).

How does the Ay transform under chart change.

Definition 3.3. V: Q%(M, E) — Q' (M, E) is a covariant derivative on E if for any locally trivialising open
cover {U,} with gluing functions g,s we have V = {Vy} where Vi = d + Ay with Ay € Q'(M, F) and
Av = guvAvgyy + guvdgyy -

Extend these to all forms with the Leibniz rule.



We denote V4(X) := Vxs where X is a smooth vector field over M. Now the axiomatic version of the

previous definition

Definition 3.4. V is a covariant derivative if
1. V(fs)=df @ s+ fVs
2. complex linear
3. Vixqgvs = fVxs+gVYs

Theorem 3.5. If E — M is a vector bundle and V is a covariant derivative, then V +a is another covariant
derivative on E for any a € QY (M, End E). Consequently Ag (the set ofcovariant derivatives) is an infinite
dimensional affine space over Q' (M, End E).

Proof. If V is a covariant derivative and a is a 1-form, then its clear that V 4 a is also a covariant derivative.
In the other direction, given two covariant derivatives, a trivialising neighborhood U and a section s we get

(V' = V)s = (A}, — Av)s, and these glue together well, since we subtrack the inhomogeneous part. O

Definition 3.6. If V,V’ are two connections on a vector bundle we call them gauge equivalent if 99 € Gg
such that V' = gVg1.
Gy :={g€e€Gg:9Vg 1=V}

Homework 3.7. If V' =V +a and V' = gVg~', what does this mean for a?
Definition 3.8. Bg := Ag/Gg ir the gauge orbit space.

Definition 3.9. Let E be a vector bundle with V a covariant derivative, s a smooth section and v a smooth
curve in M. We call s parallel w.r.t. V along v if Vs = 0.
If E =TM then v is autoparallel if V.7 = 0.

4 MISSING

5 Fifth lecture

Last week: parallel transpost equation Vys = 0. If v is a small closed loop from z¢ to zo, we get a 7y, C
linear automorphism of the fiber over zo. We saw, that this map is equal to id — %FveQ +o(€%), where Fy is

the curvature tensor [Vx,Vy] — Vix y].

Remark 5.1. Méashogy is meg lehet mutatni, hogy Fv s-ben algebrai.

Proof. [Vx,Vy](fs) — Vi X,Y](fs). Use the defining properties of the covariant derivative it is a standard
check. O

This means Fy : Q°(M, E) — Q2?(M, E) is a map, since its clearly antisymmetric in its first two arguments,
ie. Fy € Q2(M, End E).

Proposition 5.2. d% =dyoV =Fy



Proof. Let (U,x',..., 2™, e;...,e;) be alocal coordinate system and trivialisation over U,where m = dimX
and ¢ = dimFE. Let s|y = ;.

dyVe; = dy(Ale;) = dAle; — AL N Vej = (dAY + A A Abey, =: Ffey

This means that on U Fy|y =dA+ AA A.
On the other hand Aé = F};jdxk by definition. We compute the curvature tensor locally (only the section

component, we omit the vector fields).

k kg1 k3.1 i 3. E)Ffj E i » l
Fy = d(I};dx’) + Tyida” AT, da? = (% = I;0,)de? A dx
Writing out the components, we notice the local form of the curvature tensor. O

Remark 5.3. d% is tensorial in its argument as well. d%,(fs) = dy(dfs+ fVs) =d*fs —df AVs+df ANVs+
fdyVs = fd%s.

It is clear, that dy induces operators Q¥(M, End E) — QF(M, End E) for each k canonically.

Homework 5.4. What is the induced connection on the dual bundle? The induced form on E ® I will have
the formd+ Ag ® 1+ 1® Ap, use this for E® E* = End E.

Lemma 5.5 (Differential Binachi identity). dZ"? FFg =0
Remark 5.6. This is not the same as saying d¥, = 0, which is not true in general.
Proof. By the homework it turns out, that

dgr PFg|y = dE®F (dE)* |y =dF + ANF —F A A

Substituting the form we found for Fy|y = dA + A A A, we get 0 after computing the derivatives.
O

Remark 5.7. AV = A;dz’, and ANA = [A;, Aj]ldz’ Adz?. With Lie-algebra valued forms AA A # 0 in general!

5.1 Characteristic classes — Chern-Weil theory

Start: G a lie group, p : G — AutV irreducible complex representation, and P a princpial G-bundle. From
this data we can produce a complex vector bundle £ — M by the associated bundle construction. Let
V =dy : Q°(M, E) — QY(M, E) G-kompatibilis konnexio.

Definition 5.8. P : QF (M, E) — QF(M) is a G-evaluation if ® € QF > p(®) and P(p(g)®) = P(®) for all
g < QE
Example 5.9. The trace map will be the most important example for us.

Lemma 5.10. If P is an invariant evaluation, then

Proof. Define D : QF (M, E) — Q*T1(M, E), which would make the diagram commute, i.e. V& € Omega®(M,e) :
dp(®) = p(D®). This forces D to be a first order differential operator. Since p is invariant, we get p(D’'®) =
dp(®) = dp(g®) = p(D(g®P)). This means, that gD® = D'gP, so D and D’ are gauge conjugate. Since it

transforms as the connection, it means that this is dy. O
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Lemma 5.11 (Fundamental lemma). ‘Let E be a complex vector bundle over M with structure group G. Let
V be a G-compatible covariant derivation on E. Fy denotes its curvature. Then dtr(Fg A---ANFy) =0, i.e.
it represents a de-Rahm cohomology class on M.

If V/,V" are two G-compatible covariant derivations on E, then [tr(Fy/)] = [tr(Fy»)] € H?*(M), ergo this

cohomology class is independent of the connection.

Proof. Use the previous lemma (on the endomorphism bundle of E, where Fy lives)
dtT(Fv/\“'/\Fv) :tT‘(dvFv/\-“/\Fv)+"'+tT’(Fv/\---/\dvFv) =0+---40

by the Bianchi identity.

Let V be a connection on E, a € QY (M, End E) and let V; := V + ta where t € (—¢,¢).
Fy, =d(A+ta) + (A+ta) A (A+ta) = Fy +tdya+t*aNa

dFy,

This means that T
V=V ,V+a=:V" ergo V =V, V' + V.

lo = dva, similarly one can come up with the fact that (ﬂ;%h:to = dvy

a. Let
0

t

1 1

d dF

tr(Fvu/\...)ftr(Fv/\...):/ %tr(th/\...)dt:k/ ktr( dtv"/\th/\...)dt:
0 0

Using the lemma and the Bianchi identity we see

1 1
:k/ tr(dvta/\th/\...)dtd<k/ tr(a/\th...)dt>.
0 0

Definition 5.12. We call the fol tr(a A Fg, A...)dt € Q2+=D+1()]) form the Chern-Simons form.
Homework 5.13. Compute the k — 1 =1 Chern-Simons form: fol tr(a A (Fy + tdya + t2a A a))dt
Another proof for the invariance of the homology class.

Lemma 5.14. Let M be an oriented manifold and E a complex G-bundle equipped with V and N?* C M a

closed oriented submanifold. Consider the action
SIAE%RVI—)/ tr(Fg A--- AN Fy)
N

then every V is a critical point of s.



Proof. Compute the Euler-Lagrange equations for s. Let g be a Riemannian metric on M, then s(V) =
+(Fy,«(Fy A+ ANFY)) L, (ngln), © since it is equal to [, tr(Fy A x(x(Fy A ...)))dt.
Now pick V; = V + ta. We computed before, that

5(Vy) = (Fy + tdya + t?a A a, «((Fy + tdyva +t>a Aa) A --- A Fy + tdya +t?a Aa) =

= S(V) + t(dva, *(Fv VANRERWAN Fv)) + (k — 1)t(Fv, *(dva NEg AL, )) + O(t)

Now in the first order terms we use the Bianchi identity, and use "integration by parts", using the fact, that
ON =0 and *? = £1.
(a,dg*x (FoN...)) £ (k—1)dy *Fy,(aNFy A...))

Lemma 5.15. dy = £ xdy*

Applying the Bianchi identity now completes the proof. O
Corollary 5.16. The functional s is constant on the space of connections.

Definition 5.17. E complex G-bundle over M, V a connection, Fy € Q2?(M, Endg E), then det(1 —
SLFg) =Y tic;(E) =: ¢(E). We call ¢;(F) € H?(M) the jth Chern class of E.

27t

Remark 5.18. det(1 + A) = det e!os(1+4) = etrlos(1+4) — oir(1-A+A%/2—..) giyeg

3 2 3
thcj(E) 1 ttTF'v L2 tr(Fy A Fy) —tr(Fe) A tr(Fy))  —2tr(Fg) + 3tr(Fg) /\‘tr(Fv) — (trFy)
2mi 82 48734

3

Here we use a® = a A a A a and similarly.

