
Yang-Mills theory seminar

Lecturer: Gábor Etesi

2023/2024/2

1 Els® el®adás

Stipsicz-Szabó jegyzetet használjuk/olvasandó. Postnikov: Lectures in Geometry 1-5. A negyedik kell. Háttér:

� M difható sokaság, ∂M peremes sokaság, zárt sokaság=kompakt peremtelen

� Sn, B
n

� di�erenciálformák ΛkT ∗M nyalábok, Ωk(M) = C∞(M ; ΛkT ∗M)

� küls® deriválás d lineáris, gradált leibniz és a négyzete nulla

� ω|U =
∑′

I ω
I
Udx

I jelöli lokálisan a k-formákat

� dω =
∑′

I

∑m
1

∂ωI
U

∂xi dx
i ∧ dxI

� de Rahm kohomológia Hk(M)

Theorem 1.1 (Hodge). M kompakt, akkor dimHk(M) < ∞.

Theorem 1.2. M zárt, akkor Hk(M) ≡ (Hm−k(M))∗.

Ha M összefügg®, akkor H0(M) = R.

[ω] ∈ Hk(M)-el jelöljük a kohomológiaosztályokat. Legyen ω, ω′ ∈ [ω] tisztességes k-forma reprezentánsok.

Ezek zártak lesznek, és létzni fog egy ϕ k−1 forma, hogy ω′ = ω+dϕ. Ahhoz hogy nulla legyen valaki dϕ = ω

kell, ehhez biztosan süzkséges, hogy zárt legyen, és elegend® az, hogy elt¶nik a Hk(M).

Theorem 1.3. (M, g) irányított zárt Riemann sokaság, akkor Hk(M) ≡ ker∇k kanonikusan.

A laplace ∗d ∗ d+ d ∗ d∗ elvileg, ez a közönséges Laplace a függvényeken, és általánosodik.

Integrálás: egy M peremes sokaságon egy ω m− 1 forma
∫
M

dω =
∫
∂M

ω.

2 Second Lecture

2.1 Vector Bundles

De�nition 2.1. Smooth vector bundle, �nite dimensional and mostly over C.
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De�nition 2.2. Morphism of vector bundles. Isomorphism of vector bundles. Aut(E) is the gorup of invert-

ible endomorphisms.

We have a SES 1 → GE → Aut(E) → Diff(M) → 1, the kernel is called the gauge group. I.e. it is the group

of bundle isomorphisms covering the identity.

GE will denote the sheaf (as a space), the C∞ sections of which give back GE . GE is the group of �berise

linear transformations of E, i.e. GE |x = Aut(Ex) = GL(n;C). This is indeed the case, all maps arise. Now

for g1, g2 ∈ GE = C∞(M,GE) we an de�ned g1g2 as the products of sections, as linear maps. Lie(GE) =

C∞(M, gE), where gE is the Lie-algebra bundle of GE , i.e. Hom(Ex).

Heads up, if the group is disconnected, its Lie algebra is only de�ned over the identity component.

De�nition 2.3. Section.

HW: Prove that if E = ΛkT ∗M ⊗R C, then 1 → GE → Aut(Ek) → Diff(M) → 1 splits (and maybe is a

direct product?). (what do we know about pullbacks of forms under di�eomorphisms?)

2.2 Gluing construction

3 Third lecture

Remark 3.1. GE is a Hilbert Lie group (over L2
k). Also Iso(E) = Aut(C∞(M,E)).

3.1 The covariant derivative on E

Motivation: we have a nice theory of analysis for exterior forms. We have a complex, the di�erentiation

operator is unique and so on. We want something similar with vector valued k-forms.

De�nition 3.2. Let E → M be a complex vector bundle, Ωk(M,E) := C∞(M,ΛkT ∗M⊗CE). We call these

E-valued k-forms.

We want a d∇ : Ωk(M,E) → Ωk+1(M,E) with as many properties of the ordinary derivative as possible. We

sacri�ce uniqueness in the process, there are many such operators. There is also no cohomology, d2∇ will be

the curvature.

Recall the glueing construction. A vectorbundle is the same as the choice of an open cover, and maps on the

elments of the cover with maps into Aut(F ) satisfying the cocycle conditions. Similarly a section is a set of

local functions compatible with the gluing maps.

First we construct d∇ : Ω0(M,E) → Ω1(M,E). We can try coordinatewise di�erentiation, this does not work.

The Leibniz rule and the gluing rule con�ict.

So we require ∇ to take s to another section of a vector bundle ∇s. It has to be a �rst order di�erential

operator, i.e. ∇(fs) = df ⊗ s+ f∇s.

The solution will be covariant di�erentiation. We can compute, that∇|U = d+AU , where AU ∈ Ω1(U,End E).

How does the AU transform under chart change.

De�nition 3.3. ∇ : Ω0(M,E) → Ω1(M,E) is a covariant derivative on E if for any locally trivialising open

cover {Uα} with gluing functions gαβ we have ∇ = {∇U} where ∇U = d + AU with AU ∈ Ω1(M,E) and

AU = gUV AV g
−1
UV + gUV dg

−1
UV .

Extend these to all forms with the Leibniz rule.
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We denote ∇s(X) := ∇Xs where X is a smooth vector �eld over M . Now the axiomatic version of the

previous de�nition

De�nition 3.4. ∇ is a covariant derivative if

1. ∇(fs) = df ⊗ s+ f∇s

2. complex linear

3. ∇fX+gY s = f∇Xs+ g∇Y s

Theorem 3.5. If E → M is a vector bundle and ∇ is a covariant derivative, then ∇+a is another covariant

derivative on E for any a ∈ Ω1(M,End E). Consequently AE (the set ofcovariant derivatives) is an in�nite

dimensional a�ne space over Ω1(M,End E).

Proof. If ∇ is a covariant derivative and a is a 1-form, then its clear that ∇+a is also a covariant derivative.

In the other direction, given two covariant derivatives, a trivialising neighborhood U and a section s we get

(∇′ −∇)s = (A′
U −AU )s, and these glue together well, since we subtrack the inhomogeneous part.

De�nition 3.6. If ∇,∇′ are two connections on a vector bundle we call them gauge equivalent if ∃g ∈ GE

such that ∇′ = g∇g−1.

G∇ := {g ∈ GE : g∇g−1 = ∇}.

Homework 3.7. If ∇′ = ∇+ a and ∇′ = g∇g−1, what does this mean for a?

De�nition 3.8. BE := AE/GE ir the gauge orbit space.

De�nition 3.9. Let E be a vector bundle with ∇ a covariant derivative, s a smooth section and γ a smooth

curve in M . We call s parallel w.r.t. ∇ along γ if ∇γ′s = 0.

If E = TM then γ is autoparallel if ∇γ′γ′ = 0.

4 MISSING

5 Fifth lecture

Last week: parallel transpost equation ∇γ̇s = 0. If γ is a small closed loop from x0 to x0, we get a π∇,γ C
linear automorphism of the �ber over x0. We saw, that this map is equal to id− 1

2F∇ϵ2 + o(ϵ3), where F∇ is

the curvature tensor [∇X ,∇Y ]−∇[X,Y ].

Remark 5.1. Máshogy is meg lehet mutatni, hogy F∇ s-ben algebrai.

Proof. [∇X ,∇Y ](fs) − ∇[X,Y ](fs). Use the de�ning properties of the covariant derivative it is a standard

check.

This means F∇ : Ω0(M,E) → Ω2(M,E) is a map, since its clearly antisymmetric in its �rst two arguments,

i.e. F∇ ∈ Ω2(M,End E).

Proposition 5.2. d2∇ = d∇ ◦ ∇ = F∇
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Proof. Let (U, x1, . . . , xm, e1 . . . , eℓ) be a local coordinate system and trivialisation over U ,where m = dimX

and ℓ = dimE. Let s|U = xj .

d∇∇ej = d∇(Ai
jei) = dAi

jei −Ai
j ∧∇ej = (dAk

j +Ak
i ∧Ai

j)ek =: F k
j ek

This means that on U F∇|U = dA+A ∧A.

On the other hand Ai
j = Γi

kjdx
k by de�nition. We compute the curvature tensor locally (only the section

component, we omit the vector �elds).

F k
j = d(Γk

ljdx
l) + Γk

lidx
l ∧ Γi

pjdx
p = (

∂Γk
lj

∂xp
− Γk

liΓ
i
pj)dx

p ∧ dxl

Writing out the components, we notice the local form of the curvature tensor.

Remark 5.3. d2∇ is tensorial in its argument as well. d2∇(fs) = d∇(dfs+ f∇s) = d2fs− df ∧∇s+ df ∧∇s+

fd∇∇s = fd2∇s.

It is clear, that d∇ induces operators Ωk(M,End E) → Ωk(M,End E) for each k canonically.

Homework 5.4. What is the induced connection on the dual bundle? The induced form on E ⊗F will have

the form d+AE ⊗ 1 + 1⊗AF , use this for E ⊗ E∗ = End E.

Lemma 5.5 (Di�erential Binachi identity). dEnd E
∇ F∇ = 0

Remark 5.6. This is not the same as saying d3∇ = 0, which is not true in general.

Proof. By the homework it turns out, that

dEnd E
∇ F∇|U = dE⊗E∗

∇ (dE∇)2|U = dF +A ∧ F − F ∧A

Substituting the form we found for F∇|U = dA+A ∧A, we get 0 after computing the derivatives.

Remark 5.7. AU = Aidx
i, and A∧A = [Ai, Aj ]dx

i∧dxj . With Lie-algebra valued forms A∧A ̸= 0 in general!

5.1 Characteristic classes � Chern-Weil theory

Start: G a lie group, ρ : G → AutV irreducible complex representation, and P a princpial G-bundle. From

this data we can produce a complex vector bundle E → M by the associated bundle construction. Let

∇ = d∇ : Ω0(M,E) → Ω1(M,E) G-kompatibilis konnexió.

De�nition 5.8. P : Ωk(M,E) → Ωk(M) is a G-evaluation if Φ ∈ Ωk ∋ p(Φ) and P (ρ(g)Φ) = P (Φ) for all

g ∈ GE .

Example 5.9. The trace map will be the most important example for us.

Lemma 5.10. If P is an invariant evaluation, then

Proof. De�neD : Ωk(M,E) → Ωk+1(M,E), which would make the diagram commute, i.e. ∀Φ ∈ Omegak(M, e) :

dp(Φ) = p(DΦ). This forces D to be a �rst order di�erential operator. Since p is invariant, we get p(D′Φ) =

dp(Φ) = dp(gΦ) = p(D(gΦ)). This means, that gDΦ = D′gΦ, so D and D′ are gauge conjugate. Since it

transforms as the connection, it means that this is d∇.
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Figure 1:

Lemma 5.11 (Fundamental lemma). 
Let E be a complex vector bundle over M with structure group G. Let

∇ be a G-compatible covariant derivation on E. F∇ denotes its curvature. Then dtr(F∇ ∧ · · · ∧F∇) = 0, i.e.

it represents a de-Rahm cohomology class on M .

