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1 First lecture

1.1 Motivation

We study commutative rings, so during the course every ring is commutative, with identity, unless otherwise

speci�ed. Three main motivators are algebraic number theory, i.e. the study of Z: introduces quotients e.g.
Zm for Diophantine equations, and extensions of Z are studied, e.g. |K : Q| <∞ a �nite extension.

De�nition 1.1. α ∈ K is an algebraic integer, if it satis�es a monic polinomial, i.e. αn +
∑n−1

0 ciα
i = 0.

OK denotes the ring of algebraic integers (proof later).

Speci�cally it contains Z, and we study it's number theory, and this provides information about Z itself.

Example 1.2. x3+y3 = z3, we want to study this in Z[ω], where ω is a primitive third root of unity (Eulerian

integers). Here K = Q[ω]. Now we can write x3 = z3− y3, and we can factor this as (z− y)(z−ωy)(z−ω2y).

Another motivator is invariant theory. X is "some sort of space", a set with some structure, a vector space,

a topologial space, algebraic variety or similar, and we have a group G acting on X by symmetries. Consider

a function f : X → R, which are invariant under this group action, i.e. fg = f , meaning f(gx) = f(x) for all

g ∈ G. We want to consider all invariant functions, which will again form a ring (under pointwise operations).

If we have no structure on X, these are just functions de�ned on the orbits, not very interesting, but if we

only allow structure preserving functions, this becomes rather nontrivial.

Example 1.3. Suppose we have a vector space over a �eld K, for example X = Kn (suppose |K| =∞), and

take polynomial functions X → K, denoted K[x1, . . . , xn]. Consider the group Sn acting by permutation

of variables. We denote the invariant functions by K[x1, . . . , xn]
Sn ≤ K[x1, . . . , xn], these are polynomials

invariant under a permutation of coordinates, i.e. symmteric polynomials. This will again be a polynomial

ring generated by the elementary symmetric polynomials.

The third big motivator is algebraic geometry! It is the study of point-sets de�ned by polynomial equations.

Take a �eld extension L|K, and look at the a�ne space Ln. We take a set of polynomials F ⊂ K[x1, . . . , xn],

and de�ne VL(F) := {α ∈ Ln|f(α) = 0 ∀f ∈ F}. Conversly,one can look at a subset Y ⊂ Ln, and consider

IK(Y ) := {f ∈ K[x1 . . . , xn]|∀α ∈ Y f(α) = 0}, this is clearly an ideal in K[x1 . . . , xn] =: A. Clearly

A/IK(Y ) = {f |Y : f ∈ A}.
An important special case is when L = K, an algebraically closed �eld.
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Proposition 1.4. These sets VL(F) are the closed sets of a topology, the K-Zariski topology on Ln.

Proof. Firstly we need that ∅ is closed, this is true, it is the zero locus of the constant 1 polynomial.

Secondly Ln is closed, as it is the zero set of the constant 0 polynomial, or the empty polynomial set.*

We need that arbitrary intersections of closed sets is closed as well. ∩VL(Fi) = VL(∪Fi) is clear, and we are

done.

Finally, the union of two closed sets has to be closed. VL(F ) ∪ VL(G) = VL(FG), where FG := {fg : f ∈
F, g ∈ G}. The ⊂ containment is easy, if F vanishes at some point, all products of the form fg also vanish,

similarly for G The other direction is trickier. Assume fg(α) = 0 forall fg ∈ FG, but there exists f and g

which don't vanish at a point, but this contradicts our assumption, since the product of two nonzero numbers

is nonzero, so it does not vanish in FG.

Let's restrict ourselves to the algebraically closed case, and take an a�ne algebraic (i.e. Zariski closed) set

X ⊂ Kn.

De�nition 1.5. The coordinate ring of X is de�ned as before A/I(X) =: AX .

This is the K-algebra generated by the restrictions of the coordinate functions of Kn to X.

If we have L|K an extension, and F ⊂ A := K[x1, . . . , xn], we see, that VL(F ) = VL((F )) = VL(
√

(F )).

De�nition 1.6. The radical of an ideal I ⊂ A is de�ned as
√
I := {α ∈ A : ∃k : αk ∈ I}. The nilradical of

A is de�ned as N(A) :=
√

(0), this is precisely the set of nilpotent elements.