Let dimM = 4 and E a rank 2 SU(2) bundle. ¢(E) = 1 € HO(M), ¢y (E) = “EY) — 0 € HO(M) since

2me

the Lie algebra of SU(2) consists of traceless matrices. co(F) = MF:%V) € H*(M) = R, this is nonzero

generally.
We can also define Cj(E, N¥) = [\, ¢;(E) € R s called a Chern number.

5.2 Typical behaviour of Chern classes
e Given F @ F then ¢(E® F) = ¢(E)c(F).

o f: M — N differentiable, E — N a bundle with connection V, then there exists f*F — M the
pullback bundle, and f*V the pullback connection. In this setup we have that ¢(f*E) = f*(c(E)).

Corollary 5.19. ¢;(E) € Im(H* (M,Z) — H?(M)), i.e. the Chern numbers are whole numbers for any
submanifold N7,

*We can define (¢,v) := [, ¢ A xy to be the Ly if we have differential forms QF(M). Given a general vector bundle E, and

given a pairing on E we can do the same construction for QF(M, E)




6 Sixth lecture

Existence of connections

Complex vector-bundle over a manifold E — M, we defined what V : Q°(M,e) — Q' (M, E) should satisfy.
If there is at least one connection, then Ag is an affine space over Q' (M, End E). This is true, since given

two connections their difference is € Q'(M, End E).

Remark 6.1. If F is the trivial vector bundle of rank ¢, then we can always define V( := d by choosing a

trivialisation.

Fact 6.2 (Algebraic topology). If X is a compact topological space and E — X isa complex vector bunle
over it, then there is another vector bundle F' — X such that F & E is trivial.

Now let M be a compact manifold and E any vector bundle over it. Using the previous topological lemma
we find F' such that E @ F is trivial, let p denote the projection to E. We let V := d over this trivial bundle.
It is homework to show, that restricting and projecting this connection to E satisfies the properties required.

As discussed, every other connection will have the form V¥ + a.

Last week: we derived several important formulas for the covariant derivative
e Vip=d+ AY
o Fy|y =dAY + AU A AV
o Fy = (dE)?
e Bianchi identity: d%’”d EFrg = dg’”d B
e we introduced c;(E) € H2%(M) (for an SU(2) bundle over a 4-manifold only ¢, is nontrivial)

Actually rank 2 complex vector SU(2) vectorbundles are classified by their second Chern class. For this we
use obstruction theory to classify bundles. Classifying £ — M is the same as classifying Psy o) — M. In
general Pg is trivial iff it admits a continous section, so we need to understand the existence of sections of Pg
over M. We will start with a section on a cell, and try to extend it cell by cell. By general obstruction theory
we get an obstruction class € H* (M, m,(G)). We know that SU(2) = S3, so we know the first 3 homotopy
groups. From this we get extendability to the 3 skeleton automatically. Thus if the obstruction class ca(E)
vanishes, our bundle is trivial. In the other direction we need to construct bundles with any given H*(M, Z)

element.
Fact 6.3. Given a G compact Lie group, ma(G) = 0.

Fact 6.4. Given a simple compact Lie group w3(G) = Z.

Let us try the same thing with SO(3) = SU(2)/Zy. We get two obstructions we € H?(M,Zs) and p; €
HY(M,Z).

This does not help us in every case. Try to classify SU(2) bundles over S°. Clearly all obstruction classes
vanish, but on the other hand we know, that there are 74(SU(2)) many SU(2) bundles over S°, giving the

gluing map on the equator.



Example 6.5. The trivial guy is of course S° x S — S° and suprisingly SU(3) — S° is the other one, where

the map is projection to the first column. These spaces are distinguished by 5.

6.1 Riemannian geometry (in m dimensions)
From now on E = T'M, a real bundle.

Definition 6.6. g € C°°(M,S?T*M) is a Riemannian metric on M if g, : T, x T, — R is a nondegenerate

symmetric positie definite bilinear form at each x € M.

Remark 6.7. Such a G always exists since GL,(R) ~ O(n). Also gz(X, X) > 0 and is equal to zero iff X, =0

at a point.

Definition 6.8. Let M, g be a R-manifold. V is the Levi-Civita connection on M, if it is compatible with the
metric, i.e. (dg(X,Y))(Z) = Z(g(X,Y)) = g(VzX,Y) + g(X,VzX)for any three vector fields X,Y, 7, and
VxY — VyX = [X,Y], which is called torsion-freeness.

Homework 6.9. On the one hand we have dyQF(M,T*M) — QL (M,T*M). These spaces are identified
with O (M,N*T*M ® T*M). We apply A, the antisymmetrization operator to get the mext one in the

sequence.

d

oommn) = g )
| |
\ v

A rTRY L g T

Figure 2: Show that this diagram commutes if V is torsion free.

Remark 6.10. Given a connection, we get many induced connections, for example on S?T*M. The metric

compatibility condition can be rephrased as Vg = 0.

Theorem 6.11 (Fundamental theorem of Riemannian geometry). If (M, g) is a pseudo-Riemannian mani-

fold, then 3! Lewvi-Civita connection on M.

Proof. Write the metric compatibility equation for X, Y, Z in all three cyclic permutations, and add them up
with alternating sign. Apply the torsion free property to isolate one covariant derivative to obtain the Koszul

formula:
29(VxY,Z) = dg(Y, Z)X + dg(Z, X)Y — dg(X,Y)Z + g([X, Y], Z) — g([Y, Z], X) + 9([Z, X]. Y).

This is true for all vector fields X, Y, Z and one can check that this formula defines a coariant derivative.

Uniqueness is obtained simply. O

Remark 6.12. Let X,Y, Z be coordinate frames. Then we know that Vy,0; = Ffjﬁk, and ¢(0;,0;) = gi; by
definition, and that [0;, ;] = 0. We can come up with an explicit formula from the Koszul identity for the

christoffel Symbols from the components of the metric tensor.



6.2 The Riemannian curvature tensor

R := Fy, this is a type (1,3) tensor R(X,Y)Z € C*(M,TM). Writing it out in a local chart we get the
functions Réj,k' Using the metric we can restate this as a (0,4) tensor as g(R(X,Y)Z, W), in coordinates
Riju = qip Ry .-

Theorem 6.13 (Symmetries of the Riemannian curvature). Let RZ’M be the components of the 1,3 curvature

tensor, R;j i be the components of the 0,4 curvature tensor.
1. R;‘,kl = *Rf,zk
2. Rijri=—Rjim
3. Ry + R +Rp,; =0
4. Rijri = Rpij

Proof. The first one we already know, every curvature tensor is antisymmetric in its two arguments.

For the second one if V| = d + AV and AY € QY(U, gl(m,R)). Then actually AY € Q'(M,0(m)) from the
compatibility condition. We know, that o(m) = A2R™ as vectorspaces. The identification is as follows A — w4
where < Av,w >+ wa(v,w). This will be antisymmetric because A is so. Now R € Q2?(M, EndymyTM) =
Q%(M,0(m)) = Q*(M,A*T*M) = C>(M,\>T*M ® A*T*M) and we are done.

For the third identity we compute using R(X,Y) = [Vx,Vy] = V[x y].

RS 11(95) = Ry 165 (0:) = Ria(870p) = Ria(95) = [V, V1]9;

Now write the last term out 3 times with cyclically permuted indicies and add them together. Use the torsion
freeness at all three terms to get 0+ 0 + 0.
The fourth and last identity is the most mysterious. See Milnor’s Morse theory book for a quick proof:) O

Corollary 6.14. 1,2,/ gives us that R € C>(M,S*A?>T*M). What does the Bianchi identity tell us about
the curvature tensor? Define b(R)(X,Y,Z,W) := %(R(X, Y, ZW)+ R(Z,X, Y, W)+ R(Y,Z,X,W)), called
the Bianchi map in coordinate free form. Clearly b> = b, and b maps the space of symmetric tensors to itself.

From the rank-kernel theorem S?A%T*M decomposes according to b.
Homework 6.15. Nontrivial algebra gives us, that b: S?A?V — A2V @ A2V actually has image = A*V.

So R is a smooth section of the bundle S2A*T*M N ker b.

This helps us compute its dimension: ((T;%H) - = %(";2)

7 Seventh lecture

Correction for last week:

Remark 7.1. Let V be a finite dimensional real vector space endowed with a vector product (i.e. V = V*). We
know that there is a canonical decomposition End(A2V*) = S?2A2V* & A?2A2V*. Last time we introdiced a
map b : S?A?V* — End(A?V*) by b(R(X,Y,Z,V)) = 3(R(X,Y,Z,V)+ R(Z,X,Y,V)+ R(Y, Z,X,V)). It is
clear, that b? = b, so actually im b < S?A2V*, consequently by standard linear algebra, S?A2V* = ker b@®im b.



Lemma 7.2. im b= A*V*

Proof. First if w € A*V* then w(X,Y,Z,V) = w(Z,V, X,Y) by antisymmetry. This shows one inclusion,
now surjectivity.