If ∇′,∇′′ are two G-compatible covariant derivations on E, then [tr(F∇′)] = [tr(F∇′′)] ∈ H2k(M), ergo this

cohomology class is independent of the connection.

Proof. Use the previous lemma (on the endomorphism bundle of E, where F∇ lives)

dtr(F∇ ∧ · · · ∧ F∇) = tr(d∇F∇ ∧ · · · ∧ F∇) + · · ·+ tr(F∇ ∧ · · · ∧ d∇F∇) = 0 + · · ·+ 0

by the Bianchi identity.

Let ∇ be a connection on E, a ∈ Ω1(M,End E) and let ∇t := ∇+ ta where t ∈ (−ϵ, ϵ).

F∇t
= d(A+ ta) + (A+ ta) ∧ (A+ ta) = F∇ + td∇a+ t2a ∧ a

This means that
dF∇t

dt |0 = d∇a, similarly one can come up with the fact that
dF∇t

dt |t=t0 = d∇t0
a. Let

∇ =: ∇′,∇+ a =: ∇′′, ergo ∇′ = ∇0,∇′′ +∇1.

tr(F∇′′ ∧ . . . )− tr(F∇ ∧ . . . ) =

∫ 1

0

d

dt
tr(F∇t ∧ . . . )dt = k

∫ 1

0

ktr(
dF∇t

dt
∧ F∇t ∧ . . . )dt =

Using the lemma and the Bianchi identity we see

= k

∫ 1

0

tr(d∇t
a ∧ F∇t

∧ . . . )dt = d

(
k

∫ 1

0

tr(a ∧ F∇t
. . . )dt

)
.

De�nition 5.12. We call the
∫ 1

0
tr(a ∧ F∇t

∧ . . . )dt ∈ Ω2(k−1)+1(M) form the Chern-Simons form.

Homework 5.13. Compute the k − 1 = 1 Chern-Simons form:
∫ 1

0
tr(a ∧ (F∇ + td∇a+ t2a ∧ a))dt

Another proof for the invariance of the homology class.

Lemma 5.14. Let M be an oriented manifold and E a complex G-bundle equipped with ∇ and N2k ⊂ M a

closed oriented submanifold. Consider the action

s : AE → R ∇ 7→
∫
N

tr(F∇ ∧ · · · ∧ F∇)

then every ∇ is a critical point of s.
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Proof. Compute the Euler-Lagrange equations for s. Let g be a Riemannian metric on M , then s(∇) =

±(F∇, ∗(F∇ ∧ · · · ∧ F∇))L2(N,g|N ),
* since it is equal to

∫
M

tr(F∇ ∧ ∗(∗(F∇ ∧ . . . )))dt.

Now pick ∇t = ∇+ ta. We computed before, that

s(∇t) = (F∇ + td∇a+ t2a ∧ a, ∗((F∇ + td∇a+ t2a ∧ a) ∧ · · · ∧ F∇ + td∇a+ t2a ∧ a) =

= s(∇) + t(d∇a, ∗(F∇ ∧ · · · ∧ F∇)) + (k − 1)t(F∇, ∗(d∇a ∧ F∇ ∧ . . . )) + o(t)

Now in the �rst order terms we use the Bianchi identity, and use "integration by parts", using the fact, that

∂N = 0 and ∗2 = ±1.

(a, d∗∇ ∗ (F∇ ∧ . . . ))± (k − 1)(d∗∇ ∗ F∇, (a ∧ F∇ ∧ . . . ))

Lemma 5.15. d∗∇ = ± ∗ d∇∗

Applying the Bianchi identity now completes the proof.

Corollary 5.16. The functional s is constant on the space of connections.

De�nition 5.17. E complex G-bundle over M , ∇ a connection, F∇ ∈ Ω2(M,EndG E), then det(1 −
t

2πiF∇) =
∑

tjcj(E) =: c(E). We call cj(E) ∈ H2j(M) the jth Chern class of E.

Remark 5.18. det(1 +A) = det elog(1+A) = etr log(1+A) = etr(1−A+A2/2−... ) gives

∑
tjcj(E) = 1− t

trF∇

2πi
+ t2

tr(F∇ ∧ F∇)− tr(F∇) ∧ tr(F∇))

8π2
− −2tr(F 3

∇) + 3tr(F 2
∇) ∧ tr(F∇)− (trF∇)3

48π3i

Here we use a3 = a ∧ a ∧ a and similarly.

Let dimM = 4 and E a rank 2 SU(2) bundle. c0(E) = 1 ∈ H0(M), c1(E) = tr(F∇)
2πi = 0 ∈ H0(M) since

the Lie algebra of SU(2) consists of traceless matrices. c2(E) = tr(F∇∧F∇)
8π2 ∈ H4(M) = R, this is nonzero

generally.

We can also de�ne Cj(E,N2j) =
∫
N2j cj(E) ∈ R is called a Chern number.

5.2 Typical behaviour of Chern classes

� Given E ⊕ F ,then c(E ⊕ F ) = c(E)c(F ).

� f : M → N di�erentiable, E → N a bundle with connection ∇, then there exists f∗E → M the

pullback bundle, and f∗∇ the pullback connection. In this setup we have that c(f∗E) = f∗(c(E)).

Corollary 5.19. cj(E) ∈ Im(H2j(M,Z) → H2j(M)), i.e. the Chern numbers are whole numbers for any

submanifold N2j.

*We can de�ne (ϕ, ψ) :=
∫
M ϕ∧ ∗ψ to be the L2 if we have di�erential forms Ωk(M). Given a general vector bundle E, and

given a pairing on E we can do the same construction for Ωk(M,E)
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6 Sixth lecture

Existence of connections

Complex vector-bundle over a manifold E → M , we de�ned what ∇ : Ω0(M, e) → Ω1(M,E) should satisfy.

If there is at least one connection, then AE is an a�ne space over Ω1(M,End E). This is true, since given

two connections their di�erence is ∈ Ω1(M,End E).

Remark 6.1. If E is the trivial vector bundle of rank ℓ, then we can always de�ne ∇0 := d by choosing a

trivialisation.

Fact 6.2 (Algebraic topology). If X is a compact topological space and E → X isa complex vector bunle

over it, then there is another vector bundle F → X such that F ⊕ E is trivial.

Now let M be a compact manifold and E any vector bundle over it. Using the previous topological lemma

we �nd F such that E ⊕F is trivial, let p denote the projection to E. We let ∇ := d over this trivial bundle.

It is homework to show, that restricting and projecting this connection to E satis�es the properties required.

As discussed, every other connection will have the form ∇E + a.

Last week: we derived several important formulas for the covariant derivative

� ∇|U = d+AU

� F∇|U = dAU +AU ∧AU

� F∇ = (dE∇)2

� Bianchi identity: dEnd E
∇ F∇ = dEnd E

∇

� we introduced ck(E) ∈ H2k
dR(M) (for an SU(2) bundle over a 4-manifold only c2 is nontrivial)

Actually rank 2 complex vector SU(2) vectorbundles are classi�ed by their second Chern class. For this we

use obstruction theory to classify bundles. Classifying E → M is the same as classifying PSU(2) → M . In

general PG is trivial i� it admits a continous section, so we need to understand the existence of sections of PG

over M . We will start with a section on a cell, and try to extend it cell by cell. By general obstruction theory

we get an obstruction class ∈ Hk+1(M,πg(G)). We know that SU(2) = S3, so we know the �rst 3 homotopy

groups. From this we get extendability to the 3 skeleton automatically. Thus if the obstruction class c2(E)

vanishes, our bundle is trivial. In the other direction we need to construct bundles with any given H4(M,Z)
element.

Fact 6.3. Given a G compact Lie group, π2(G) = 0.

Fact 6.4. Given a simple compact Lie group π3(G) = Z.

Let us try the same thing with SO(3) = SU(2)/Z2. We get two obstructions w2 ∈ H2(M,Z2) and p1 ∈
H4(M,Z).
This does not help us in every case. Try to classify SU(2) bundles over S5. Clearly all obstruction classes

vanish, but on the other hand we know, that there are π4(SU(2)) many SU(2) bundles over S5, giving the

gluing map on the equator.

7



Example 6.5. The trivial guy is of course S5×S3 → S5, and suprisingly SU(3) → S5 is the other one, where

the map is projection to the �rst column. These spaces are distinguished by π5.

6.1 Riemannian geometry (in m dimensions)

From now on E = TM , a real bundle.

De�nition 6.6. g ∈ C∞(M,S2T ∗M) is a Riemannian metric on M if gx : Tx × Tx → R is a nondegenerate

symmetric positie de�nite bilinear form at each x ∈ M .

Remark 6.7. Such a G always exists since GLn(R) ∼ O(n). Also gx(X,X) ≥ 0 and is equal to zero i� Xx = 0

at a point.

De�nition 6.8. Let M, g be a R-manifold. ∇ is the Levi-Civita connection on M , if it is compatible with the

metric, i.e. (dg(X,Y ))(Z) = Z(g(X,Y )) = g(∇ZX,Y ) + g(X,∇ZX)for any three vector �elds X,Y, Z, and

∇XY −∇Y X = [X,Y ], which is called torsion-freeness.

Homework 6.9. On the one hand we have d∇Ωk(M,T ∗M) → Ωk+1(M,T ∗M). These spaces are identi�ed

with C∞(M,Λ?T ∗M ⊗ T ∗M). We apply A, the antisymmetrization operator to get the next one in the

sequence.

Figure 2: Show that this diagram commutes if ∇ is torsion free.

Remark 6.10. Given a connection, we get many induced connections, for example on S2T ∗M . The metric

compatibility condition can be rephrased as ∇g = 0.

Theorem 6.11 (Fundamental theorem of Riemannian geometry). If (M, g) is a pseudo-Riemannian mani-

fold, then ∃! Levi-Civita connection on M .

Proof. Write the metric compatibility equation for X,Y, Z in all three cyclic permutations, and add them up

with alternating sign. Apply the torsion free property to isolate one covariant derivative to obtain the Koszul

formula:

2g(∇XY, Z) = dg(Y,Z)X + dg(Z,X)Y − dg(X,Y )Z + g([X,Y ], Z)− g([Y, Z], X) + g([Z,X], Y ).

This is true for all vector �elds X,Y, Z and one can check that this formula de�nes a coariant derivative.

Uniqueness is obtained simply.

Remark 6.12. Let X,Y, Z be coordinate frames. Then we know that ∇∂i
∂j = Γk

ij∂k, and g(∂i, ∂j) = gij by

de�nition, and that [∂i, ∂j ] = 0. We can come up with an explicit formula from the Koszul identity for the

christo�el Symbols from the components of the metric tensor.
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6.2 The Riemannian curvature tensor

R := F∇, this is a type (1, 3) tensor R(X,Y )Z ∈ C∞(M,TM). Writing it out in a local chart we get the

functions Rl
ij,k. Using the metric we can restate this as a (0, 4) tensor as g(R(X,Y )Z,W ), in coordinates

Rij,kl = glpR
p
ij,k.