Proposition 1.7. The radical of an ideal is again an ideal.

Remark 1.8. This is not true in noncommutative rings! The sum of two nilpotent matrices is not neccesarily

nilpotent.

Proof. 0 ∈
√
I is clear. If a ∈ A, b ∈

√
I, then ab ∈

√
I, since we have a k such that bk ∈ I, thus (ab)k ∈ I.

The only nontrivial bit, is that the radical is closed under addition. Suppose a, b ∈
√
I we have an exponent

such that ak ∈ I, bl ∈ I, expand (a + b)k+l−1 =
∑
i+j=k+l−1

(
k+l−1
i

)
aibj , and we see that each term is in I,

since either i ≥ k or j ≥ l.

For the second equality, we only need, that if f(α)k = 0, then f(α) = 0.

1.2 A more formal introduction

De�nition 1.9. A subring always means a subring containing the identity. In particular the identity element

of a ring, and its subring is always the same. Also ring homomorphisms should respect the identity element!

Example 1.10. In Z6 the subset {0, 3} is not considered a subring

De�nition 1.11. If A is a ring, and a ∈ A, we call a a zero-divizor i� there exists 0 ̸= b ∈ A such that

ab = 0. Inparticular we consider zero a zero divisor in any ring except the trivial.

De�nition 1.12. A ring is a domanin i� it has precisely one zero divizor. In particular the trivial ring is

not a domain.

A is a �eld, if A \ {0} is a group w.r.t. multiplication.

*either one is �ne
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Fact 1.13. Every �eld is a domain.

De�nition 1.14. I ◁ A, I is called maximal i� I ̸= (1) and ̸ ∃I ⊊ J ⊊ A, with J ◁ A.

Proposition 1.15. An ideal I ◁ A is maximal i� A/I is a �eld.

Proof. I being maximal is equivalent to having precisely two ideals in the interval [I, A], this is again equiv-

alent to the quotient A/I having exactly two ideals, which are clearly the �elds.

Maximal ideals are not functorial unfortunately.

Example 1.16. Z ↪→ Q, Q only has one maximal ideal, (0), but the preimage has more maximal ideals.

To correct this, we wish to consider ideals, the quotient of which are domains, since a subring of a domain is

again a domain.

De�nition 1.17. A is a ring with P ◁A. P is called prime, i� P ̸= (1), and if a, b ∈ A, ab ∈ P implies a ∈ P
or b ∈ P .

Example 1.18. A = Z, the ideals are of the form (n). This ideal is prime if n ̸= 1, and we need n|ab to imply

n|a or n|b, i.e. n = 0 or a prime number.

Remark 1.19. (0) is prime i� A is a domain.

Proposition 1.20. I is prime i� A/I is a domain.

Proof. I ̸= (1) is equivalent to |A/IW | ≥ 2. The other condition is equivalent to saying that A/I has no

nonzero zero divizors, and this reproduces the de�nition of a domain.

Corrolary 1.21. Every maximal ideal is prime.

Proposition 1.22. ϕ : A→ B is a ring homomorphism, and P ◁B is a prime ideal, then ϕ−1(B) is a prime

ideal in A.

Proof. The preimage of an ideal is always an ideal, trivial homework. Take the quitoent A/ϕ−1(P ) ≤ B/P ,

since A
ϕ−→ B

ν−→ B/P , and kerν = P , the kernel of the composition, denoted by ψ will be ϕ−1(P ), and this

shows, that A/ϕ−1(P ) = imψ is a subring of B/P , i.e. a domain.

Sometimes we need to show, that many prime ideals exist, a tool for this is

Lemma 1.23 (Zorn). Let (Σ,≤) be a partially ordered set such that every chain* has an upper bound. Then

Σ has a maximal element, i.e. ∃m ∈ Σ such that ̸ ∃m′ ∈ Σ such that m < m′.

Proposition 1.24. A is a ring with I ◁ A, I ̸= (1). Then ∃M ◁ A a maximal ideal with I ⊂M .