If ,3 € A’V* we introduce their symmetric product awf = 1(a(X,Y)B(Z,V) + a(Z,V)B(X,Y)). We
claim, that b(avB) = %a A B. This is a simple check by coordinates:

11 1
= = (0B + o Bij + o By + i B + i Bt + 0 Bri) = = (g Bra — cir Bt + i Bk + i Bt — i ik + o Bij)
32 6

Which is ¢- (o A B)sjki- O

7.1 Representation theory of SO(4)

From now on M is an oriented 4-dimensional Riemannian manifold. In particular T'M,, is equipped with an
SO(4) structure. Our aim is to decompose S2A2T*M N ker b into irreducible representations of SO(4).
The group SO(4) and Spin(4) = SU(2) x SU(2): Take (R*, <, >) with a positive definite scalar product, we
identify this with H, |.|.

Proposition 7.3. SU(3) = S® C H
Proof. z = wj = q € S® where |z]2 + |w|? = 1 we associate l B ] and this is a group isomorphism. [
—w  Z

Proposition 7.4. 7: 5% x §% — SO(4) by x — £xiy with the identification above is an index 2 cover.

Proof. The quaternionic norm is multiplicative, so the maps are in O(4), and actually in SO(4), since quater-
nionic multiplication preserves orientation.

&a(&12M1 )2 = E26127172 so this is well defined homomorphism, since quaternion multiplication is associative.
Finally kerm consists of elements of form n = £~1. Then for any quaternion we get that £z = z€, i.e. € is in
the center of H. Since its norm is 1, £ = £1, and kerm = Zs.

Since the source and the target is equidimensional, and the fiber of this map is discrete, 7 is a local homeo-
morphism. Moreover this map is closed, so it is surjective. O

Observations:m1 (SO(> 3)) = Zz. To see this consider the fibration SO(n+1) S0, gn (map is projection

to the first column) and writing out the first part of the homotopy exact sequence. We define Spin(n) to be
the universal cover of SO(n). So the previous computation shows that S x §% = Spin(4) = SU(2) x SU(2).

We will first compute representations for the universal cover, then pick out those, who descend to SO(4).

7.2 Representation theory of SU(2)

7.2.1 Background
Let G be a compact finite dimensional Lie group

Definition 7.5. Let V be a complex vector space, a complex representation of of G is a homomorphism
p:G— Aut(V).

If p,o are two representations of G, then they are equivalent/isomorphic, if there exists U € Aut(V') such
that o = UpU~! (U is independent of g € G).

p is irreducible if there is no nontrivial (s 0, V) invariant subspace of V' under the action of G.

10
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Definition 7.6. p: G — Aut(V) is a representation, then x, := tr(p) is called a character.
Lemma 7.7. 1. x, is C*°
2. if p,o are equivalent representations of G on V', then x, = X«
3. xp(hgh™") = x,(9)
4+ Xpoo = Xp T Xo
9. Xpoo = XpXo
6. Xp= =X, or equivalently x,-(9) = x,(9~")
7. [o xp(9)dg = dime Vg where Vg = {v € V|p(g)v = vVg € G}
Proof. Analogously to the finite dimensional case. O

Definition 7.8. < x,, X, >i= ﬁ(c) J: XoXodg. Here dg is the left-right invariant Haar-measure on G, and
Vol(G) = [ dg is the volume

Lemma 7.9 (Schur orthogonality relation). If p,o are irreducible complex representations of G on V,W

respectively, then < x,,xo >=1 iff o and p are equivalent and O otherwise.

Proof. Observe that X, Xo = XpXo* = Xpee+ and p® c* : G — Aut(Hom(V,W)). By (a different) lemma of
Schur if B € Hom(V, W) such that p ® 0*(g)B = B for all g, then B is an equivariant map from (V, p) to
(W,0), and V =W and B = A follows (otherwise no such B exists).

Stated otherwise, we get that dimcHom(V,W)g = 1 if p, o are equivalent representations, and 0 otherwise.
Now apply point 7 from the previous lemma < x,, xs >= 1 or 0, dependent on if p and o are equivalent or
not. O

Lemma 7.10 (Schur, lol). A representation p is irreducible iff ||x,||*> = 1.

Remark 7.11. Every finite dimensional representation of a compact Lie group decomposes as a sum of irre-
ducible representations. One sees this by constructing a G action invariant scalar product on V' by averaging.
There are conterexamples if the group is noncompact, since there may not be invariant scalar products, see
GL(2) on R?.

Proof. Take a decomposition of V' into irreducible representations @&n;V;, and p = ®n;p; where any two p;

are inequivalent. ||x,|[? = > n?||x,. 2 =1 by the previous Schur

2 by the orthogonality relations and ||x,,

lemma. The other direction is immediate, there is only one partition of 1 into positive whole numbers. [

Theorem 7.12. If G, H are compact Lie groups and pg, pc are some irreducible complex representations of
them, then pg ® py is an irreducible complex representation of G x H. Conversely any irreducible complex

representation of G x H is of this form.

Proof.
llpc ®PHH2 = /G/Hch;XpHXpGXpHdhdg =1
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Conversly we apply the Schur lemma. Let U be an irreducible G x H representation, then there exists the

following™* isomorhism of H-modules

¢2 @ HOTTLH(WJ',U)(@WJ'%U

W;elrr(H;C)

This is true by the Schur lemma, Hom g (W;,U) is 1 dimensional if W isequivalent to U, when we forget about
the G-module structure of U.! Moreover viewing H om(W;,U) as a G-module, we see, that it decomposes
@®n,;V; into irreducible G modules. This means, that U = @ n;;V; @ W; O

7.3 Irreducible complex representations of SU(2)

Let V = C? and let SU(2) act in the standard way by matrix multiplication. On V* it acts by multiplica-
tion by the inverse. These representations are equivalent in the SU(2) case. Consider S™V* = {pn,(z,y)}
homogeneous polynomials of degree m in 2 variables z,y. The dimension is m + 1, clearly S°V* = C with

the trivial action. S'V* = V* is the standard representation.
Definition 7.13. p,, : SU(2) x S™V* — S™V* where g, pm(£) = pm(g71E).
Lemma 7.14. p,, is an irreducible representation for all m > 0.

Proof. By Schur lemma we will see, that if A : S™V* — S™V* complex linear map such that p,,(g9)A =
Apm(g) Vg, then g = cI.
2k—m

Let g, = diag(a,a™') with a € U(1) and introduce a basis p, = 2*y™* in S™V*. p,.(9a)Pr = a Dk

2k—m

and if p.,(9a)(Apk) = Apm(ga)pr, then its equal to Aa pr- We can pick a such that its powers are all

different, then the a?*~™ eigenspace p,,(gq) is spanned by py, since we see all of its eigenvectors for different
eigenvalues p,. This means, that Apy = cgpg.

Consider r¢, the real rotation matrix with angle ¢.

Arypp, = a(xcost +ysint)™ = Z (Z?) cos® tsin™ " t(Apy,) = Z (Z) cos® tsin™* t(cppy)
We also compute
¢ APm = TeCmPm = CmTtPm = Cm Z (7:) cos® tsin™ ¥ tpy,
SO ¢ = ¢, and the representation is irreducible, since A = ¢,,, 1. O
Remark 7.15. These are all of the irreducible representations of SU(2), but we will not prove it here.
Theorem 7.16 (Clebsch-Gordon formula). p,, ® p, = glinm’n Prmtn—2;

Proof. X,,, = Yo €m72) gince every matrix SU(2) matrix is conjugate to some diag(e®,e™"). Some

Fourier analysis tells us, that the product of two sums of this form looks like

min(m,n) m+n—2j

E E ei(m+n—2j—2p)t
0 0

Homework 7.17. Check this formula
fRw= f(w)

Tgplit U into irreducible representations over H

12



O

Corollary 7.18. Spin(4) = SU(2)" x SU(2)~, then any irreducible representation is of the form p" ® p;,,
which we denote p,, . Moreover we can decompose any representation into irreducibles by the formula. It is
clear, that dimc p = (m +1)(n+1).

Ezample 7.19. p = p} @ p,, 0 = pz ® p; - Now applying the commutativity of the tensor product, and the

Clebsch-Gordon formulas:

pRa=ph®p, @ptp = (ph@pl)@(p, @p;) = (Bp)) © (Bp;)
We have two questions:
1. How to get representations of SO(4)?
2. How to get real irreducible representations of SO(4)?
Lemma 7.20. py,, is a complex representation of SO(4) iff m =2 mod 2.

Proof. We have to see, that kern acts trivially in p,, . This is easily seen if m,n are even, orifboth are
odd, since —I acts trivially on either both parts of a tensor product basis, or both get multiplied by —1, i.e.
(-1)2 =1. O

Definition 7.21. Representatin o on V is a real representation off there is a G-invariant decomposition
V = W @ iW, where W is a real G-space. (i.e. there is a real linear map, whose square is the identity,

commuting with the image of o)

Remark 7.22. If p is an irreducible (?need this?) complex representation,then [, x,(9%)dg = 1 if p is a real

representation, 0 if p remains complex and —1 if it admits a H structure.
Lemma 7.23. p,, , always has a real structure if m =n mod 2.