Theorem 6.13 (Symmetries of the Riemannian curvature). Let Rj
i,kl be the components of the 1,3 curvature

tensor, Rij,kl be the components of the 0,4 curvature tensor.

1. Ri
j,kl = −Ri

i,lk

2. Rij,kl = −Rji,kl

3. Ri
j,kl +Ri

l,jk +Ri
k,lj = 0

4. Rij,kl = Rkl,ij

Proof. The �rst one we already know, every curvature tensor is antisymmetric in its two arguments.

For the second one if ∇|U = d + AU and AU ∈ Ω1(U, gl(m,R)). Then actually AU ∈ Ω1(M, o(m)) from the

compatibility condition. We know, that o(m) = Λ2Rm as vectorspaces. The identi�cation is as follows A 7→ ωA

where < Av,w > 7→ ωA(v, w). This will be antisymmetric because A is so. Now R ∈ Ω2(M,Endo(m)TM) =

Ω2(M, o(m)) = Ω2(M,Λ2T ∗M) = C∞(M,Λ2T ∗M ⊗ Λ2T ∗M) and we are done.

For the third identity we compute using R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ].

Ri
j,kl(∂i) = Ri

p,klδ
p
j (∂i) = Rkl(δ

p
j ∂p) = Rkl(∂j) = [∇k,∇l]∂j

Now write the last term out 3 times with cyclically permuted indicies and add them together. Use the torsion

freeness at all three terms to get 0 + 0 + 0.

The fourth and last identity is the most mysterious. See Milnor's Morse theory book for a quick proof:)

Corollary 6.14. 1,2,4 gives us that R ∈ C∞(M,S2Λ2T ∗M). What does the Bianchi identity tell us about

the curvature tensor? De�ne b(R)(X,Y, Z,W ) := 1
3 (R(X,Y, Z,W ) +R(Z,X, Y,W ) +R(Y,Z,X,W )), called

the Bianchi map in coordinate free form. Clearly b2 = b, and b maps the space of symmetric tensors to itself.

From the rank-kernel theorem S2Λ2T ∗
xM decomposes according to b.

Homework 6.15. Nontrivial algebra gives us, that b : S2Λ2V → Λ2V ⊗ Λ2V actually has image = Λ4V .

So R is a smooth section of the bundle S2Λ2T ∗M ∩ ker b.

This helps us compute its dimension:
((m2 )+1

2

)
−

(
m
4

)
= 1

6

(
m2

2

)
.

7 Seventh lecture

Correction for last week:

Remark 7.1. Let V be a �nite dimensional real vector space endowed with a vector product (i.e. V = V ∗). We

know that there is a canonical decomposition End(Λ2V ∗) = S2Λ2V ∗ ⊕ Λ2Λ2V ∗. Last time we introdiced a

map b : S2Λ2V ∗ → End(Λ2V ∗) by b(R(X,Y, Z, V )) = 1
3 (R(X,Y, Z, V )+R(Z,X, Y, V )+R(Y,Z,X, V )). It is

clear, that b2 = b, so actually im b ≤ S2Λ2V ∗, consequently by standard linear algebra S2Λ2V ∗ = ker b⊕im b.
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Lemma 7.2. im b = Λ4V ∗

Proof. First if ω ∈ Λ4V ∗, then ω(X,Y, Z, V ) = ω(Z, V,X, Y ) by antisymmetry. This shows one inclusion,

now surjectivity.

If α, β ∈ Λ2V ∗ we introduce their symmetric product αvβ := 1
2 (α(X,Y )β(Z, V ) + α(Z, V )β(X,Y )). We

claim, that b(αvβ) = 1
3α ∧ β. This is a simple check by coordinates:

1

3

1

2
(αijβkl+αklβij+αjkβil+αjkβil+αkiβjl+αjlβki) =

1

6
(αijβkl−αikβjl+αilβjk+αjkβil−αjlβik+αklβij)

Which is c · (α ∧ β)ijkl. ?constant?

7.1 Representation theory of SO(4)

From now on M is an oriented 4-dimensional Riemannian manifold. In particular TMx is equipped with an

SO(4) structure. Our aim is to decompose S2Λ2T ∗M ∩ ker b into irreducible representations of SO(4).

The group SO(4) and Spin(4) = SU(2)× SU(2): Take (R4, <,>) with a positive de�nite scalar product, we

identify this with H, |.|.

Proposition 7.3. SU(3) = S3 ⊂ H

Proof. z = wj = q ∈ S3 where |z|2 + |w|2 = 1 we associate

[
z w

−w̄ z̄

]
and this is a group isomorphism.

Proposition 7.4. π : S3 × S3 → SO(4) by x 7→ ξxη̄ with the identi�cation above is an index 2 cover.

Proof. The quaternionic norm is multiplicative, so the maps are in O(4), and actually in SO(4), since quater-

nionic multiplication preserves orientation.

ξ2(ξ1xη̄1)η2 = ξ2ξ1xη1η2 so this is well de�ned homomorphism, since quaternion multiplication is associative.

Finally kerπ consists of elements of form η = ξ−1. Then for any quaternion we get that ξx = xξ, i.e. ξ is in

the center of H. Since its norm is 1, ξ = ±1, and kerπ = Z2.

Since the source and the target is equidimensional, and the �ber of this map is discrete, π is a local homeo-

morphism. Moreover this map is closed, so it is surjective.

Observations:π1(SO(≥ 3)) = Z2. To see this consider the �bration SO(n+1)
SO(n)−−−−→→ Sn (map is projection

to the �rst column) and writing out the �rst part of the homotopy exact sequence. We de�ne Spin(n) to be

the universal cover of SO(n). So the previous computation shows that S3 ×S3 = Spin(4) = SU(2)×SU(2).

We will �rst compute representations for the universal cover, then pick out those, who descend to SO(4).

7.2 Representation theory of SU(2)

7.2.1 Background

Let G be a compact �nite dimensional Lie group

De�nition 7.5. Let V be a complex vector space, a complex representation of of G is a homomorphism

ρ : G → Aut(V ).

If ρ, σ are two representations of G, then they are equivalent/isomorphic, if there exists U ∈ Aut(V ) such

that σ = UρU−1 (U is independent of g ∈ G).

ρ is irreducible if there is no nontrivial ( ̸= 0, V ) invariant subspace of V under the action of G.

10



De�nition 7.6. ρ : G → Aut(V ) is a representation, then χρ := tr(ρ) is called a character.

Lemma 7.7. 1. χρ is C∞

2. if ρ, σ are equivalent representations of G on V , then χρ = χσ

3. χρ(hgh
−1) = χρ(g)

4. χρ⊕σ = χρ + χσ

5. χρ⊗σ = χρχσ

6. χρ∗ = χρ or equivalently χρ∗(g) = χρ(g
−1)

7.
∫
G
χρ(g)dg = dimC VG where VG = {v ∈ V |ρ(g)v = v∀g ∈ G}

Proof. Analogously to the �nite dimensional case.

De�nition 7.8. < χρ, χσ >:= 1
V ol(G)

∫
G
χρχσdg. Here dg is the left-right invariant Haar-measure on G, and

V ol(G) =
∫
G
dg is the volume

Lemma 7.9 (Schur orthogonality relation). If ρ, σ are irreducible complex representations of G on V,W

respectively, then < χρ, χσ >= 1 i� σ and ρ are equivalent and 0 otherwise.

Proof. Observe that χρχσ = χρχσ∗ = χρ⊗σ∗ and ρ⊗ σ∗ : G → Aut(Hom(V,W )). By (a di�erent) lemma of

Schur if B ∈ Hom(V,W ) such that ρ ⊗ σ∗(g)B = B for all g, then B is an equivariant map from (V, ρ) to

(W,σ), and V = W and B = λI follows (otherwise no such B exists).

Stated otherwise, we get that dimCHom(V,W )G = 1 if ρ, σ are equivalent representations, and 0 otherwise.

Now apply point 7 from the previous lemma < χρ, χσ >= 1 or 0, dependent on if ρ and σ are equivalent or

not.

Lemma 7.10 (Schur, lol). A representation ρ is irreducible i� ||χρ||2 = 1.

Remark 7.11. Every �nite dimensional representation of a compact Lie group decomposes as a sum of irre-

ducible representations. One sees this by constructing a G action invariant scalar product on V by averaging.

There are conterexamples if the group is noncompact, since there may not be invariant scalar products, see

GL(2) on R2.

Proof. Take a decomposition of V into irreducible representations ⊕niVi, and ρ = ⊕niρi where any two ρi

are inequivalent. ||χρ||2 =
∑

n2
i ||χρi

||2 by the orthogonality relations and ||χρi
||2 = 1 by the previous Schur

lemma. The other direction is immediate, there is only one partition of 1 into positive whole numbers.

Theorem 7.12. If G,H are compact Lie groups and ρG, ρG are some irreducible complex representations of

them, then ρG ⊗ ρH is an irreducible complex representation of G ×H. Conversely any irreducible complex

representation of G×H is of this form.

Proof.

||ρG ⊗ ρH ||2 =

∫
G

∫
H

χρG
χρH

χρG
χρH

dhdg = 1

11



Conversly we apply the Schur lemma. Let U be an irreducible G ×H representation, then there exists the

following* isomorhism of H-modules

ϕ :
⊕

Wj∈Irr(H;C)

HomH(Wj , U)⊗Wj → U

This is true by the Schur lemma,HomH(Wj , U) is 1 dimensional ifWJ isequivalent to U , when we forget about

the G-module structure of U .� Moreover viewing Hom(Wj , U) as a G-module, we see, that it decomposes

⊕njiVi into irreducible G modules. This means, that U =
⊕

nijVi ⊗Wj

7.3 Irreducible complex representations of SU(2)

Let V = C2 and let SU(2) act in the standard way by matrix multiplication. On V ∗ it acts by multiplica-

tion by the inverse. These representations are equivalent in the SU(2) case. Consider SmV ∗ = {pm(x, y)}
homogeneous polynomials of degree m in 2 variables x, y. The dimension is m + 1, clearly S0V ∗ = C with

the trivial action. S1V ∗ = V ∗ is the standard representation.

De�nition 7.13. ρm : SU(2)× SmV ∗ → SmV ∗, where g, pm(ξ) 7→ pm(g−1ξ).

Lemma 7.14. ρm is an irreducible representation for all m ≥ 0.

Proof. By Schur lemma we will see, that if A : SmV ∗ → SmV ∗ complex linear map such that ρm(g)A =

Aρm(g) ∀g, then g = cI.