Proof. Consider Σ = {J ◁ A : I ⊂ J, J ̸= (1)}, this is a nonempty set (it contains I), endowed with the ⊂
relation. Take a chain in this C ⊂ Σ. If C is the emptyset, then I is an upper bound. If the chain is nonempty,

then consider ∪C, which is again an ideal containing I, and not containing 1, an upper bound! Now apply

Zorn's lemma to get a maximal element of Σ, call it M . This will be our maximal ideal containing I

Corrolary 1.25. If A is a ring with at least two elements, then it has a maximal ideal.

*totally ordered subset
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Proposition 1.26. Suppose that in a ring A, we have a multiplicatively closed subset S containing 1. Let

Σ := {I ◁ A : I ∩ S = ∅}, and let P be a maximal element of Σ. Then P is prime.

Proof. P ∩S = ∅, so it does not containg 1. We need to prove, that if a, b ̸∈ P , then ab ̸∈ P . Look at P +(a),

this is a strictly bigger ideal, than P . This means, that it is not disjoint from S (i.e. not in Σ). So for some

elements p+ ra = s, and repeating the same argument p′ + r′b = s′. Multiply these together,

S ∋ ss′ = (p+ ra)(p′ + r′b) = pp′ + pr′b+ rap′ + rr′ab

We see that the �rst three terms are in P , this implies, that rr′ab ̸∈ P .

Theorem 1.27. If A is a ring, then the nilradical

N(A) =
⋂

P a prime ideal

P.

Further if I ◁ A, then √
I =

⋂
I⊂P a prime ideal

P

Proof. It enough to prove the second statement, the �rst is the second applied to (0). The inclusion ⊆ is

trivial, for if a ∈
√
I, and I ⊂ P is a prime ideal since ak ∈ P , a itself will be in P by primality.

For ⊇ we take x ̸∈
√
I, and want a prime ideal I ⊂ P such that x ̸∈ P . Take S = {xk : k ∈ N}, this is a

multiplicative subset clearly. Take Σ = {J ◁ A : I ⊂ J, J ∩ S = ∅}. I is such an ideal, so it is nonempty. We

can apply Zorn's lemma for the same reason as before. Take P ∈ Σ maximal, and by the previous proposition

it is prime, and not containing x.

De�nition 1.28. A is reduced if N(A) = {0}.

Example 1.29. Zpn is non-reduced for n > 1, also K[x]/(x2) for geometers :)

Proposition 1.30. If A is any ring, then A/N(A) is reduced.

Proof. Assume r + N(A) is nilpotent in the factor. This means, that ∃n ≥ 1 : (r + N(A))n = N(A), i.e.

rn ∈ N(A), so it is nilpotent, there is a k such that (rn)k = 0, thus r is nilpotent, it is in N(A).

De�nition 1.31. Spec(A) as a set is the collection of prime ideals of A. It is endowed with the appropriate

notion of a Zariski topology, namely for any I ◁ A we can take V (I) := {P ∈ Spec(A) : I ⊂ P} to be the

closed subsets.

We check that this is actually a topology.

Lemma 1.32. This makes Spec(A) into a topological space.

Proof. Finite unions enough to check two. V (I) ∪ V (J) = V (IJ). If I ⊂ P , then IJ ⊂ P , so ⊆is clear. If
P ∈ V (IJ), then since P is prime IJ ⊂ P implies I ⊂ P or J ⊂ P clearly by the de�nition (if a ∈ I, ̸∈ P
and b ∈ J, ̸∈ P , then ab ∈ IJ, ̸∈ P , a contradiction to the primality of P ).

Arbitrary intersections. Take
⋂
V (Iα), this will coincide with V ((∪Iα)). To see this pick a P from the

intersection. This means, that it contains every Iα, and this further implies, that it contains the ideal generated

by all of them, i.e. P ∈ V ((∪Iα)).
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De�nition 1.33. I, J ◁ A, the product is de�ned as IJ := {
∑k

1 aibi|ai ∈ I, bi ∈ J}.

Remark 1.34. As a topological space Spec(A/N(A)) ≃ Spec(A).

Proof. Every prime ideal contains the nilradical, so P 7→ P/N(A) will be a prime ideal* in A/N(A), and a

good choice for a homeomorphism. Take P ̸= Q two prime ideals in A, then P/N(A) ̸= Q/N(A) obviously,

take elements which distinguish them, then a+N(A), b+N(A) distinguishes the two factors. It is surhective,

take the preimage of an ideal in the factor, the second isomorphism theorem tells us that A/ϕ−1(P ) =

A/N(A)/P , which is a domain, i.e. the preimage is prime.