Proof. T:S™V* — S™V* is defined as p(z,y) — p(—7, 7). It is clear, that 72 = id, we call p real, if 7p = p.
Put W to be theR span of real polynomials, we get an m+ 1 dimensional real subspace of S™V*. Vg € SU(2)
if p,, is real, then a simple computation shows that 7p,,(g)p is real as well, if m is even.

The nontrivial computation comes when m + n is even. Then 7(PQ) = PQ will imply, that 7(p,}, Pp,, Q) =
pm Py Q. O

Remark 7.24. Every odd complex dimensional representation of SU(2) descends to SO(4).

8 Eight lecture

8.1 Representations of SO(4) on p-forms

Let (W, <,>) be an oriented 4 dimensional real inner product space (i.e. SO(4) acts on it with the standard
representation). Question: What kind of SO(4) module is APW? By assumption, there is a Hodge operator
* 1 APW — APV,
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Remark 8.1. On an SO(4) module V, the operator x is defined for «, 5 € APV to be the form satisfying
aAxB =< a, > vol. Some basic properties: 2 = +1idyry, and it commutes with with the induced SO(n)
action on APV and A" PV.

For p = 2 we get an automorphism of 2-forms, and *2 = 12y«. So its eigenvalues will be £1.
Definition 8.2. ATW* := {w € A’W*| *w = +w}, and call these self dual, and anti self dual forms.

This means A?2W* = ATW* @ A~W*, and we get that dim A*WW* = 3. Since s0(4) = su(2)* ©s0(2)~ we get
that so(4) as an SO(4) module is not irreducible.

On the other hand we saw, that so(4) = A2W*, where the identification is given by < z, Ay >= wa(z,y) for
some antisymmetric matrix A. So if SO(4) acts by the adjoint representation (A — gAg~!) from the previous
remark we see that * commutes with this action, and we get that the two factorisations so(2)* = A*W* are
isomorphic (equivariantly so).

So A2W* is reducible, since we just split is apart. We are looking for the irreducible components. Since
APmW* = su(2)* we get that ATW* @ C as a complex Spin(4) = SU(2) x SU~(2) module the action
splits on the components (+ only acts on + and vice versa for —). Now A*W*® C = S™V T ® S"V~ by our
classification from before. Since we know the dimensions, 3 = (m + 1)(n + 1), so m = 2,n = 0 or the other
way around, i.e. ATW* = §2V+,

For p = 1 we get an identification between A'W* = A3W*, in an SO(4) equivariant manner. Complexify this
module, we are looking for A'W* @ C = S'V+ ® SV~ = VT ® V~, since the other possibility (4 = 1-4),
we already used for the p = 2 case.

The last case p = 0 is trivial, we get the trivial module, and its complexification, so A°W* @ CA*W* =
SVt SV,

Remark 8.3. This is the classification of the complexified spin(4) modules, and we have to look for the real
ones among them. This is clear to see, since 0+0=2+2=2+4+0=0 mod 2, so all of the previous splittings

are real representations of SO(4) as well.

8.2 Irreducible splitting of the curvature tensor of an oriented Riemannian 4-

manifold

From (M, g) we produced the curvature tensor R € C°°(M, S2A?T* MnNkerb). Consider the C-linear extension
of R € C(M, S2A2T*M

A

otimesCcapkerb®). If x € M, then A2T*M = AFT*M @A, T*M. In this basis R = as a symmetric

map AJT*M @ CO A, T*"M @ C — AJT*M @ C® A, T*M ® C. Thus we have to split End(A*T; M @ C)
into irreduibles. Using the fact that End(V) = V ® V*, and the fact that the metric canonically identifies V
with V*, substituting AT ® C = S2V* we get the following:

End(A2T*M) = S* V3@ SVt @ SV- @ (S2VT @ SV ) e (S*V- e S VH o StV e SV e SV
In the above splitting S°V* = Cidy+gc, S?VE = A2(AT®C) and S*VE = S2(AF®C) of traceless symmetric
matrices.

Remark 8.4. Given V, acted on by O(n), we get an action on End(V') as well by conjugation. This represen-
tation of O(n) splits into three parts, Rid, ® A%V & SV
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Finally S?V+ ® 5%V~ = Hom(Af ® C,AT @ C). So B and B* correspond to this component in the splitting,
Ato S*V* and C to S*V .

We still have not used the Bianchi identity. SOV & SV~ = C(idp+gc + ida-gc) ® Clida+ge — idr-gc) =
Cidp2gc ®@Cxp2gc by a base change we get the trivial represenation, and the one given by the Hodge operator.
Notice, that Cx = A* ® C, since both sides are the trivial one dimensional SO(4) module, or one can say,
that a A %8 =< a, 8 > %, and z - * — z - vol is an equivariant isomorphism.

We saw previously, that imbs = A% ® C, thus the Hodge component of this remaining part is zero (in the

idp2gc direction we get the complexified scalar curvature).

Definition 8.5. We denote by s, € Cidy27-pgc the complexified scalar curvature. We denote by Wi e
S2(AET*M ® C) component, and call them the complexified (anti-) self dual Weyl tensors. We denote by
B, € Hom(AXT*M ® C,AFJT*M ® C) and call it the complexified traceless Ricci tensor.

W+ s, /12 B,

By these definitions R =
B W, +5,/12

is true at every x € M.

8.3 Globalisation, realification
Problem: V* are spin(4) modules.

Definition 8.6. If there are complex rank 2 bundles % over M, whose fibers are V*, then we call ¥Pm

chiral spinor bundles.
Remark 8.7. If ©% exists, then we can produce the S™%% bundles, and all our constructions work globally.
Definition 8.8. We call such manifolds spin manifolds.

Remark 8.9. Suppose M to be spin and consider the S™Y1 ® S™ ® ¥~ bundle over it. This is a complex
spin(4) vector bundle, but if m 4 n is even, then this reduces to a complex SO(4) bundle, and will inherit a
real structure as well. So there exists W (™™ < §"%+ @ §"%~, a real subbundle, which correspond to the

Pm,n irreducible real representation of SO(4). Moreover, these real bundles exist even if M is non-spin.

Corollary 8.10. The previous remark is true for every component of the complexified curvature tensor, so

the previous decomposition globalises, and with real bundles.

Theorem 8.11 (Singer-Thorpe ’69). Let (M, g) be an oriented Riemannian 4-manifold, V its Levi-Civita
connection and Ry its curvature tensor. Then Ry € End(A2T*M) splits into irreducible SO(4) components
Wt +s/12 B

. O
B* W~ +s/12

as follows: Ry =

Remark 8.12. If we forget about the orientation, then W = W + W~ will be invariant, we call it the Weyl
tensor.

The type (3,1) Weyl-tensor is a conformal invariant! W2, = W, for any nowhere vanishing function f.

In 4-dimensions Ry is @ 20 =1 ® 5 ® 5 @& 9 dimensional representation, the irreducible components are the

scalar curvature, the two Weyl tensors, and the traceless Ricci curvature.

Definition 8.13. Ric := s+ B is called the Ricci tensor. A 4-manifold (M, g) is Ricci-flat, if Ric = 0. We call
a 4-manifold Finstein, if B = 0. We call M half-conformally flat if W~ = 0, and half-conformally anti-flat if
Wt =0.
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Homework 8.14. For an Einstein manifold Ric = Ag. Show from the differential Bianchi identity, that the

function A is a constant. We call this the cosmological constant.

1
Ric— 595 = 81T + Ag

where T € S?(T*M) is called the Einstein equation.

9 Ninth lecture

Quick recap and clarification.

Remark 9.1. Let M be a spin 4-manifold, 7'M — M has a principal Pso(4) — M bundle. It is called spin,
if we van find a 2 fold cover Py,in1) — Pso(a), that is a 2-fold cover on each fiber. The obstruction class to
this is wo(TM). If pp, p is the complex representation of spin(4) on S™V* ® S™V~, then we can produce the

asociated vector bundle.
Definition 9.2. Using this representation we define S"%+ ® $"%~ := P X spin(a) STV ® S"V .

Lemma 9.3. The bundle S™%T @ S"%~ over M of complex dimension (m + 1)(n + 1) and structure group
(spin(4)) can have its structure group reduced to SO(4). Moreover there exists an SO(4)-equivariant endo-
morphism of order two.

This statement is true iff m +n is even.
Proof. See previously. O

Corollary 9.4. By last week’s calculation we get, that s, W*, B, B* descends to real operators on the realifi-
cation of the bundle.

Homework 9.5. Do the calculation in the m =n =1 mod 2 case.

9.1 Theorems of Atiyah-Hitchin-Singer

Fix (M, g), an oriented riemannian 4-manifold. The curvature tensor of the Levi-Civita connection R : V :
C>(M,A\2T*M) — C>(M, A*T*M). Consider the induced connection V : C°° (M, A’T*M) — C>°(M, \>T*M®
T*M). We saw already, that this splits as V¥ : C°(M,A*M) — C®(M,A*M ® T*M) since so(4) =
50(3)T ®s0(3)".