Let ga = diag(a, a−1) with a ∈ U(1) and introduce a basis pk = xkym−k in SmV ∗. ρm(ga)pk = a2k−mpk

and if ρm(ga)(Apk) = Aρm(ga)pk, then its equal to Aa2k−mpk. We can pick a such that its powers are all

di�erent, then the a2k−m eigenspace ρm(ga) is spanned by pk, since we see all of its eigenvectors for di�erent

eigenvalues p∗. This means, that Apk = ckpk.

Consider rt, the real rotation matrix with angle t.

Artpm = a(x cos t+ y sin t)m =
∑(

m

k

)
cosk t sinm−k t(Apk) =

∑(
m

k

)
cosk t sinm−k t(ckpk)

We also compute

rtApm = rtcmpm = cmrtpm = cm
∑(

m

k

)
cosk t sinm−k tpk

so ck = cm, and the representation is irreducible, since A = cmI.

Remark 7.15. These are all of the irreducible representations of SU(2), but we will not prove it here.

Theorem 7.16 (Clebsch-Gordon formula). ρm ⊗ ρn =
⊕minm,n

0 ρm+n−2j

Proof. χρm
=

∑m
0 ei(m−2k)t since every matrix SU(2) matrix is conjugate to some diag(eit, e−it). Some

Fourier analysis tells us, that the product of two sums of this form looks like

min(m,n)∑
0

m+n−2j∑
0

ei(m+n−2j−2p)t

Homework 7.17. Check this formula

*f ⊗ w = f(w)
�split U into irreducible representations over H
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Corollary 7.18. Spin(4) = SU(2)+ × SU(2)−, then any irreducible representation is of the form ρmm ⊗ ρ−n ,

which we denote ρm,n. Moreover we can decompose any representation into irreducibles by the formula. It is

clear, that dimC ρ = (m+ 1)(n+ 1).

Example 7.19. ρ = ρ+m ⊗ ρ−n , σ = ρ+k ⊗ ρ−l . Now applying the commutativity of the tensor product, and the

Clebsch-Gordon formula:

ρ⊗ σ = ρ+m ⊗ ρ−n ⊗ ρ+k ⊗ ρ−l = (ρ+m ⊗ ρ+k )⊗ (ρ−n ⊗ ρ−l ) = (⊕ρ+i )⊗ (⊕ρ−j )

We have two questions:

1. How to get representations of SO(4)?

2. How to get real irreducible representations of SO(4)?

Lemma 7.20. ρm,n is a complex representation of SO(4) i� m ≡ 2 mod 2.

Proof. We have to see, that kerπ acts trivially in ρm,n. This is easily seen if m,n are even, orifboth are

odd, since −I acts trivially on either both parts of a tensor product basis, or both get multiplied by −1, i.e.

(−1)2 = 1.

De�nition 7.21. Representatin σ on V is a real representation o� there is a G-invariant decomposition

V = W ⊕ iW , where W is a real G-space. (i.e. there is a real linear map, whose square is the identity,

commuting with the image of σ)

Remark 7.22. If ρ is an irreducible (?need this?) complex representation,then
∫
G
χρ(g

2)dg = 1 if ρ is a real

representation, 0 if ρ remains complex and −1 if it admits a H structure.

Lemma 7.23. ρm,n always has a real structure if m ≡ n mod 2.

Proof. τ : SmV ∗ → SmV ∗ is de�ned as p(x, y) 7→ p(−ȳ, x̄). It is clear, that τ2 = id, we call p real, if τp = p.

Put W to be theR span of real polynomials, we get an m+1 dimensional real subspace of SmV ∗. ∀g ∈ SU(2)

if pm is real, then a simple computation shows that τρm(g)p is real as well, if m is even.

The nontrivial computation comes when m + n is even. Then τ(PQ) = PQ will imply, that τ(ρ+mPρ−nQ) =

ρ+mPρ−nQ.

Remark 7.24. Every odd complex dimensional representation of SU(2) descends to SO(4).

8 Eight lecture

8.1 Representations of SO(4) on p-forms

Let (W,<,>) be an oriented 4 dimensional real inner product space (i.e. SO(4) acts on it with the standard

representation). Question: What kind of SO(4) module is ΛpW? By assumption, there is a Hodge operator

∗ : ΛpW → Λ4−pW .

13



Remark 8.1. On an SO(4) module V , the operator ∗ is de�ned for α, β ∈ ΛpV to be the form satisfying

α ∧ ∗β =< α, β > vol. Some basic properties: ∗2 = ±1idΛpV , and it commutes with with the induced SO(n)

action on ΛpV and Λn−pV .

For p = 2 we get an automorphism of 2-forms, and ∗2 = 1Λ2W∗ . So its eigenvalues will be ±1.

De�nition 8.2. Λ±W ∗ := {ω ∈ Λ2W ∗| ∗ ω = ±ω}, and call these self dual, and anti self dual forms.

This means Λ2W ∗ = Λ+W ∗ ⊕Λ−W ∗, and we get that dimΛ±W ∗ = 3. Since so(4) = su(2)+ ⊕ so(2)− we get

that so(4) as an SO(4) module is not irreducible.

On the other hand we saw, that so(4) = Λ2W ∗, where the identi�cation is given by < x,Ay >= ωA(x, y) for

some antisymmetric matrix A. So if SO(4) acts by the adjoint representation (A 7→ gAg−1) from the previous

remark we see that ∗ commutes with this action, and we get that the two factorisations so(2)± = Λ±W ∗ are

isomorphic (equivariantly so).

So Λ2W ∗ is reducible, since we just split is apart. We are looking for the irreducible components. Since

ΛpmW ∗ = su(2)± we get that Λ±W ∗ ⊗ C as a complex Spin(4) = SU+(2) × SU−(2) module the action

splits on the components (+ only acts on + and vice versa for −). Now Λ±W ∗ ⊗C = SmV + ⊗SnV − by our

classi�cation from before. Since we know the dimensions, 3 = (m + 1)(n + 1), so m = 2, n = 0 or the other

way around, i.e. Λ±W ∗ = S2V ±.

For p = 1 we get an identi�cation between Λ1W ∗ = Λ3W ∗, in an SO(4) equivariant manner. Complexify this

module, we are looking for Λ1W ∗ ⊗ C = S1V + ⊗ S2V − = V + ⊗ V −, since the other possibility (4 = 1 · 4),
we already used for the p = 2 case.

The last case p = 0 is trivial, we get the trivial module, and its complexi�cation, so Λ0W ∗ ⊗ CΛ4W ∗ =

S0V + ⊗ S0V −.

Remark 8.3. This is the classi�cation of the complexi�ed spin(4) modules, and we have to look for the real

ones among them. This is clear to see, since 0+0 ≡ 2+2 ≡ 2+0 ≡ 0 mod 2, so all of the previous splittings

are real representations of SO(4) as well.

8.2 Irreducible splitting of the curvature tensor of an oriented Riemannian 4-

manifold

From (M, g) we produced the curvature tensor R ∈ C∞(M,S2Λ2T ∗M∩kerb). Consider the C-linear extension
of R ∈ C∞(M,S2Λ2T ∗M

otimesCcapkerbC). If x ∈ M , then Λ2
xT

∗M = Λ+
x T

∗M⊕Λ−
x T

∗M . In this basis R =

[
A B

B∗ C

]
as a symmetric

map Λ+
x T

∗M ⊗ C⊕ Λ−
x T

∗M ⊗ C → Λ+
x T

∗M ⊗ C⊕ Λ−
x T

∗M ⊗ C. Thus we have to split End(Λ2T ∗
xM ⊗ C)

into irreduibles. Using the fact that End(V ) = V ⊗ V ∗, and the fact that the metric canonically identi�es V

with V ∗, substituting Λ±
x ⊗ C = S2V ± we get the following:

End(Λ2
xT

∗M) = S4V 3 ⊕ S2V + ⊕ S0V − ⊕ (S2V + ⊗ S2V −)⊕ (S2V − ⊕ S2V +)⊕ S4V − ⊕ S2V − ⊕ S0V −

In the above splitting S0V ± = CidΛ±⊗C, S
2V ± = Λ2(Λ±

x ⊗C) and S4V ± = S2
0(Λ

±
x ⊗C) of traceless symmetric

matrices.

Remark 8.4. Given V , acted on by O(n), we get an action on End(V ) as well by conjugation. This represen-

tation of O(n) splits into three parts, Ridv ⊕ Λ2V ⊕ S2
0V .
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Finally S2V +⊗S2V − = Hom(Λ±
x ⊗C,Λ∓

x ⊗C). So B and B∗ correspond to this component in the splitting,

A to S4V + and C to S4V −.

We still have not used the Bianchi identity. S0V + ⊕ S0V − = C(idΛ+⊗C + idΛ−⊗C)⊕C(idΛ+⊗C − idΛ−⊗C) =

CidΛ2⊗C⊕C∗Λ2⊗C by a base change we get the trivial represenation, and the one given by the Hodge operator.

Notice, that C∗ = Λ4 ⊗ C, since both sides are the trivial one dimensional SO(4) module, or one can say,

that α ∧ ∗β =< α, β > ∗, and z · ∗ 7→ z · vol is an equivariant isomorphism.

We saw previously, that imbCx = Λ4
x ⊗ C, thus the Hodge component of this remaining part is zero (in the

idΛ2⊗C direction we get the complexi�ed scalar curvature).

De�nition 8.5. We denote by sx ∈ CidΛ2
xT

∗M⊗C the complexi�ed scalar curvature. We denote by W±
x ∈

S2
0(Λ

±
x T

∗M ⊗ C) component, and call them the complexi�ed (anti-) self dual Weyl tensors. We denote by

Bx ∈ Hom(Λ±
x T

∗M ⊗ C,Λ∓
x T

∗M ⊗ C) and call it the complexi�ed traceless Ricci tensor.

By these de�nitions R =

[
W+

x + sx/12 Bx

B∗
x W−

x + sx/12

]
is true at every x ∈ M .

8.3 Globalisation, reali�cation

Problem: V ± are spin(4) modules.

De�nition 8.6. If there are complex rank 2 bundles Σ± over M , whose �bers are V ±, then we call Σpm

chiral spinor bundles.

Remark 8.7. If Σ± exists, then we can produce the SmΣ± bundles, and all our constructions work globally.

De�nition 8.8. We call such manifolds spin manifolds.

Remark 8.9. Suppose M to be spin and consider the SmΣ+ ⊗ Sn ⊗ Σ− bundle over it. This is a complex

spin(4) vector bundle, but if m+ n is even, then this reduces to a complex SO(4) bundle, and will inherit a

real structure as well. So there exists W (m,n) ⊂ SmΣ+ ⊗ SnΣ−, a real subbundle, which correspond to the

ρm,n irreducible real representation of SO(4). Moreover, these real bundles exist even if M is non-spin.