Why is it a homeomorphism? Take Ī ⊂ A/N(A), and V (Ī) ⊂ Spec(A/N(A)). The preimage consists of prime

ideals, which contain the preimage of Ī under the factor map, so it is also closed and the map is continous.

For the continuity of the inverse take� I ◁ A, V (I) = {P |I ⊂ P} = {P |I +N(A) ⊂ P} since any prime ideal

contains the nilradical. The image under ϕ will be a closed set, namely V ((I +N(A))/N(A)).

When is Spec(A) = {∗} for a reduced ring A. This means there is a single prime ideal, which has to be zero.

There are always maximal ideals as well, so A is in fact a �eld.

Taking the spectrum is a contravariant functor. For a map ϕ : A → B the induced map ϕ∗ : Spec(B) →
Spec(A) is de�ned by taking the complete preimage.

Lemma 1.35. P ◁ B is prime, then ϕ−1(P ) is also prime.

Proof. A/ϕ−1(P ) ↪→ B/P , and any subring of a domain is a domain, so the preimage is indeed a prime.

Points should correspond to the images of the singleton sets. If P ∈ Spec(A), then A→ A/P ↪→ K = Q(A/P )

into the �eld of fractions, this gives the ϕ∗ : Spec(K) = {∗} → Spec(A) that hits P .

Proposition 1.36. ϕ∗ : Spec(B)→ Spec(A) is continous.

Proposition 1.37. Take I ◁ A, the closed set V (I) ⊂ Spec(A) has to have closed preimage. This preimage

looks like {P ◁ B|ϕ−1(P ) ⊃ I}, i.e. P ⊂ ϕ(I), and it is a closed set V ((ϕ(I)))

2 Second lecture

De�nition 2.1. Let A be a ring (commutative with 1 as always), the Jacobson radical of A is the intersection

of all maximal ideals, J(A) := ∩m−Spec(A)M .

Proposition 2.2. J(A) ◁ A, since it is the intersection of ideals.

N(A) ⊂ J(A), since N(A) ⊂ ∩PprimeP ⊂ ∩m−Spec = J(A) since every maximal ideal is prime.

J(A/J(A)) = 0

Proof. We have the map A → A/J(A) → 0. The maximal ideals of the factor correspond to the maximal

ideals of A, containing J(A). We have to intersect all maximal ideals containing J(A) in A, which is just

J(A), so it goes to zero in the factor.

Example 2.3. J(Z) = 0, since the maximal ideals are the ideals generated by prime numbers.

*second ismorphism theorem says that (A/N(A))/(P/N(A)) = A/P , which is a domain
�I + J = (I, J)
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Proposition 2.4. J(A) = {x ∈ A : 1− xy ∈ U(A) ∀y ∈ A}

Proof. Start with ⊆: x ∈ J(A) means, that it is contained in all maximal ideals. This implies, that ∀y and

max ideal M xy ∈M , so 1− xy ̸∈M , implying that (1− xy) = (1).

Now⊇. Consider x ̸∈ J(A), so there is a maximal idealM excluding it. There is a natural map A→ A/M → 0,

the fator is a �eld, x̄ is nonzero, so it is invertible, thus it has an inverse ȳ such that x̄ȳ = 1̄, meaning

1− xy ∈M , thus it is not a unit.

And now for something completely di�erent, AM modules. (M,+) is an abelian group, with a multiplication

by elements of A given, satisfying the standard axioms:

� (a+ b)m = am+ bm

� a(m+ n) = am+ an

� (ab)m = a(bm)

� 1m = m

We can talk about submodules, a subset containing 0, closed under the addition operation, and the scalar

multiplication. Given U, V ≤ M , we can talk about U + V = {u + v} =< U ∪ V >≤ M . Also for I ◁ A we

can have IU = {
∑
aiui : ai ∈ I, ui ∈ U}. Every ring is a module over itself, the submodules are precisely the

ideals of A.

We can also talk about factor modules.

De�nition 2.5. U, V ≤M , consider (U : V ) := {a ∈ A : aV ≤ U} ◁ A.