Remark 9.6. Over some open set V* = d + AT = d + pPmA, where p* : s0(4) — s0(3)*.

Take their curvatures Fy+ € Q*(M, End(ATM)) = Q*(M,s0(3)%) = Q*(M,A*) = C®(M,A? @ A*) =
C>(M, (AT @ A7) ® A*). We take the self-dual and anti self-dual parts of these forms, as sections of the
bundles C° (M, At ®@A*) and C>(M, A~ ®A*). Denote the self-dual and anti self-dual parts by a superscript
+ and — respectively.

It is easy to read off, which component of the Singer-Thorpe theorem these new splittings correspond to, i.e.
the self-dual part of Fg+ will be s/12 + W,

Remark 9.7. 1. if B =0, then Fy+ is self-dual and Fg- is anti self-dual

2. if W~ =5 =0, then Fy- is self-dual
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3. if Wt =s =0, then Fy+ is anti self-dual
Theorem 9.8 (Atiyah-Hitchin-Singer, ’78). Let (M, g) be an oriented Riemannian 4-manifold

1. if M,g is Einstein (B = 0), then the induced SO(3)" connection on AtT*M (or the SU(2)* connec-
tion on X1, if M is spin) is self-dual; moreover the SO(3)™ connection on A=T*M (or the SU(2)~

connection on X7, if M is spin) is anti self-dual

2. if M, g is half-conformally flat (W~ =0) and s =0, then the induced SO(3)~ connection on A=T*M
(or the SU(2)~ connection on ¥~ if M is spin) is self-dual

3. if M, g is half-conformally anti-flat (W+ = 0) and s = 0, then the induced SO(3)™ connection on
ATT*M (or the SU(2)" connection on X1 if M is spin) is anti self-dual

Proof. The previous discussion. O

Remark 9.9. V is an SO(4) connection on TM. We complexify it to an SO(4) connection on TM @ C =
YT ® X 7. These latter two bundles only exist locally, the spin condition guarantees them to exist as global

complex vector bundles, this is where we can split the connection in the parenthesis part of the theorem.

Definition 9.10. Let M, g be an oriented Riemannian 4-manifold, and let E be a rank 2 SU(2) bundle, and
V an SU(2) connection. We call V (anti) self-dual, if the corresponding curvature Fy is (anti) self-dual.

Remark 9.11. What kind of equation is this for the connection? It is enough to understand this locally.

Vg = d+ AY, and Fy|y = dAY + AY A AY in local coordinates. One has to write AV = A;dz?, where

A; U = su(2) for i = 1.4. dAY = (2245 — %:f Ydxd A dat.

DA, DA
oxd Ozt

DAsi  0As
Oxt—3  Qzd—i

+ [Ai,Aj] ==+ detg( )

Ezample 9.12. Over flat R* the metric determinant goes away, and the Hodge operator acts in the way we

expect.

Now we give a method to solve these equations: conformal scaling.
Lemma 9.13. M, g as before. If f : M — R is a nonwhere zero function, then 2, = *,.

Proof. w = wijdxi Ada?, then (xw)¥ = %\/det 99" g7 €pimnWmn, where €iji = 1 if 45kl are in even permuta-
tion, —1 if its odd, and 0 if there are repeating indicies.
Now after the scaling det(f2g) = f8g, and (f29)'k = f~2¢**, and we get the claim. O

Now consider the last two cases of the AHS theorem, take a conform scaling of it, the equation stays the
same, since the Hodge operator is conform invariant. Since the Weyl tensor is also conform invariant, only

the scalar curature can change, but that we understand.
Lemma 9.14. § = f2g, then f3s; = fsg — 60, f

Corollary 9.15. If we do the scaling with a harmonic function, we stay in the case 2 or 8 from which we

started.

This gives a method to produce self-dual solutions over M, g from harmonic functions V4 f = 0.
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10 Tenth lecture

10.1 The 1-instanton moduli space over R*

Think of R* as the quaternions H, and su(2) will be thought of as the imaginary quaternions, where the
1T

bracket is [z, y] — im(zy). The identifiaction is given by [ ~
-z

< . .
— T+ z).
—iz]
Homework 10.1. tr(zy*) — —2Re(xy) under this isomorphism between su(2) and H.

Let E = R* x C? the trivial SU(2) bundle.

Lemma 10.2. Define the connection V := d + A : Q°(R*, E) — Q' (R*, E), where A = zm(ﬁ) We

claim, that V is self-dual, and ||Fy||* := —gkz [pu tr(Fy A %Fy) = 1. Similarly, for b € H and X € Ry, then
Vi :=d+ Ay x, where Ay 1= 2'771(1(1"7“515'32

) 5 s /\*2+‘I*b‘
energy (pairwise gauge-inequivalent).

) is a 5-parameter sequence of self-dual connections, where the

. 1,0 071, 3;2 2,3 2,0 3,1 0,52, 1,3 3,0, 2; 1 1,2 _0; 3
_ . j _ z dr —x dx +a dr’—x"dx” ; z°dxr” —z°dx” —x dx*+x dx” zdx” +x de —x dx®—x dx”
Proof. A(z) = Aj(x)dz? = EnEmE i+ EREE i+ EuEE j

Denote the coefficients ﬁ(@zz + 6,5 + 0rk) = A(x). Compute curvature:

X X
dA+ AN A = im(d(—E—)) A dz dz dz —
+ AN im( (1+|x\2))/\ x+1+|x|2 :L'/\1+|x|2 T
(4 [z]A)de — x(dia 4 zdx) _ xdrANzdr  dxNdx
= imi( A+ a2 N PR T T P

Note, that * : Q° — Q2 acts in a simple way. dz® A daz' — dx? A da?3, the sign can be computed simply from
the definition a A x8 =< a, B > vol, in the other cases dz® A dx? s —dx' Ada?, dx® Ada® — dx' Adx?. This
gives us a basis for QF, namely dz® A dx' + dz? A dx?, dz® A dx® — dxt A da?, dz® A dx® + dz' 4 dx?. We can
compute dz A dz = —2(dx® A dzt + dx® A dx?)i — 2(dz® A dot — da? A dz3)j — 2(da® A dx® + dzt A da?)k.

Now we can compute tr(Fy AxFy) = tr(Fy A Fy) = 2Re(. .. )vol. A simple check shows, that a con-

n 48 dvol

o (1+|:c\ )

stant of —48 appears after taking the trace. Finally the "instanton charge" =5 T = 87r2 8 o2 fo (1+T2)4 dr =

82

1485 =1 as stated.
The 5-parameter family comes from the fact, that R? is inariant under coordinate change of the form z + x—b,

and we noted, that that the self-duality equation is invariant under conformal coordinate change, so we

produce = +— A(z — b), this produces A ) as imA(?J))f(lg(c (Z:)|2b)) = 1\1(;2_‘512&“5 = zm% will also be
self-dual, energy 1 connections. The only thing in need of checking, is that the 1ntegra1 stays equal to 1 after
2 dzN\dT

scaling by A. The curvature can be calculated similarly to be m
Inequivalence is seen from the curvature. It transforms by simple conjugation, and we see, that two matrices

of the form calculated previously cannot be conjugated into each other by SU(2) elements. O

Remark 10.3. As A\ — oo, the metric |F, a|?dvol converges weakly to i which is 6.
If X — 0, then |F}, \|*dvol approaches a metric called the "centerless 1nstanton”. Substitute x with ¢/A. The

connection form approaches I'm 7 qu

Remark 10.4. The V, » connections can be obtained by conform scaling (Jackiw-Rebbi method) with the

choice fp ) =1+ B /b|2 or A+ ﬁ, so the centerless instanton is obtained from the scaling f;(z) = I:vflbIQ'
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Homework 10.5. Prove, that 3g : R* — SU(2) such that gAp 09" + gdg' = Ao,. (This is the reason it is

called "centerless").

Lemma 10.6. Let p : S\ {oo} — H be the stereographic projection, Vi x as before. Consider p*Vy 5 :
Q0(S%\ {oo},p*E) — Q(...), the pullback connection. Then ther erists a gauge transformation from a
neighborhood of infinity to SU(2) such that V;M = gp*Varg~ ! extends smoothly to a connection on an
SU(2) bundle E' — S*, whose second Chern class c2(E') = 1. Moreover Vy , will be a self-dual connection

according to the e.g. R =1 standard metric of S*.

Proof. Uhlenbeck singularity removal theorem, in this special casewe should be able to compute it explicitly.
O

Homework 10.7. %A‘l =—A"TAATL
Homework 10.8. f: C* — C a holomorphic function, and its local L*> norm is finite, then f extends to C.