Corollary 8.10. The previous remark is true for every component of the complexi�ed curvature tensor, so

the previous decomposition globalises, and with real bundles.

Theorem 8.11 (Singer-Thorpe '69). Let (M, g) be an oriented Riemannian 4-manifold, ∇ its Levi-Civita

connection and R∇ its curvature tensor. Then R∇ ∈ End(Λ2T ∗M) splits into irreducible SO(4) components

as follows: R∇ =

[
W+ + s/12 B

B∗ W− + s/12

]
.

Remark 8.12. If we forget about the orientation, then W = W+ +W− will be invariant, we call it the Weyl

tensor.

The type (3, 1) Weyl-tensor is a conformal invariant! Wf2g = Wg for any nowhere vanishing function f .

In 4-dimensions R∇ is a 20 = 1 ⊕ 5 ⊕ 5 ⊕ 9 dimensional representation, the irreducible components are the

scalar curvature, the two Weyl tensors, and the traceless Ricci curvature.

De�nition 8.13. Ric := s+B is called the Ricci tensor. A 4-manifold (M, g) is Ricci-�at, if Ric = 0. We call

a 4-manifold Einstein, if B = 0. We call M half-conformally �at if W− = 0, and half-conformally anti-�at if

W+ = 0.
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Homework 8.14. For an Einstein manifold Ric = Λg. Show from the di�erential Bianchi identity, that the

function Λ is a constant. We call this the cosmological constant.

Ric− 1

2
gs = 8πT + Λg

where T ∈ S2(T ∗M) is called the Einstein equation.

9 Ninth lecture

Quick recap and clari�cation.

Remark 9.1. Let M be a spin 4-manifold, TM → M has a principal PSO(4) → M bundle. It is called spin,

if we van �nd a 2 fold cover Pspin(4) → PSO(4), that is a 2-fold cover on each �ber. The obstruction class to

this is w2(TM). If ρm,n is the complex representation of spin(4) on SmV +⊗SnV −, then we can produce the

asociated vector bundle.

De�nition 9.2. Using this representation we de�ne SmΣ+ ⊗ SnΣ− := P̃ ×spin(4) S
mV + ⊗ SnV −.

Lemma 9.3. The bundle SmΣ+ ⊗ SnΣ− over M of complex dimension (m + 1)(n + 1) and structure group

(spin(4)) can have its structure group reduced to SO(4). Moreover there exists an SO(4)-equivariant endo-

morphism of order two.

This statement is true i� m+ n is even.

Proof. See previously.

Corollary 9.4. By last week's calculation we get, that s,W±, B,B∗ descends to real operators on the reali�-

cation of the bundle.

Homework 9.5. Do the calculation in the m ≡ n ≡ 1 mod 2 case.

9.1 Theorems of Atiyah-Hitchin-Singer

Fix (M, g), an oriented riemannian 4-manifold. The curvature tensor of the Levi-Civita connection R : ∇ :

C∞(M,Λ2T ∗M) → C∞(M,Λ2T ∗M). Consider the induced connection∇ : C∞(M,Λ2T ∗M) → C∞(M,Λ2T ∗M⊗
T ∗M). We saw already, that this splits as ∇± : C∞(M,Λ±M) → C∞(M,Λ±M ⊗ T ∗M) since so(4) =

so(3)+ ⊕ so(3)−.

Remark 9.6. Over some open set ∇± = d+A± = d+ ppmA, where p± : so(4) → so(3)±.

Take their curvatures F∇± ∈ Ω2(M,End(Λ±M)) = Ω2(M, so(3)±) = Ω2(M,Λ±) = C∞(M,Λ2 ⊗ Λ±) =

C∞(M, (Λ+ ⊕ Λ−) ⊗ Λ±). We take the self-dual and anti self-dual parts of these forms, as sections of the

bundles C∞(M,Λ+⊗Λ±) and C∞(M,Λ−⊗Λ±). Denote the self-dual and anti self-dual parts by a superscript

+ and − respectively.

It is easy to read o�, which component of the Singer-Thorpe theorem these new splittings correspond to, i.e.

the self-dual part of F∇+ will be s/12 +W+.

Remark 9.7. 1. if B = 0, then F∇+ is self-dual and F∇− is anti self-dual

2. if W− = s = 0, then F∇− is self-dual
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3. if W+ = s = 0, then F∇+ is anti self-dual

Theorem 9.8 (Atiyah-Hitchin-Singer, '78). Let (M, g) be an oriented Riemannian 4-manifold

1. if M, g is Einstein (B = 0), then the induced SO(3)+ connection on Λ+T ∗M (or the SU(2)+ connec-

tion on Σ+, if M is spin) is self-dual; moreover the SO(3)− connection on Λ−T ∗M (or the SU(2)−

connection on Σ−, if M is spin) is anti self-dual

2. if M, g is half-conformally �at (W− = 0) and s = 0, then the induced SO(3)− connection on Λ−T ∗M

(or the SU(2)− connection on Σ− if M is spin) is self-dual

3. if M, g is half-conformally anti-�at (W+ = 0) and s = 0, then the induced SO(3)+ connection on

Λ+T ∗M (or the SU(2)+ connection on Σ+ if M is spin) is anti self-dual

Proof. The previous discussion.

Remark 9.9. ∇ is an SO(4) connection on TM. We complexify it to an SO(4) connection on TM ⊗ C =

Σ+ ⊗ Σ−. These latter two bundles only exist locally, the spin condition guarantees them to exist as global

complex vector bundles, this is where we can split the connection in the parenthesis part of the theorem.

De�nition 9.10. Let M, g be an oriented Riemannian 4-manifold, and let E be a rank 2 SU(2) bundle, and

∇ an SU(2) connection. We call ∇ (anti) self-dual, if the corresponding curvature F∇ is (anti) self-dual.

Remark 9.11. What kind of equation is this for the connection? It is enough to understand this locally.

∇|U = d + AU , and F∇|U = dAU + AU ∧ AU in local coordinates. One has to write AU = Aidx
i, where

Ai : U → su(2) for i = 1..4. dAU = (∂Ai

∂xj − ∂Aj

∂xi )dx
j ∧ dxi.

∂Ai

∂xj
− ∂Aj

∂xi
+ [Ai, Aj ] = ±

√
det g(

∂A4−i

∂x4−j
− ∂A4−j

∂x4−i
)

Example 9.12. Over �at R4 the metric determinant goes away, and the Hodge operator acts in the way we

expect.

Now we give a method to solve these equations: conformal scaling.

Lemma 9.13. M, g as before. If f : M → R is a nonwhere zero function, then ∗f2g = ∗g.

Proof. ω = ωijdx
i ∧ dxj , then (∗ω)ij = 1

2

√
det ggikgjlϵklmnωmn, where ϵijkl = 1 if ijkl are in even permuta-

tion, −1 if its odd, and 0 if there are repeating indicies.

Now after the scaling det(f2g) = f8g, and (f2g)ik = f−2gik, and we get the claim.

Now consider the last two cases of the AHS theorem, take a conform scaling of it, the equation stays the

same, since the Hodge operator is conform invariant. Since the Weyl tensor is also conform invariant, only

the scalar curature can change, but that we understand.

Lemma 9.14. g̃ = f2g, then f3sg̃ = fsg − 6∆gf

Corollary 9.15. If we do the scaling with a harmonic function, we stay in the case 2 or 3 from which we

started.

This gives a method to produce self-dual solutions over M, g from harmonic functions ∇gf = 0.
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10 Tenth lecture

10.1 The 1-instanton moduli space over R4

Think of R4 as the quaternions H, and su(2) will be thought of as the imaginary quaternions, where the

bracket is [x, y] 7→ im(xy). The identi�action is given by

[
ix z

−z̄ −iz

]
7→ xi+ zj.

Homework 10.1. tr(xy∗) 7→ −2Re(xȳ) under this isomorphism between su(2) and H.

Let E = R4 × C2 the trivial SU(2) bundle.

Lemma 10.2. De�ne the connection ∇ := d + A : Ω0(R4, E) → Ω1(R4, E), where A = im( xdx̄
1+|x|2 ). We

claim, that ∇ is self-dual, and ||F∇||2 := − 1
8π2

∫
R4 tr(F∇ ∧ ∗F∇) = 1. Similarly, for b ∈ H and λ ∈ R+, then

∇b,λ := d+Ab,λ, where Ab,λ := im( (x−b)dx̄
1
λ2 +|x−b|2 ) is a 5-parameter sequence of self-dual connections, where the

energy (pairwise gauge-inequivalent).

Proof. A(x) = Aj(x)dx
j = x1dx0−x0dx1+x3dx2−x2dx3

1+|x|2 i+ x2dx0−x3dx1−x0dx2+x1dx3

1+|x|2 j + x3dx0+x2dx1−x1dx2−x0dx3

1+|x|2 j

Denote the coe�cients 1
1+|x|2 (θii+ θjj + θkk) = A(x). Compute curvature:

dA+A ∧A = im(d(
x

1 + |x|2
)) ∧ dx̄+

x

1 + |x|2
dx̄ ∧ x

1 + |x|2
dx̄ =

= im(
(1 + |x|2)dx− x(dx̄x+ x̄dx)

(1 + |x|2)2
) ∧ dx̄+

xdx̄ ∧ xdx̄

(1 + |x|2)2
=

dx ∧ dx̄

(1 + |x|2)2
.

Note, that ∗ : Ω0 → Ω2 acts in a simple way. dx0 ∧ dx1 7→ dx2 ∧ dx3, the sign can be computed simply from

the de�nition α∧∗β =< α, β > vol, in the other cases dx0 ∧ dx2 7→ −dx1 ∧ dx3, dx0 ∧ dx3 7→ dx1 ∧ dx2. This

gives us a basis for Ω+, namely dx0 ∧ dx1 + dx2 ∧ dx3, dx0 ∧ dx3 − dx1 ∧ dx3, dx0 ∧ dx3 + dx1 + dx2. We can

compute dx ∧ dx̄ = −2(dx0 ∧ dx1 + dx2 ∧ dx3)i− 2(dx0 ∧ dx1 − dx2 ∧ dx3)j − 2(dx0 ∧ dx3 + dx1 ∧ dx2)k.

Now we can compute tr(F∇∧∗F∇) = tr(F∇∧F∇) = 1
(1+|x|2)4 2Re(. . . )vol. A simple check shows, that a con-

stant of−48 appears after taking the trace. Finally the "instanton charge" 48
8π2

∫
dvol

(1+|x|2)4 = 48
8π2 2π

2
∫∞
0

r3

(1+r2)4 dr =
1
448

1
12 = 1 as stated.