Remark 2.6. (U : V )V ≤ U

De�nition 2.7. AnnV := (0 : V ) (again obviously an ideal of A).

De�nition 2.8. N ≤ M we can form M/N . For m,m′ ∈ M we say m ≡ m′ mod N i� m − m′ ∈ N ,

and consider the set of equivalence classes under this relation, consisting of N , and its translates. Take the

quotient group as tha base group of the new module, and the ring action is inherited from M .* We also have

the factor map, a homomorphism of modules.

Theorem 2.9 (Homomorphism theorem). ϕ :M → N a homomorphism of A-modules, imϕ =M/kerϕ.

Theorem 2.10 (First isomorphism theorem). H,N ≤M , (H +N)/N = H/(H ∩N)

Theorem 2.11 (Second isomorphism theorem). L ≤ N ≤M , then M/N = (M/L)/(N/L).

Remark 2.12. U, V ≤M , then (U : V ) = Ann((U + V )/U)

Proof. a ∈ A, if aV ≤ U , then a(U + V ) ≤ U equivalently. This also means that a((U + V )/U) = 0, which

was the statement.

To study rings, we consider modules over that ring. This is motivated by the fact for example, that ideals

are the submodules of AA, and factors are also modules A(A/I).

*easy check
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De�nition 2.13. AM is �nitely generated (M is �nite over A), if there exists m1, . . . ,mn such that M =<

m1, . . . ,mn >.

Proposition 2.14. AM , then M is �nite over A i� ∃n and a homomorphism such that the sequence An →
M → 0 is exact.

Proof. An =< e1, . . . , en > obviously, if we have a surjective homomorphism, the images of these generate

M . Conversely, if M is �nite over A, take the �nitely many generators m1, . . . ,mn, and obviously ei 7→ mi

extends to a homomorphism.

AM , we can look at S(M) := {N : N ≤ M}. We can order the submodules w.r.t. inclusion, or reverse

inclusion to get two posets.

De�nition 2.15. Given a poset (S,≤), we say that S is Noetherian, if every ascending chain stabilises, i.e.

for any chain s1 ≤ s2 ≤ . . . there exists an n, such that sn = sn+1 = . . .

We call S Artinian, if this holds for descending sequences s1 ≥ s2 ≥ . . . .

Proposition 2.16. (S,≤) a poset, the following are equivalent.

1. S is Noetherian

2. Every strictiy ascending chain is �nite (there is no strictly increasing in�nite squence)

3. Every nonempty subset has a maximal element

4. Downwards induction works in S, i.e. for a property P to hold for all elements of S it is su�cient, to

satisfy the following: If s ∈ S, and Pt for all t > s, then Ps.

Proof. Trivial. The �rst two are clearly equivalent. The three implies four, since s ∈ S : ̸ Ps, if this is nonempty,

it has a maximal element s, and downwards induction fails.

Conversely four implies three. Consider P ≠∈ X, by contradiction, if X has no maximal element, then by

induction P holds for all s ∈ S, i.e. X = ∅.
Clearly 3 implies 2, and conversely 2 implies three, if a set has no maximum we create an in�nite chain by

choosing greater and greater elements.

Similarly

Proposition 2.17. Artinian property has the same proposition with the relations reversed.

De�nition 2.18. Given AM , we say that is is Noetherian i� (S(M),≤) is Noetherian, and Artinian i�

(S(M),≤) is Artinian.

Example 2.19. Look at ZZ. It is Noetherian, but not Artinian. We can have a decreasing in�nite chain

(p) ⊃ (p2) ⊃ . . . , but no ascending ones.

For a prime p we can consider Zp∞ := {k/pn : n, k ∈ N} with addition mod 1 as operation. This is an Abelian

group, i.e. a Z module, which is Artinian, but not Noetherian. We see this by descibing all subgroups.

There is the trivial one, then the denominator can be p, p2 and so on, this gives an increasing sequence

0 < Zp < Zp2 < . . . .
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Example 2.20. A = K a �eld, then modules are vector spaces. Now clearly AM is Noetherian i� the dimension

is �nite, and this is also equivalent to M being Artinian.

Proposition 2.21. A is a ring, and there are M1, . . . ,Mn ∈ m− SpecA such that
∏
Mi = 0, then for any

AV V is Artinian i� it is Noetherian.