Consider the spherical S*, and the rank 2 SU(2) vector bundle over it with second Chern class 1. We found
Vi, & 5-parameter family of connections, where ||Fy, | ||? = C3(E) = 1. Accepting the fact, that there are
no other "instantons", we just found a parametrisation Mgs (1) = B® as the compactification of S* x Ry by
gluing together the (b, 00) connections.

Another example is CP? with the Fubini-Study metric.

Lemma 10.9. Let E be the SU(2) vector bundle over CP? with co(E) = 1. Then there exists a 1-parameter
family of energy 1 self-dual connections Vy ¢, where Ay = W(Qii +t0;j + tik) with t € [0,1].

Proof. We don’t prove this. O

Remark 10.10. As t — 0, we get ﬁ@ii, which is an U(1) C SU(2) self-dual connection, which will turn

out to be reducible. The moduli space will

11 Eleventh lecture

Lemma 11.1. Consider R* with the standard Euclidean metric, and E = R* x C? the trivial SU(2) bundle
and Vy » a self-dual connection on it. Then there exists a smooth extension @b)\ on the SU(2) bundle over
S* with CQ(E) =1, where @m)\ is self-dual with respect to the spherical radius R metric of S*.

Proof. We saw last week, that 1 = [|F},y|| with the L? norm on R*, we calculate the integral giz [o. |Fy, |do =
— gz [ tr(Fy aAxFy ). We know that « is conform invariant, identifying R* with $*\{co} we see —g25 [ tr(FyAA
*F}, ). By the Lebesgue theorem this is the same,as if we would integrate over the whole S%. Self duality
stays intact, we can omit the %, and we see the Chern-Simons formula for CQ(E). So Vi, can only extend
over the Cy = 1 SU(2) bundle, if anywhere.

Now we do the extension. S*\ {oo} = H, and we introduce a new coordinate, 1/y = z — b. Moreover
S*=H,UH_and H,NH_ = S® C H, and we identify this S* with SU(2). We take the gauge transformation

g(y) = y to glue together this bundle and compute how A, ) transforms. g(y)~! = ¢, and computing

yIm 1/yd(1/y)

iy We see, that it is smooth as y — 0, thus we have achieved the extension. O

Denote by Mga 4, (1) the moduli space of finite energy self dual connections over the radius R sphere and the
bundle with secondChern number 1. We know this to be an open B®, which we can compactify by "ideal"

instantons, which will become a closed 5-ball. Notice that its boundary is the original S*.
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11.1 Moduli space over CP2 with the Fubini-Study metric

11.2 Yang-Mills theory and YM-type classical field theories

Definition 11.2. Let M, g be a closed Riemannian 4-manifold, called "spacetime". Let G be a compact Lie
group (SU(2)) (called the 'Gauge’ group, note, that this is not Gg).

12 Twelfth lecture

From now on M will denote a simply connected closed oriented manifold.

Definition 12.1. Let (M, g)be an oriented riemanian 4-manifold, E an SU(2) bundle, where c2(E) =k € Z
as arbitrary. V is an SU(2) connection on E, S(V) = 5= [,, tr(Fy A #Fy) the Yang-Mills functional.

Remark 12.2. So S is an Ap — R, non-linear map, it is also clear that it is gauge-invariant. This implies,

that it descends to Bg.

12.1 Variation and YM equations

Theorem 12.3. On a given E bundle the Euler-Lagrange equation associated to the YM function is of the
form dg Fy = 0.

Definition 12.4. The dyFfy = 0,dyFy = 0 system of equations is called the vacuum YM equations. A
connection V € Ag, which solves these equations is called a YM-field. Note that the first equation is just the
differential Bianchi identity.

Proof. If V,V' € Ap then we know that 3a € Q'(M, End E) such that V' = V + a. This identifies Ty Ag
with QY(M, End E), V + ta is a one paramter subgroup, representing a tangent vector. We also saw that
Fyiio = Fy +tdya + t?a A a.

The YM functional gives an L? inner product, we denote S(V) = (Fy, Fy). Now we compute the variation
S(V+ta) = (Fyyte = Fy +tdya+t2aia, Fyiq = Fy +tdva+t?ana) = (Fy, Fy) +2t(Fy, dya) + O(t?).
This implies, that %S(V + ta) = 2(Fy,dva). This has to vanish for all a, using the formal adjoint di we
get 2(dy Fy, a) = 0, this happens if and only if d$ Fy = 0. O

Definition 12.5. d% : Q*(M, End E) — Q' (M, End E) is the formal Lo adjoint of dy.
Lemma 12.6. If d% : Q°(M™, End E) — QP~Y(M™, End E), then d%, = (—1)2?0=m+0" s 4oy,

Proof. Let w,n € QP(M™, End E). By the closedness of M we get
0= / dtr(w A xn) = / tr(dyw A *n) + (—1)”/ trwAdy xn) =
M M M
/ tr(dy A *n) + (—1)1’*("‘*”)17/ tr(w A * x dyg * 1)
M M
And thus (dyw,n) = (—1)1TP=("=P)P(y xdy * 1), this means that d% = (£1) * dy*. O

Corollary 12.7. If V is (anti-) self dual, i.e. xFy = £Fy, then it solves the YM equations.

Proof. dv Fy is always true, and by the lemma dg Fy = £+ dy * Fy = 1 xdyFy = 0. O

20



Lemma 12.8. Let E be an SU(2) bundle with second Chern-class C2(E) = k. Then S(V) = ||Fy||*> >
|C2(E)|, and an (anti-) self dual connection is a global minimum of the Y M functional. Thus such a connec-

tion attains the minimum.

Proof. We claim, that if a« € Q1 (M), and 8 € Q (M), then we can compute their pointwise scalar product
induced by the metric

(o, B) = =tr(a Ax8) = —tr(x8 A a) = —tr(xB A * x a) = (x0, *a)

So * is an orthogonal operator at every € M. Now («, 8) = (xa, *8) = —(, ) = 0, thus QT L Q.

-1 -1 _ -1
1ol = o5 [ 1ol et = o [ (R +IFgP) «1 2 o [ IReR o1
If V is (anti) self dual, then this is equal to

LT
= — T
8772 M

(Fy A Fy) = [Co(E)|
Remark 12.9. The Levi-Civita connection on SO(4) solves the YM equations, but is not a minimum.
Definition 12.10. V is called an (anti) instanton, if Fy is (anti) self dual, and S(V) < oo.

Remark 12.11. Over a compact manifold being self dual is the same as being an instanton. A change of

orientation exchanges instantons and anti-instantons.

12.2 The structure of the instanton moduli-space and reducible connections
From now on we fix an orientation, and consider only instantons.

Lemma 12.12. Let E be an SU(2) bundle over M, and V : Q°(M, E) — QY(M, E) a non-flat connection,
and VE™ E . QV(M, End E) — QY(M, End E) the induced connection on the associated lie-algebra bundle.
TTFAE:

1. The factor of the stabiliser by the center Gv /Zs = U(1) C SU(2)
2. VE B has nontrivial kernel

3. There is an U(1) bundle L with E=L&® L™ and V=V OV
4. Gy /7y # 1

Proof. 1 — 2 :There is g; € Gp such that ¢;Vg; ' = V, where g;(z) = diag(e™*®), e=%*¢(*)) denote gj)(z) =
u(r) = diag(ig(z), —ig(z)). Take the derivative w.r.t. t to see that [u, V] = 0. This means, that V"4 Fy =0
and u # 0, since by definition End E C E ® E*, in the E component we take derivative with V, and in the
E* component we get a sign flip by pullback.

2 — 3 Choose u # 0 € kerV¥nd £_Since u(x) € su(2)Vx € M, we get that if u(z) # 0, then its nonzero in an
open neighborhood of © € U where u is nonzero, then there is a A : U — R whith u(z) = diag(iA(x), —iA(x)).

There also exists a local section e € I'(U, E') with ue = iAe, moreover it can be chosen so (e, e) = 1. Take the
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covariant derivative uVe = id\e + iAVe and 2Re(Ve, e) = 0. Imaginary part of the pointwise scalar product
of the first equation with e gives dA = im(uV,e) = —im(Ve,ue) = ARe(Ve,e) = 0 from the previous
relation. This means that A is constant, this e extends to a global section, and splits the bundle. We want
to show, that V¥ey |y = 0. The section u|y = ide; @ €} ® (—Ai)e— @ e* by the spectral theorem. Applying
VEnd By — () gives us the previous equation. If VFe = 0, then Ae ~ de ~ e, and the connection matrix
splits.

3 — 4 : by the splitting of the connection Gv/Zs 2 U(1) by fixing the two components, so its nontrivial.

4 — 1 : requires the holonomy group. This is where we use the non-flatness condition. Note, that Gy =
Csu(2)(Hol(V)) the centralizer. If this is bigger than U(1), then it can only be a discrete subgroup, which is

ruled out by the flatness assumption. O
Definition 12.13. We call a connection satisfying any of the 4 properties a non-flat reducible connection.

Corollary 12.14. In the Bg orbit space the (equivalence classes of ) reducible connections are singular points,

understanding them is paramount.
Notice, that if V is flat on E, then E = M x C? and [V] is unique.