The 5-parameter family comes from the fact, that R4 is inariant under coordinate change of the form x 7→ x−b,

and we noted, that that the self-duality equation is invariant under conformal coordinate change, so we

produce x 7→ λ(x − b), this produces Ab,λ as imλ(x−b)d(λ(x−b))
1+|λ(x−b)|2 = λ2(x−b)2dx̄

1+λ2|x−b|2 = im (x−b)dx̄
1
λ2 +|x−b|2 will also be

self-dual, energy 1 connections. The only thing in need of checking, is that the integral stays equal to 1 after

scaling by λ. The curvature can be calculated similarly to be
1
λ2 dx∧dx̄

(1/λ2+|x−b|2)2 .

Inequivalence is seen from the curvature. It transforms by simple conjugation, and we see, that two matrices

of the form calculated previously cannot be conjugated into each other by SU(2) elements.

Remark 10.3. As λ → ∞, the metric |Fb,λ|2dvol converges weakly to dx̄
x−b

, which is δb.

If λ → 0, then |Fb,λ|2dvol approaches a metric called the "centerless instanton". Substitute x with q/λ. The

connection form approaches Im qdq̄
1+|q|2 .

Remark 10.4. The ∇b,λ connections can be obtained by conform scaling (Jackiw-Rebbi method) with the

choice fb,λ := 1+ 1/λ
|x−b|2 or λ+ 1

|x−b|2 , so the centerless instanton is obtained from the scaling fb(x) =
1

|x−b|2 .
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Homework 10.5. Prove, that ∃g : R4 → SU(2) such that gAb,0g
−1 + gdg1 = A0,0. (This is the reason it is

called "centerless").

Lemma 10.6. Let p : S \ {∞} → H be the stereographic projection, ∇b,λ as before. Consider p∗∇b,λ :

Ω0(S4 \ {∞}, p∗E) → Ω1(. . . ), the pullback connection. Then ther exists a gauge transformation from a

neighborhood of in�nity to SU(2) such that ∇′
b,λ = gp∗∇n,λg

−1 extends smoothly to a connection on an

SU(2) bundle E′ → S4, whose second Chern class c2(E
′) = 1. Moreover ∇′

b,λ will be a self-dual connection

according to the e.g. R = 1 standard metric of S4.

Proof. Uhlenbeck singularity removal theorem, in this special casewe should be able to compute it explicitly.

Homework 10.7. d
dtA

−1 = −A−1A′A−1.

Homework 10.8. f : C∗ → C a holomorphic function, and its local L2 norm is �nite, then f extends to C.

Consider the spherical S4, and the rank 2 SU(2) vector bundle over it with second Chern class 1. We found

∇b,λ, a 5-parameter family of connections, where ||F∇b,λ
||2 = C2(E) = 1. Accepting the fact, that there are

no other "instantons", we just found a parametrisation MS4(1) = B5 as the compacti�cation of S4 ×R+ by

gluing together the (b,∞) connections.

Another example is CP 2 with the Fubini-Study metric.

Lemma 10.9. Let E be the SU(2) vector bundle over CP 2 with c2(E) = 1. Then there exists a 1-parameter

family of energy 1 self-dual connections ∇b,t, where At =
1

1+|x|2−t2 (θii+ tθjj + tθkk) with t ∈ [0, 1].

Proof. We don't prove this.

Remark 10.10. As t → 0, we get 1
1+|x|2 θii, which is an U(1) ⊂ SU(2) self-dual connection, which will turn

out to be reducible. The moduli space will

11 Eleventh lecture

Lemma 11.1. Consider R4 with the standard Euclidean metric, and E = R4 × C2 the trivial SU(2) bundle

and ∇b,λ a self-dual connection on it. Then there exists a smooth extension ∇̃b,λ on the SU(2) bundle over

S4 with C2(Ẽ) = 1, where ∇̃n,λ is self-dual with respect to the spherical radius R metric of S4.

Proof. We saw last week, that 1 = ||Fb,λ|| with the L2 norm on R4, we calculate the integral 1
8π2

∫
R4 |Fbλ |dx =

− 1
8π2

∫
tr(Fb,λ∧∗Fb,λ). We know that ∗ is conform invariant, identifying R4 with S4\{∞} we see− 1

8π2

∫
tr(Fb,λ∧

∗Fb,λ). By the Lebesgue theorem this is the same,as if we would integrate over the whole S4. Self duality

stays intact, we can omit the ∗, and we see the Chern-Simons formula for C2(Ẽ). So ∇b,λ can only extend

over the C2 = 1 SU(2) bundle, if anywhere.

Now we do the extension. S4 \ {∞} = H, and we introduce a new coordinate, 1/y = x − b. Moreover

S4 = H+∪H− andH+∩H− = S3 ⊂ H, and we identify this S3 with SU(2). We take the gauge transformation

g(y) = y to glue together this bundle and compute how An,λ transforms. g(y)−1 = ȳ, and computing

yIm 1/yd( ¯1/y)
λ2+1/|y|2 we see, that it is smooth as y → 0, thus we have achieved the extension.

Denote by MS4,gr (1) the moduli space of �nite energy self dual connections over the radius R sphere and the

bundle with secondChern number 1. We know this to be an open B5, which we can compactify by "ideal"

instantons, which will become a closed 5-ball. Notice that its boundary is the original S4.
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11.1 Moduli space over CP2 with the Fubini-Study metric

11.2 Yang-Mills theory and YM-type classical �eld theories

De�nition 11.2. Let M, g be a closed Riemannian 4-manifold, called "spacetime". Let G be a compact Lie

group (SU(2)) (called the 'Gauge' group, note, that this is not GE).

12 Twelfth lecture

From now on M will denote a simply connected closed oriented manifold.

De�nition 12.1. Let (M, g)be an oriented riemanian 4-manifold, E an SU(2) bundle, where c2(E) = k ∈ Z
as arbitrary. ∇ is an SU(2) connection on E, S(∇) = −1

8π2

∫
M

tr(F∇ ∧ ∗F∇) the Yang-Mills functional.

Remark 12.2. So S is an AE → R+ non-linear map, it is also clear that it is gauge-invariant. This implies,

that it descends to BE .

12.1 Variation and YM equations

Theorem 12.3. On a given E bundle the Euler-Lagrange equation associated to the YM function is of the

form d∗∇F∇ = 0.

De�nition 12.4. The d∇F∇ = 0, d∗∇F∇ = 0 system of equations is called the vacuum YM equations. A

connection ∇ ∈ AE , which solves these equations is called a YM-�eld. Note that the �rst equation is just the

di�erential Bianchi identity.

Proof. If ∇,∇′ ∈ AE then we know that ∃a ∈ Ω1(M,End E) such that ∇′ = ∇ + a. This identi�es T∇AE

with Ω1(M,End E), ∇ + ta is a one paramter subgroup, representing a tangent vector. We also saw that

F∇+ta = F∇ + td∇a+ t2a ∧ a.

The YM functional gives an L2 inner product, we denote S(∇) = (F∇, F∇). Now we compute the variation

S(∇+ ta) = (F∇+ta = F∇+ td∇a+ t2a∧a, F∇+ta = F∇+ td∇a+ t2a∧a) = (F∇, F∇)+2t(F∇, d∇a)+O(t2).

This implies, that d
dtS(∇ + ta) = 2(F∇, d∇a). This has to vanish for all a, using the formal adjoint d∗∇ we

get 2(d∗∇F∇, a) = 0, this happens if and only if d∗∇F∇ = 0.

De�nition 12.5. d∗∇ : Ω2(M,End E) → Ω1(M,End E) is the formal L2 adjoint of d∇.

Lemma 12.6. If d∗∇ : Ωp(Mm, End E) → Ωp−1(Mm, End E), then d∗∇ = (−1)1+p(1−m)+p2 ∗ d∇∗.

Proof. Let ω, η ∈ Ωp(Mm, End E). By the closedness of M we get

0 =

∫
M

dtr(ω ∧ ∗η) =
∫
M

tr(d∇ω ∧ ∗η) + (−1)p
∫
M

tr(ω ∧ d∇ ∗ η) =

∫
M

tr(d∇ ∧ ∗η) + (−1)p−(m−p)p

∫
M

tr(ω ∧ ∗ ∗ d∇ ∗ η)

And thus (d∇ω, η) = (−1)1+p−(m−p)p(ω, ∗d∇ ∗ η), this means that d∗∇ = (±1) ∗ d∇∗.

Corollary 12.7. If ∇ is (anti-) self dual, i.e. ∗F∇ = ±F∇, then it solves the YM equations.

Proof. d∇F∇ is always true, and by the lemma d∗∇F∇ = ± ∗ d∇ ∗ F∇ = ±1 ∗ d∇F∇ = 0.
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Lemma 12.8. Let E be an SU(2) bundle with second Chern-class C2(E) = k. Then S(∇) = ||F∇||2 ≥
|C2(E)|, and an (anti-) self dual connection is a global minimum of the YM functional. Thus such a connec-

tion attains the minimum.

Proof. We claim, that if α ∈ Ω+(M), and β ∈ Ω−(M), then we can compute their pointwise scalar product

induced by the metric

(α, β) = −tr(α ∧ ∗β) = −tr(∗β ∧ α) = −tr(∗β ∧ ∗ ∗ α) = (∗β, ∗α)

So ∗ is an orthogonal operator at every x ∈ M . Now (α, β) = (∗α, ∗β) = −(α, β) = 0, thus Ω+ ⊥ Ω−.

||F∇||2 =
−1

8π2

∫
M

|F∇|2 ∗ 1 =
−1

8π2

∫
M

(|F+
∇ |2 + |F−

∇ |2) ∗ 1 ≥ −1

8π2

∫
|F±

∇ |2 ∗ 1

If ∇ is (anti) self dual, then this is equal to

=
∓1

8π2

∫
M

tr(F∇ ∧ F∇) = |C2(E)|

Remark 12.9. The Levi-Civita connection on SO(4) solves the YM equations, but is not a minimum.

De�nition 12.10. ∇ is called an (anti) instanton, if F∇ is (anti) self dual, and S(∇) < ∞.

Remark 12.11. Over a compact manifold being self dual is the same as being an instanton. A change of

orientation exchanges instantons and anti-instantons.

12.2 The structure of the instanton moduli-space and reducible connections

From now on we �x an orientation, and consider only instantons.

Lemma 12.12. Let E be an SU(2) bundle over M , and ∇ : Ω0(M,E) → Ω1(M,E) a non-�at connection,

and ∇End E : Ω0(M,End E) → Ω1(M,End E) the induced connection on the associated lie-algebra bundle.

TTFAE:

1. The factor of the stabiliser by the center G∇/Z2 = U(1) ⊂ SU(2)

2. ∇End E has nontrivial kernel

3. There is an U(1) bundle L with E = L⊕ L−1 and ∇ = ∇L ⊕∇L−1

4. G∇/Z2 ̸= 1

Proof. 1 → 2 :There is gt ∈ GE such that gt∇g−1
t = ∇, where gt(x) = diag(eitϕ(x), e−itϕ(x)), denote g′0(x) =

u(x) = diag(iϕ(x),−iϕ(x)). Take the derivative w.r.t. t to see that [u,∇] = 0. This means, that ∇End Eu = 0

and u ̸= 0, since by de�nition End E ⊂ E ⊗ E∗, in the E component we take derivative with ∇, and in the

E∗ component we get a sign �ip by pullback.