Lemma 2.22. N ≤M , then M is Noetherian i� N,M/N are both Noetherian (and similarly for Artinian).

Proof. For the if part, it is very easy, any submodule is also Noetherian, and we can pull back chain by the

factor map, so they also have to stabilise. This is the same for both Noetherian andArtinian modules.

For the converse consider the map S(M)→ S(N)× S(M/N) where H 7→ (H ∩N, (H +N)/N). If H ≤ H ′,

then H ∩N ≤ H ′ ∩N and H +N ≤ H ′ +N and thus(H +N)/N ≤ (H ′ +N)/N , so this map is monotone.

We want, that if H ≤ H ′ ≤M with H ∩ n = H ′ ∩N and H +N = H ′ +N , then this imples, that H = H ′.

Indeed, if x ∈ H ′, then x ∈ H ′ + N = H + N , i.e. x = h + n.So N ∋ n = x − h ∈ H ′ − H ≤ H ′, so

n ∈ H ′ ∩N = H ∩N , thus n ∈ H and x = n+ h ∈ H.

This proes that the above map is not just monotone, but strictly so, and we are done.

Corrolary 2.23. For M = M0 ≥ · · · ≥ Mn = 0 M being Noetherian (Artinian) is equivalent to having

Mi−1/Mi Noteherian (Artinian) for all i.

Proof of proposition. De�ne Vi = M1 · · · · ·MiV to get a chain just as above. Now V is Artinian i� QI :=

Vi−1/Vi is, for all i. Observe that MiQi = 0, so Qi is a module A/Mi, which is a �eld, i.e. Qi is q vector

space, so it being Artinian is equivalent to being Noetherian, and we are done with the proposition.

Remark 2.24. Technically we only needed, that M1 · · · · ·MnV = 0.

Remark 2.25. Consider a poset (L,≤). De�ne the length of S as sup{n : s0 < s1 < · · · < sn}.* This de�nes

the length of a module AM as l(M) = l(S(M)). The above proof actually shows, that for N ≤ M we have

l(M) ≤ l(N) + l(M/N).

Remark 2.26. l(M) ≥ l(N) + l(M/N) also holds pretty much trivially, having a chain in N , and another in

M/N we can pull it back by the factor map to get a chain in M of length the sum of the two.

Theorem 2.27. l(M) = l(N) + l(M/N) for all N ≤M .

De�nition 2.28. We call a ring Noetherian (Artinian) if AA is Noetherian (Artinian).

Example 2.29. Z is Noetherian, but not Artinian.

Theorem 2.30 (Hopkins). If the ring A is Artinian, then A is Noetherian.

Theorem 2.31 (Hilbert's basissatz). If R is Noetherian, then R[x] is Noetherian.

We'll see these later.

Corrolary 2.32. If A is a ring, and M1 · · · · ·Mn = 0 for Mi ∈ m − Spec(A), then A is Artinian i� it is

Noetherian.

Proposition 2.33. AM is Noetherian i� all submodules are �nitely generated.

*the length of a chain is the number of steps
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Proof. If M is Noetherian, if it is 0, the statement is clear. If not, choose a nonzero element. If it generates

M , we are happy, if not choose another element not in the cyclicsubmodule generated by the �rst, if they

generate we are happy, if not pick a new one and so on to get a strictly increasing sequence of submodules,

and by the Noetherian proeprty we are done.

Suppose now, that we have an in�nite increasing sequence N1 ≤ N2 ≤ . . . , and take the union to get a new

submodule N ≤ M . We get by assumption, that N is �nitely generated by x1, . . . , xn where xi ∈ Nki , and
taking the maximum of the ki we see that the chain stabilises.

Corrolary 2.34. A ring A is Noetherian i� all ideals are �nitely generated.

A bit of notation, if f(x) =
∑n

0 aix
i ∈ R(x) we call an the leading coe�cient, and anx

n the leading term.

Lemma 2.35. J, I ◁ R[x] such that J ⊂ I, and for all nonzero f ∈ I there is a g ∈ J such that the leading

terms are equal,then I = J .

Proof. Take a nonzero f ∈ I, �nd its friend in J , with the same leading term. f − g is still in I, the degree

is smaller and we are done by induction.