Proof. Fy = 0, thus C3(F) = 0, thus its the trivial bundle. Moreover by holonomy theory once again, flat
connections are in bijection with conjugacy classes of representations of 71 (M) to SU(2), so by the simple

connectivity assumption every flat connection is gauge-equivalent with the Vg = d trivial connection. O
V being flat is equivalent with Gy = SU(2).

Lemma 12.15. Let M be a simply connected closed 4-manifold with b= = 0, L an arbitrary U(1) line bundle

over M. Then for every Riemannian metric g 'V, self-dual connetion on M.

Proof. Since b~ = 0, we know that H?> = H*, which means that H?(M,Z) C H*. By the Hodge decompo-
sition, and Chern Weyl theory we get that if L is a U(1) bundle over M, then there is a unique cohomology
class [w] = ¢1 (L) classifying it, and w can be taken to be self-dual. Since w is closed, by the Poincaré lemma
w|y = dAY shows us, that there is a Vz, U(1) connection such that Fy = w, since Fy = dAY in the abelian
case (which U(1) is). By the choice of w this connection is self-dual, there is an instanton on L w.r.t. M, g.
For uniqueness let V7 another self-dual connection with curvature Fy,. Since ¢1(L) = [Fy, | = [Fy, ], there is
a € QY (M) with Fy, = Fy,+da. ais not unique, a’ = a-+df also suffices for our purposes. We use this freedom
to achieve d*a = 0. Thus we want to solve the equation d*a’ = d*a+d*df = d*a+ (d*d+dd*)f = d*a+ Do f.
Is there an f with —d*a = A f? This is a second order linear elliptic PDE for f over a closed M. This
is posible if and only if —d*a is L? orthogonal to ker/\g. By the maximum principle ker/\q consists of the
constant functions, so we need to show, that —c fM d*a = 0, which is clear, so we can suppose d*a = 0.
Applying d* to the equation 0 = d*Fy, = d*Fy, + d*da, so 0 = d*da + dd*a = Lja, so a € kerhy =
H'(M) = 0 by the Hurewicz theorem, and Hodge decomposition, so a = 0. O

Lemma 12.16. Ifb~ > 0, then for a generic metric a line bundle with nonzero c; has no self-dual connection.

Proof. Trivial, since if b~ > 0,then H* C H?(M,Z) has nonzero codimension. For a generic choice of metric
the subspace HT avoids the lattice H?(M,Z). O
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Corollary 12.17. On an E bundle the gauge equivalence classes of reducible connections are in bijection
with o € H2(M) : —a? = co(E).

Remark 12.18. 1+ co(E) =c¢(E) =c¢(L® L) =1+ c1(L) + 1 (L71) — e1(L)?

13 Thirteenth lecture

Beginning remarks. o € [o] € HJ,(M), we wish to compute gps (v, @) = [, a A = (e, xa) 2. For a self-dual
form this is +(, * x @) = £||a||2,. This means, that the definite part of the intersection form coincides with

the self-dual and anti-self dual forms.

Remark 13.1. M closed simply connected 4-manifold with &_ = 0, L — M a line bundle, then 3! anti self-dual
U(1) connection on it. We give a different proof without relying on PDE theory.

Proof. Existence is the same, let V,V’ be self dual connections on L, [Fy]| = [Fy/] € H? by Chern-Weyl
theory. This implies the existence of a € Q!(M, L) such that Fy: = Fy + da. We need to show, that there is
amap f: M — U(1) such that A’V = fAY f=1 4 fdf—' = A* —dlog(f) since U(1) is abelian. This exists by

simple connectivity. This shows gauge equivalence of the two connections. O

13.1 The structure theorem

Let M be a closed simply connected 4-manifold, g a Riemannian metric and £ — M an SU(2) bundle with
Cy =k. Ag/Gr = Bg is the space of connections modulo gauge equivalence. V € A we denote its class by

V).

Definition 13.2. My (g) C Br denotes the (equivalence classes of) (M, g) self-dual SU(2) connections over
E. We call this the moduli space.

Theorem 13.3 (Atiyah-Hitchin-Singer '78). Let M be a closed simply connected oriented 4-manifold with

indefinite intersection form. Then for generic metrics Mg(g)
e only consits of a single point if k=0
o is an 8k — 3(1 4+ b_) dimensional* smooth manifold for k # 0

Theorem 13.4. If M is as in the previous theorem, but positive definite, then for generic metrics My(g) is
e a single point if k =0

e a smooth manifold of dimension 8k — 3 at irreducible points, and is modelled by a cone over CP*~2 at
reducible points for k # 0

Moreover Vk € Z there are finitely many reducible (i.e. singular) points. Their number is equal to the number

of 2-cohomology classes o which satisfy —a A a = co(FE).

In the £ = 1 case the moduli space consits of reducible points, and by the grafting theorem of Taubes we

have concentrated connections at the open end of the moduli space, our goal is to make this happen.

*in particular its empty if the dimension is negative
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13.2 Quick PDE summary: Sobolyev spaces of sections.

Let M be a closed manifold with a riemannian metric. Let E be a G-bundle with G compact endowed with

a G-invariant positive definite inner product <, >. Let V a fixed arbitrary G-connection on E.

Definition 13.5. Let s € I'(M, E) a section, |[s||ck(ar) := Zg V™) (s)||coar), the sum of the sup-norms of

the first k ovariant derivatives of s. We also denie ||s|\i£(M) = ZIS ||V(”)(s)||’£p(M) with the LP norm defined
by (fo |- P)".

Homework 13.6. Li° = Ck.

Definition 13.7. C*(M, E) is defined to be the completion of C>°(M, E) w.r.t. the C* metric, and similarly

we define L7 (M, E) to be the complection w.r.t. the L} norm.
Remark 13.8. These spaces are independent of the choice of g and V.

Theorem 13.9 (Sobolyev embedding). For compact M, there exists a continous embedding Li(M, E) —
CY M, E) if k > dim M/2 +1. Le. there is a constant ¢ such that ||s||ct < cl|s|[z2 for each section s.

Corollary 13.10. N, L; = C*

Let P : C®°(M,E) — C®(M,F) a kth order elliptic partial differential operator (e.g. the Laplace opera-
tor,which is a second order PDO). For example, locally it should look like P|y = > a;;D;D; + > b;D; + ¢4,
ellipticity means, that the eigenvalues of the symmetric matrix (a;;) : M — R has only positive eigenvalues,

order means to which order are we taking derivatives.

Theorem 13.11 (Existence, unicity and regularity). Let M, g be a closed riemannian manifold, E,F two
G-bundles over M and P a linear kth order elliptic PDO (inparticular rk E = rk F). We extend this operator
to some generalised weak function class. In this case Pu = f has a solution iff f L coker P. Moreover the
solution is unique if ker P = 0. Finally if s € LY (M, E), then VIl 3¢; so that ||5||Lf+k < al|Ps|[rr + clls||Lz,

and ¢ =0 can be assumed if ker P = 0.
Corollary 13.12. If Pu =0, then u € C*(M, E).

Theorem 13.13 (Sobolyev multiplication theorem). Let M be a closed n-manifold, then there exists a
continous embedding Ly @ L}? — LY if k — n< (ky — %1)(]<;2 — %2)

In other words | fg||L» < chHLZl ||g||L£2 for some c dependent only on M, g.
1 2
Remark 13.14. If pk > n, then L C C? and the theorem is trivial, the statement is interesting if pk <
n, pi, ki < n.
13.3 Uhlenbeck theorems

Theorem 13.15 (Coulomb gauge fixing theorem ’82). Let S*, gr be the round sphere and Eq the trivial
SU(2) bundle and ¥V an arbitrary SU(2) connection on Ey. In this case there exists € > 0, N < oo constants
such that if ||Fy||r2 < e, then

1. 39 € G, with V' = gVg~! there is a trivialisation of Eg,where V' = d + A’ there d*A’ = 0, called the

Coulomb gauge
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2. |4z < N[|[Fer|r
Proof. We are unable to prove this now. O
Remark 13.16. ||A'||p2 := ||Al|r2 + ||dA||L2 on Ep by choosing the trivial connection.

Theorem 13.17 (Singularity removal global form). Let M be closed 4-manifold, E*,V as before over
M\ {x} = M* with V self-dual and ||Fy||r2 < oo. We claim that there exists g € Gpx such that the
transformed V' extends smoothly to some E — M SU(2) bundle as an SU(2) connection.

Proof. We again lack the resources for a proof, we have to believe. O

Remark 13.18. ||Fy/||L2 gives the type of E.

13.4 1Ideal connection, weak and strong convergence

Definition 13.19. M as before and let £ — M an SU(2) bundle with second Chern class k. A (Vg, {z1,...,2:})

tuple is an ideal connection if
e 0<I<k
o [Vg] € My_i(9)
e z1,...,x; € M are not necessarily different points

Definition 13.20. The curvature density of a [V 5], {21, ..., 2} ideal connection is ghy | Fp|? + 3} d,, where

Fp := Fy, and J, is the y € M Dirac measure.