2 → 3 Choose u ̸= 0 ∈ ker∇End E . Since u(x) ∈ su(2)∀x ∈ M , we get that if u(x) ̸= 0, then its nonzero in an

open neighborhood of x ∈ U where u is nonzero, then there is a λ : U → R whith u(x) = diag(iλ(x),−iλ(x)).

There also exists a local section e ∈ Γ(U,E) with ue = iλe, moreover it can be chosen so (e, e) = 1. Take the
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covariant derivative u∇e = idλe+ iλ∇e and 2Re(∇e, e) = 0. Imaginary part of the pointwise scalar product

of the �rst equation with e gives dλ = im(u∇e, e) = −im(∇e, ue) = λRe(∇e, e) = 0 from the previous

relation. This means that λ is constant, this e extends to a global section, and splits the bundle. We want

to show, that ∇Ee±|U = 0. The section u|U = iλe+ ⊗ e∗+ ⊕ (−λi)e− ⊗ e∗− by the spectral theorem. Applying

∇End Eu = 0 gives us the previous equation. If ∇Ee = 0, then Ae ∼ de ∼ e, and the connection matrix

splits.

3 → 4 : by the splitting of the connection G∇/Z2 ⊇ U(1) by �xing the two components, so its nontrivial.

4 → 1 : requires the holonomy group. This is where we use the non-�atness condition. Note, that G∇ =

CSU(2)(Hol(∇)) the centralizer. If this is bigger than U(1), then it can only be a discrete subgroup, which is

ruled out by the �atness assumption.

De�nition 12.13. We call a connection satisfying any of the 4 properties a non-�at reducible connection.

Corollary 12.14. In the BE orbit space the (equivalence classes of) reducible connections are singular points,

understanding them is paramount.

Notice, that if ∇ is �at on E, then E = M × C2 and [∇] is unique.

Proof. F∇ = 0, thus C2(E) = 0, thus its the trivial bundle. Moreover by holonomy theory once again, �at

connections are in bijection with conjugacy classes of representations of π1(M) to SU(2), so by the simple

connectivity assumption every �at connection is gauge-equivalent with the ∇0 = d trivial connection.

∇ being �at is equivalent with G∇ = SU(2).

Lemma 12.15. Let M be a simply connected closed 4-manifold with b− = 0, L an arbitrary U(1) line bundle

over M. Then for every Riemannian metric g ∃!∇L self-dual connetion on M .

Proof. Since b− = 0, we know that H2 = H+, which means that H2(M,Z) ⊂ H+. By the Hodge decompo-

sition, and Chern Weyl theory we get that if L is a U(1) bundle over M, then there is a unique cohomology

class [ω] = c1(L) classifying it, and ω can be taken to be self-dual. Since ω is closed, by the Poincaré lemma

ω|U = dAU shows us, that there is a ∇L U(1) connection such that F∇ = ω, since F∇ = dAU in the abelian

case (which U(1) is). By the choice of ω this connection is self-dual, there is an instanton on L w.r.t. M, g.

For uniqueness let ∇′
L another self-dual connection with curvature F ′

∇. Since c1(L) = [F∇L
] = [F∇′

L
], there is

a ∈ Ω1(M) with F∇′
L
= F∇L

+da. a is not unique, a′ = a+df also su�ces for our purposes. We use this freedom

to achieve d∗a = 0. Thus we want to solve the equation d∗a′ = d∗a+d∗df = d∗a+(d∗d+dd∗)f = d∗a+△0f .

Is there an f with −d∗a = △0f? This is a second order linear elliptic PDE for f over a closed M . This

is posible if and only if −d∗a is L2 orthogonal to ker△0. By the maximum principle ker△0 consists of the

constant functions, so we need to show, that −c
∫
M

d∗a = 0, which is clear, so we can suppose d∗a = 0.

Applying d∗ to the equation 0 = d∗F∇′
L

= d∗F∇L
+ d∗da, so 0 = d∗da + dd∗a = △1a, so a ∈ ker△1 =

H1(M) = 0 by the Hurewicz theorem, and Hodge decomposition, so a = 0.

Lemma 12.16. If b− > 0, then for a generic metric a line bundle with nonzero c1 has no self-dual connection.

Proof. Trivial, since if b− > 0,then H+ ⊂ H2(M,Z) has nonzero codimension. For a generic choice of metric

the subspace H+ avoids the lattice H2(M,Z).
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Corollary 12.17. On an E bundle the gauge equivalence classes of reducible connections are in bijection

with α ∈ H2(M) : −α2 = c2(E).

Remark 12.18. 1 + c2(E) = c(E) = c(L⊕ L−1) = 1 + c1(L) + c1(L
−1)− c1(L)

2

13 Thirteenth lecture

Beginning remarks. α ∈ [α] ∈ H2
dR(M), we wish to compute qM (α, α) =

∫
M

α∧α = (α, ∗α)L2 . For a self-dual

form this is ±(α, ∗ ∗α) = ±||α||2L2 . This means, that the de�nite part of the intersection form coincides with

the self-dual and anti-self dual forms.

Remark 13.1. M closed simply connected 4-manifold with b− = 0, L → M a line bundle, then ∃! anti self-dual
U(1) connection on it. We give a di�erent proof without relying on PDE theory.

Proof. Existence is the same, let ∇,∇′ be self dual connections on L, [F∇] = [F∇′ ] ∈ H2 by Chern-Weyl

theory. This implies the existence of a ∈ Ω1(M,L) such that F∇′ = F∇ + da. We need to show, that there is

a map f : M → U(1) such that A′U = fAUf−1 + fdf−1 = Au − dlog(f) since U(1) is abelian. This exists by

simple connectivity. This shows gauge equivalence of the two connections.

13.1 The structure theorem

Let M be a closed simply connected 4-manifold, g a Riemannian metric and E → M an SU(2) bundle with

C2 = k. AE/GE = BE is the space of connections modulo gauge equivalence. ∇ ∈ AE we denote its class by

[∇].

De�nition 13.2. Mk(g) ⊂ BE denotes the (equivalence classes of) (M, g) self-dual SU(2) connections over

E. We call this the moduli space.

Theorem 13.3 (Atiyah-Hitchin-Singer '78). Let M be a closed simply connected oriented 4-manifold with

inde�nite intersection form. Then for generic metrics Mk(g)

� only consits of a single point if k = 0

� is an 8k − 3(1 + b−) dimensional*smooth manifold for k ̸= 0

Theorem 13.4. If M is as in the previous theorem, but positive de�nite, then for generic metrics Mk(g) is

� a single point if k = 0

� a smooth manifold of dimension 8k− 3 at irreducible points, and is modelled by a cone over CP 4k−2 at

reducible points for k ̸= 0

Moreover ∀k ∈ Z there are �nitely many reducible (i.e. singular) points. Their number is equal to the number

of 2-cohomology classes α which satisfy −α ∧ α = c2(E).

In the k = 1 case the moduli space consits of reducible points, and by the grafting theorem of Taubes we

have concentrated connections at the open end of the moduli space, our goal is to make this happen.

*in particular its empty if the dimension is negative
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13.2 Quick PDE summary: Sobolyev spaces of sections.

Let M be a closed manifold with a riemannian metric. Let E be a G-bundle with G compact endowed with

a G-invariant positive de�nite inner product <,>. Let ∇ a �xed arbitrary G-connection on E.

De�nition 13.5. Let s ∈ Γ(M,E) a section, ||s||Ck(M) :=
∑k

0 ||∇(n)(s)||C0(M), the sum of the sup-norms of

the �rst k ovariant derivatives of s. We also denie ||s||p
Lp

k(M)
:=

∑k
0 ||∇(n)(s)||pLp(M) with the Lp norm de�ned

by (
∫
M

| · |p)1/p.

Homework 13.6. L∞
k = Ck.

De�nition 13.7. Ck(M,E) is de�ned to be the completion of C∞(M,E) w.r.t. the Ck metric, and similarly

we de�ne Lp
k(M,E) to be the complection w.r.t. the Lp

k norm.

Remark 13.8. These spaces are independent of the choice of g and ∇.

Theorem 13.9 (Sobolyev embedding). For compact M , there exists a continous embedding L2
k(M,E) ↪→

Cl(M,E) if k > dimM/2 + l. I.e. there is a constant c such that ||s||Cl ≤ c||s||L2
k
for each section s.

Corollary 13.10. ∩kL
2
k = C∞

Let P : C∞(M,E) → C∞(M,F ) a kth order elliptic partial di�erential operator (e.g. the Laplace opera-

tor,which is a second order PDO). For example, locally it should look like P |U =
∑

aijDiDj +
∑

biDi + ci,

ellipticity means, that the eigenvalues of the symmetric matrix (aij) : M → R has only positive eigenvalues,

order means to which order are we taking derivatives.

Theorem 13.11 (Existence, unicity and regularity). Let M, g be a closed riemannian manifold, E,F two

G-bundles over M and P a linear kth order elliptic PDO (inparticular rk E = rk F ). We extend this operator

to some generalised weak function class. In this case Pu = f has a solution i� f ⊥ coker P . Moreover the

solution is unique if ker P = 0. Finally if s ∈ Lp
l (M,E), then ∀l ∃cl so that ||s||Lp

l+k
≤ cl||Ps||Lp

l
+ c||s||Lp

0
,

and c = 0 can be assumed if ker P = 0.

Corollary 13.12. If Pu = 0, then u ∈ C∞(M,E).

Theorem 13.13 (Sobolyev multiplication theorem). Let M be a closed n-manifold, then there exists a

continous embedding Lp1

k1
⊗ Lp2

k2
↪→ Lp

k if k − n
p ≤ (k1 − n

p 1
)(k2 − n

p 2
).

In other words ||fg||Lp
k
≤ c||f ||Lp1

k1

||g||Lp2
k2

for some c dependent only on M, g.

Remark 13.14. If pk > n, then Lp
k ⊂ C0 and the theorem is trivial, the statement is interesting if pk <

n, pi, ki < n.

13.3 Uhlenbeck theorems

Theorem 13.15 (Coulomb gauge �xing theorem '82). Let S4, gR be the round sphere and E0 the trivial

SU(2) bundle and ∇ an arbitrary SU(2) connection on E0. In this case there exists ϵ > 0, N < ∞ constants

such that if ||F∇||L2 < ϵ, then

1. ∃g ∈ GE0
with ∇′ = g∇g−1 there is a trivialisation of E0,where ∇′ = d+A′ there d∗A′ = 0, called the

Coulomb gauge
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2. ||A′||L2
1
< N ||F∇′ ||L2

Proof. We are unable to prove this now.