Proof of the Basissatz. Take I◁R[x], we wish to prove that it is �n. gen.. De�ne In := {an : ∃
∑n

0 aix
i ∈ I}◁R.

Obviously In ⊂ In+1, since if f ∈ I, then xf ∈ I. We know that R is Noetherian, so this chain stabilises

at say n In = In+1 = . . . . All of these ideals are �nitely generated I0, I1, . . . , In. This means the existance

of �nite subsets Fi ⊂ I all members are of degree i, and their leading coe�cients generate Ii. Now take

F := F0 ∪ · · · ∪Fn, and we claim, that this generates I. We only have to check, that for all nonzero elements

of I there is an element in (F) with the same leading term. This is prefectly clear, if degf ≤ n by construction

there is g ∈ (Fi) with the same leading term. If the degree of our f is at least n, then its leading coe�cient is

in In,so there is a g of degree n with the same leading coe�cient, and we can multiply up by some xk. Now

we are done by the lemma.

Proposition 2.36. If A is Noetherian, and F ⊂ A, then there exists a �nite subset G ⊂ F such that

(G) = (F ).

Proof. Trivial homework.

3 Third lecture

We'll discuss decompositions of ideals. The story begins, with the fundamental theoremof arithmetic, i.e.

Z is a UFD, also all principal ideal domains are UFD's, every element is the essentially unique product of

irreducible elements. We wish to study algebraic extensions, i.e. |K : Q| <∞, and take the algebraic integers,

K ∩ Ω = σK . But not all rings of algebraic integers are UFD's.

Example 3.1. Q[
√
−5] is not a UFD, since 6 = 2 · 3 = (1 +

√
−5)(1 −

√
−5), and these decompositions are

not the same up to unit factors. The units are only ±1.

Kummer found out the way to �x this problem of non-uniqueness to take prime ideals, which he thought of as

being ideal elements of a new ring. So I ⊂ A will have to satisfy the natural axioms of an ideal, if we want to

think about "which elements are divisble by I?". In the previous example (2, 1 +
√
−5), (3, 1 +

√
−5), (2, 1−

√
−5), (3, 1−

√
−5) are all prime ideals, and unique factorisation works with ideals, instead of elements, the

9



ideal (6) is precisely the product of the previous 4. Generally, nonzero ideals in the group of algebraic integers

of a number �eld have unique prouct decompositions into prime ideals, these rings are called Dedekind rings.

De�nition 3.2. If A is a ring (comm. with 1), the Krull dimension of A is de�ned as sup{n : P0 ⊂ · · · ⊂
Pn, Pi ∈ specA}.

Example 3.3. dimA < 0 i� A = 0, there are no prime ideals. dimA ≤ 0 i� all prime ideals are maximal, for

example if A is a �eld. A PID, which is not a �eld has dimA = 1, since all nonzero primes are maximal.*

dimK[x1, . . . , xn] = n, ≥ is easy, (0) ⊂ (x1) ⊂ . . . , (x1, . . . , xn), the other directionis hard, we'll see later.

Also the dimension can be in�nite, for example K[x1, . . . ] has an in�nitely long chain. Connecting with the

previous example, the ring σK has dimension 1.

In higher dimensional rings most ideals don't have prime decompositions, most elements are irreducible and

the theory isn't really useful, so we wish to replace products by intersections. This still generalises the FTA

since (n) = ∩(pαi
i ) where n =

∏
pαi
i , n is not only the product, but the least common multiple of these prime

powers. What would correspond to prime power ideals in a general (Noetherian) ring?

De�nition 3.4. I ◁ A is irreducible i� I ̸= (1), and it does not decompose as an intersection, except in the

trivial way, i.e. I = J ∩ J ′ i� J = I or I = J ′.

Proposition 3.5. A Noetherian, I ◁ A, then ∃n ∈ Z≥0 and I1, . . . , In ◁ A irreducible ideals with I =
⋂
Ii.

Proof. Use downwards induction, assume that every ideal J strictily greater than I is a �nite intersection of

irreducibles. If I = (1) we are done, it is the empty intersection. If I is irreducible we are done, and �nally if it

is not irreducible, it is the intersection of two strictly greater ideals, for which we already have the proposition

by induction.