Remark 13.21. The energy of an ideal connection is defined as g5 [, [FB[* + [}, le 0z, = k.

872
Definition 13.22. Let V4, € Mj(g) instantons for all n on E with second Chern class k, as before. We
call this sequence weakly convergent to a (Vg, {z;}}) ideal connection if

o for every integrable function f: M — R we have [, f|Fa,|> “—> [ fIF5|* + 3 f(z;)

o for every K C M \U{z;} compact subset [V 4, k] — [VB|k], i.e. for every n, thereis a g, € G|, (., ,
such that Blx — A} |k € Q' (K, End E) satisfies ||B — A},||cr () = 0 (n — 00) for every k.

Remark 13.23. For [ = 0 the ideal connection is just a normal connection, and the convergence notion is the

strong convergence.

14 Fourteenth lecture

Corrections.

Proposition 14.1. M simply connected closed 4-manifold, L — M complex line bundle, then there exists a

unique self-dual instanton over it.

Proof. We saw, that such a V exists. If V'’ is another such connection, then their curvatures are equal. We
also need, that there is a g : M — U(1) such that V' = gVg~!. Since Fy = Fy/, over some U subset they
have the form dAY and dAV’. This means, that AV — AV" is closed. Also V' = V + a for some a € Q*(M).
So aly = AV — AV and a is closed as well, and by simple connectivity its cohomology clas has to be zero,

thus a = df for some f: M — u(1). Now we can define g := e'f. O
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14.1 Uhlenbeck weak convergence theorem

Proposition 14.2. Ouver the trivial C*> bundle over S* let V; be a weakly self-dual sequence of connections,
where weakly self-dual means, that for every L' function f we have [o. |F; |?f = 0, and where ||F;]| < e,
where € comes from the Uhlenbeck gauge fixing constant, then there is a subsequence V;, and g; gauge
transformations such that the transformed conections V; converge in the C> topology to a V self-dual

connection.

Proof. For k = 1 the Coulomb gauge theorem gives us that for 0 < € we have V' with d*A’ = 0 and a
constant N such that ||Fa/|| < Ne.
For k =2 if V is self dual, take (dA+ AN A)~ = F; =0 at least weakly.
Note, that VA = +(d + d*),easy to see by squaring. Secondly, since M is closed then kerd + d* = kerA =
HE(M) 0 = (A, ¢) = ||do||? + ||d*¢||?, implying the statement. So if the manifold has no homology in some
degree, then there the Dirac operator has no kernel.
Thirdly if dimM = 4, then d + d* : Q' — Q2 @ QO is elliptic.
Apply elliptic regularity to |[A’||zz < c1]|[(d+d*)~ A'[[p2 +co|[A'|[ 2. Since kerd+d* = kerA; = HY(S*) =0,
we can choose ¢z = 0. From the Coulomb gauge theorem we can omit the d* operator, and dA™ ~ (AN A)~
so in the end we get the upper bound CQHA'sz11 by the multiplication theorem since 1 — 4/2 < 0. Finally
we can return to the L? norm by the Holder-Minkowski inequality: if M is a compact manifold, we write
11 = L 1P = [y (1P 1 mare < (f 1F17 (1)
For k > 3 we play the same game, [|A’|[z2 will be bounded above by c|[A" A A'||2 < C||A/Hi§'
Finally we apply the Arzela-Ascoli theorem to get a convergent subsequence.

O

Remark 14.3. The Uhlenbeck Coulomb gauge theorem and the above weak compactness theorem was stated
for small curvature self-dual connections over S*, but using bump functions they can be extended to similar
theorems over B* C S*. This can be interpreted to mean that these are ’local’ forms of the theorems, now

we state the global forms, valid for manifolds.

Theorem 14.4. Let M be a closed simply connected manifold, E — M an SU(2) bundle, V; a sequence
of self dual connections over E. Suppose, that there are points x1,...,x; € M such that for each x # x; in
M has a neighborhood U, disjoint from the x; such that ||Fyv,||2 < €, where € is from the Coulomb gauge
theorem.

Then there is a subsequence i, where V;, converges over the compact subsets of M \ (U{z;}) in the C*

topology to a self-dual connection V over M \ (U{x;}).

For the proof, we need that M decomposes as a union of B*’s, and we patch together the previous local

theorems.

Theorem 14.5 (Uhlenbeck weak compactuness '82). Let M, E as before, k = co(E)[M] and [V;] € My(g) an

instanton sequence. Then there is a [V ;] subsequence which weakly converges to a V, x1, ..., z; ideal connection.
Remark 14.6. Here V is representing an element of Mj,_;(g). In particular it is defined on the whole of M.

Proof. Consider the measure induced by the curvature of V;, u; := 8%|Fi|2. By boundedness of this measure,

there is a subsequence V; where the measures y; converge weakly to some ;. measure on M.
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Suppose, that there is a point with positive measure = : p(z) > 0. If* u(z) < ¢, then there is some U,
neighborhood of it whose measure is also less than e. Then by the local convergence theorem V|, converges
strongly to a connection on U,, and p(z) = 0.

Thus we assume, that u(x) > €. Since u(M) = k, we know that there can be at most ! < k/e many such points,
z;. By removing these points, we can apply the previous theorem, there is a subsequence which converges in
a strong sense (over compacts) to some self-dual connection V over M \ (U{z;}).

We compute its energy, since tr(Fa A Fa) = dCS(A), we can compute the integal by removing a ball around
one of the z; points. There the sequence of connections converges, and we get that we lose some whole

M\{z1,...,x
\l{ l}(g)

numbers from the energy. From this observation it follows that [ < k and [V] € M . Thus on

the complement of the z;’s V has finite energy, and we can apply the Uhlenbeck singularity removal theorem

to produce V over the entire M, which will b e automatically self-dual on M, g, and smooth. O

14.2 Donaldson’s theorem and a fake R*

Let M be a closed simply connected 4-manifold, whose intersection form is positive definite. Furthermore let
E — M be an SU(2) bundle with co(E)[M] = 1. From the structure theorem we get, that for generic metrics
Mji(g) is an 8 -1 — 3 = 5 dimensional manifold outside the reducible points.

Note, that the number of (gauge classes of) reducible connections is the number of topological reductions of
E,ie. (a,—a) € H*x H? :a? =1

Lemma 14.7. If co(E)[M] = 1 and {(a1,—a1)..., (ag, —ay)} is the set of topological reductions of E, then
{a;} is an independent set in H*(M,Z).

Moreover if M has a diagonalisable intersection form over Z, then t = bs.

Proof. (a; + a;)? =1+ 20405 + 1 gives us that a;a; = 0, so they are independent.
For the other statement, one can take the elements of a diagonal basis to represent the topological reductions.
O

Notice also, that because & = 1 we know that [ = 1 by asumption, from the weak compactness theorem
M, (g) may be compactified as M (g) U M.

Theorem 14.8 (Donaldson collar theorem '82). The compactified moduli space M1(g)’s end is diffeornorphic
to M x [0,€).

Theorem 14.9 (Donaldson’s nonexistence theorem ’'82). Let M be a closed simply connected positive definite

smooth 4-manifold, then qp; can be diagonalised over Z, i.e. qpr ~n < 1 >.

Proof. By the previous theorems we know that the space M;(g) has a boundary component diffeomorphic to

M, and singular points, which are locally diffeomorphic to cones over CP2. By cutting off neighborhoods of

the singular points, we get an oriented’ cobordism between M and kCP?#ICP2. We know that the signature
is an oriented cobordism invariant, so o(M) = k — [, but since g, is positive definite, o(M) = b = b, since
k + 1 = by as well by the cobordism, we get that [ = 0,k = by = b™. O

To see exotic R*’s we state the following theorem as well.

*the € is from the Coulomb gauge theorem, we will not state this further, it is always assumed
Tthis, we didn’t state
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Theorem 14.10 (Freedman ’81). There is an X simply connected closed 4-manifold with intersection form

—Es ® —Eg® < 1>,

Corollary 14.11. X is non-smoothable.

Proof. By Donaldson. O
Theorem 14.12 (Freedman, Quinn, Gompf). X \ {pt} is smoothable.

Theorem 14.13. There is an exotic R*.

Proof. X has no smooth structure, while X * := X\ {20} does admit one. Let 2y € X, consider a neighborhood
of it Uy, \ {zo}, which is homeomorphic to S x [0, 1]. We state that by identifying S® with the hopf fibration,
that S x I gets identified with v(CP? C CP?)\ CP?!, diffeomorphic. We glue to the "outer" S® boundary
part a B* to get back CP? with a sphere removed. This space is homeomorphic to R*, but we claim, that it
inherits a non-standard differentiable structure from CP?2.

In the standard R* any compact subset can be covered with a smooth ball. We claim, that in this space there

are compact subsets
O
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