Remark 13.16. ||A′||L2
1
:= ||A||L2 + ||dA||L2 on E0 by choosing the trivial connection.

Theorem 13.17 (Singularity removal global form). Let M be closed 4-manifold, E×,∇ as before over

M \ {∗} = M× with ∇ self-dual and ||F∇||L2 < ∞. We claim that there exists g ∈ GE× such that the

transformed ∇′ extends smoothly to some E → M SU(2) bundle as an SU(2) connection.

Proof. We again lack the resources for a proof, we have to believe.

Remark 13.18. ||F∇′ ||L2 gives the type of E.

13.4 Ideal connection, weak and strong convergence

De�nition 13.19. M as before and let E → M an SU(2) bundle with second Chern class k. A (∇B , {x1, . . . , xl})
tuple is an ideal connection if

� 0 < l ≤ k

� [∇B ] ∈ Mk−l(g)

� x1, . . . , xl ∈ M are not necessarily di�erent points

De�nition 13.20. The curvature density of a [∇B ], {x1, . . . , xl} ideal connection is 1
8π2 |FB |2+

∑l
1 δxj

where

FB := F∇B
and δy is the y ∈ M Dirac measure.

Remark 13.21. The energy of an ideal connection is de�ned as 1
8π2

∫
M

|FB |2 +
∫
M

∑l
1 δxj = k.

De�nition 13.22. Let ∇An ∈ Mk(g) instantons for all n on E with second Chern class k, as before. We

call this sequence weakly convergent to a (∇B , {xi}l1) ideal connection if

� for every integrable function f : M → R we have
∫
M

f |FAn
|2 n→∞−−−−→

∫
f |FB |2 +

∑
f(xj)

� for every K ⊂ M \∪{xj} compact subset [∇An
|K ] → [∇B |K ], i.e. for every n, there is a gn ∈ GE|M\∪{xj}

such that B|K −A′
n|K ∈ Ω1(K,End E) satis�es ||B −A′

n||Ck(K) → 0 (n → ∞) for every k.

Remark 13.23. For l = 0 the ideal connection is just a normal connection, and the convergence notion is the

strong convergence.

14 Fourteenth lecture

Corrections.

Proposition 14.1. M simply connected closed 4-manifold, L → M complex line bundle, then there exists a

unique self-dual instanton over it.

Proof. We saw, that such a ∇ exists. If ∇′ is another such connection, then their curvatures are equal. We

also need, that there is a g : M → U(1) such that ∇′ = g∇g−1. Since F∇ = F∇′ , over some U subset they

have the form dAU and dAU ′
. This means, that AU − AU ′

is closed. Also ∇′ = ∇+ a for some a ∈ Ω1(M).

So a|U = AU ′ − AU and a is closed as well, and by simple connectivity its cohomology clas has to be zero,

thus a = df for some f : M → u(1). Now we can de�ne g := eif .
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14.1 Uhlenbeck weak convergence theorem

Proposition 14.2. Over the trivial C2 bundle over S4 let ∇i be a weakly self-dual sequence of connections,

where weakly self-dual means, that for every L1 function f we have
∫
S4 |F−

i |2f = 0, and where ||Fi|| < ϵ,

where ϵ comes from the Uhlenbeck gauge �xing constant, then there is a subsequence ∇ik and gi gauge

transformations such that the transformed conections ∇′
ik

converge in the C∞ topology to a ∇ self-dual

connection.

Proof. For k = 1 the Coulomb gauge theorem gives us that for 0 < ϵ we have ∇′ with d∗A′ = 0 and a

constant N such that ||FA′ || ≤ Nϵ.

For k = 2 if ∇ is self dual, take (dA+A ∧A)− = F−
A = 0 at least weakly.

Note, that
√
∆ = ±(d + d∗),easy to see by squaring. Secondly, since M is closed then kerd + d∗ = ker∆ =

Hk(M) 0 = (∆ϕ, ϕ) = ||dϕ||2 + ||d∗ϕ||2, implying the statement. So if the manifold has no homology in some

degree, then there the Dirac operator has no kernel.

Thirdly if dimM = 4, then d+ d∗ : Ω1 → Ω2 ⊕ Ω0 is elliptic.

Apply elliptic regularity to ||A′||L2
2
≤ c1||(d+d∗)−A′||L2

1
+c2||A′||L2 . Since kerd+d∗ = ker∆1 = H1(S4) = 0,

we can choose c2 = 0. From the Coulomb gauge theorem we can omit the d∗ operator, and dA− ∼ (A ∧A)−

so in the end we get the upper bound c2||A′||2
L4

1
by the multiplication theorem since 1 − 4/2 ≤ 0. Finally

we can return to the L2
1 norm by the Hölder-Minkowski inequality: if M is a compact manifold, we write

||f ||pLp =
∫
m
|f |p =

∫
M
(|f |q)p/q · 11−q/p ≤ (

∫
M

|f |q)?(
∫
M

1)?.

For k ≥ 3 we play the same game, ||A′||L2
k
will be bounded above by c||A′ ∧A′||L2

k
≤ c||A′||2

L2
k
.

Finally we apply the Arzela-Ascoli theorem to get a convergent subsequence.

Remark 14.3. The Uhlenbeck Coulomb gauge theorem and the above weak compactness theorem was stated

for small curvature self-dual connections over S4, but using bump functions they can be extended to similar

theorems over B4 ⊂ S4. This can be interpreted to mean that these are 'local' forms of the theorems, now

we state the global forms, valid for manifolds.

Theorem 14.4. Let M be a closed simply connected manifold, E → M an SU(2) bundle, ∇i a sequence

of self dual connections over E. Suppose, that there are points x1, . . . , xl ∈ M such that for each x ̸= xi in

M has a neighborhood Ux disjoint from the xi such that ||F∇i ||L2 < ϵ, where ϵ is from the Coulomb gauge

theorem.

Then there is a subsequence ik where ∇ik converges over the compact subsets of M \ (∪{xi}) in the C∞

topology to a self-dual connection ∇ over M \ (∪{xi}).

For the proof, we need that M decomposes as a union of B4's, and we patch together the previous local

theorems.

Theorem 14.5 (Uhlenbeck weak compactness '82). Let M,E as before, k = c2(E)[M ] and [∇i] ∈ Mk(g) an

instanton sequence. Then there is a [∇j ] subsequence which weakly converges to a ∇, x1, ..., xl ideal connection.

Remark 14.6. Here ∇ is representing an element of Mk−l(g). In particular it is de�ned on the whole of M .

Proof. Consider the measure induced by the curvature of ∇i, µi :=
1

8π2 |Fi|2. By boundedness of this measure,

there is a subsequence ∇j where the measures µi converge weakly to some µ measure on M .
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Suppose, that there is a point with positive measure x : µ(x) > 0. If* µ(x) ≤ ϵ, then there is some Ux

neighborhood of it whose measure is also less than ϵ. Then by the local convergence theorem ∇i|Ux converges

strongly to a connection on Ux, and µ(x) = 0.

Thus we assume, that µ(x) ≥ ϵ. Since µ(M) = k, we know that there can be at most l < k/ϵmany such points,

xi. By removing these points, we can apply the previous theorem, there is a subsequence which converges in

a strong sense (over compacts) to some self-dual connection ∇ over M \ (∪{xi}).
We compute its energy, since tr(FA ∧FA) = dCS(A), we can compute the integal by removing a ball around

one of the xi points. There the sequence of connections converges, and we get that we lose some whole

numbers from the energy. From this observation it follows that l ≤ k and [∇] ∈ MM\{x1,...,xl}
k−l (g). Thus on

the complement of the xi's ∇ has �nite energy, and we can apply the Uhlenbeck singularity removal theorem

to produce ∇ over the entire M , which will b e automatically self-dual on M, g, and smooth.

14.2 Donaldson's theorem and a fake R4

Let M be a closed simply connected 4-manifold, whose intersection form is positive de�nite. Furthermore let

E → M be an SU(2) bundle with c2(E)[M ] = 1. From the structure theorem we get, that for generic metrics

M1(g) is an 8 · 1− 3 = 5 dimensional manifold outside the reducible points.

Note, that the number of (gauge classes of) reducible connections is the number of topological reductions of

E, i.e. (α,−α) ∈ H2 ×H2 : α2 = 1

Lemma 14.7. If c2(E)[M ] = 1 and {(α1,−α1)..., (αt,−αt)} is the set of topological reductions of E, then

{αi} is an independent set in H2(M,Z).
Moreover if M has a diagonalisable intersection form over Z, then t = b2.

Proof. (αi + αj)
2 = 1 + 2αiαj + 1 gives us that αiαj = 0, so they are independent.

For the other statement, one can take the elements of a diagonal basis to represent the topological reductions.

Notice also, that because k = 1 we know that l = 1 by asumption, from the weak compactness theorem

M1(g) may be compacti�ed as M1(g) ∪M .

Theorem 14.8 (Donaldson collar theorem '82). The compacti�ed moduli space M1(g)'s end is di�eomorphic

to M × [0, ϵ).

Theorem 14.9 (Donaldson's nonexistence theorem '82). Let M be a closed simply connected positive de�nite

smooth 4-manifold, then qM can be diagonalised over Z, i.e. qM ≃ n < 1 >.

Proof. By the previous theorems we know that the space M1(g) has a boundary component di�eomorphic to

M , and singular points, which are locally di�eomorphic to cones over CP 2. By cutting o� neighborhoods of

the singular points, we get an oriented� cobordism between M and kCP 2#lCP 2. We know that the signature

is an oriented cobordism invariant, so σ(M) = k− l, but since qM is positive de�nite, σ(M) = b+ = b2, since

k + l = b2 as well by the cobordism, we get that l = 0, k = b2 = b+.

To see exotic R4's we state the following theorem as well.

*the ϵ is from the Coulomb gauge theorem, we will not state this further, it is always assumed
�this, we didn't state
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Theorem 14.10 (Freedman '81). There is an X simply connected closed 4-manifold with intersection form

−E8 ⊕−E8⊕ < 1 >.

Corollary 14.11. X is non-smoothable.

Proof. By Donaldson.

Theorem 14.12 (Freedman, Quinn, Gompf). X \ {pt} is smoothable.

Theorem 14.13. There is an exotic R4.

Proof. X has no smooth structure, whileX× := X\{x0} does admit one. Let x0 ∈ X, consider a neighborhood

of it Ux0 \{x0}, which is homeomorphic to S3× [0, 1]. We state that by identifying S3 with the hopf �bration,

that S3 × I gets identi�ed with ν(CP 2 ⊂ CP 2) \ CP 1, di�eomorphic. We glue to the "outer" S3 boundary

part a B4 to get back CP 2 with a sphere removed. This space is homeomorphic to R4, but we claim, that it

inherits a non-standard di�erentiable structure from CP 2.

In the standard R4 any compact subset can be covered with a smooth ball. We claim, that in this space there

are compact subsets
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