Question: ϕ : A→ B, and I ◁ B is irreducible, then is ϕ−1(I) irreducible?

This seems false, but we don't have a counterexample. To make this class functorial we need to enlarge it a

bit.

De�nition 3.6. Q ◁ A is primary, if Q ̸= (1), and if a, b ∈ A are such that ab ∈ Q, then either a ∈ Q or

b ∈
√
Q.

Example 3.7 (Primary ideals in Z). (n) will be primary i� n = 0 or a prime power. This is true, since if

pα|ab, than either pα|a or p|b, and if n = uv with (u, v) = 1, then n ̸ |u and n ̸ |vk for any k.�

In general primary ideals are not powers of prime ideals, this implication is false in either direction.

Proposition 3.8. ϕ : A→ B ring hom, and Q ◁ B primary, then ϕ−1(Q) is primary in A.

Proof. ϕ(1) = 1 ̸∈ Q, so the preimage is not the unit ideal. if ab ∈ ϕb − 1(Q), then ϕab ∈ Q, so ϕa ∈ Q or

ϕb ∈
√
Q and so either a ∈ ϕ−1Q or b ∈

√
ϕ−1Q.

Proposition 3.9. Q ◁ A is primary i� A/Q ̸= 0 and all zero divisors are nilpotent in this factor.

*homework sheet 2
�this is the same as the ideal being irreducible in Z, but maybe not elswhere
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Proof. A/Q is nontrivial, since Q ̸= (1). If āb̄ = 0 in the quotient with ā ̸= 0, then b̄ ∈ N(A/Q), since this

means, that ab ∈ Q with a ̸∈ Q, so b ∈
√
Q, which means precisely that b̄ is nilpotent in A/Q.

Proposition 3.10. If Q is primary, than
√
Q is prime.

Proof. Q is not the unit ideal, so its radical is not the unit ideal either. If ab ∈
√
Q, then abn ∈ Q for some

power n. This means that an ∈ Q or bn ∈
√
Q, so a ∈

√
Q or b ∈ √q, this is the prime tulajdonság.

Remark 3.11. P ∈ specA, then
√
Pn = P for all n.*

Proof. Pn ⊆ P , and
√
Pn ⊆

√
P = P ⊆

√
Pn.

Example 3.12. A = k[x, y, z]/(xy − z2), and P = (x̄, z̄). This ideal is prime, since A/P = k[y]. P 2 =

(x̄2, z̄2, x̄z̄), and we claim, that this is not primary. Consider A/P 2 = k[x, y, z]/(x2, xz, z2, xy), and in this

ring ¯̄y is a zero divisor, which is not nilpotent. The image of x is a zero divisor pair, and yn ̸∈ P 2 for any n.

This means the reverse implication of 3.10 is not true.

De�nition 3.13. Q ◁ A, and P ∈ specA, we call Q P-primary i� Q is primary and
√
Q = P .

Proposition 3.14. Q,Q′ is P-primary, then Q ∩Q′ is P-primary.

Lemma 3.15. I, J ◁ A, then
√
I ∩ J =

√
I ∩
√
J .

Proof.
√
I ∩ J ⊂

√
I ∩
√
J is clear. Now suppose x ∈

√
I ∩
√
J , so xn ∈ I and xm ∈ J , and taking the

maximum xmax ∈
√
I ∩ J .

Proof of proposition.
√
Q ∩Q′ = P ∩P = P by the lemma, but we need also, that Q∩Q′ is primary, so take

ab ∈ Q ∩Q′. If b ̸∈ P , then a ∈ Q,Q′ and so it is also in the intersection.

Proposition 3.16. If Q is an ideal of A, with
√
Q ∈ m− specA, then Q is primary.

Proof. Obviously
√
Q ̸= (1). If we have a product in Q ab, with b ̸∈

√
Q, then since the radical is maximal,

b has an inverse mod
√
Q, (1 + bc)n ∈ Q, and this has the form 1 + bx for some x, now multiply by a to get

a+ abx ∈ Q, but abx ∈ Q, so a ∈ Q and we are done.

Example 3.17. k[x1, . . . , xn] with k a �eld. Q = (S), where S is a set of monomials s.t. 1 ̸∈ S, and for all i

∃s : xsi ∈ S, then obviously
√
Q = (x1, . . . , xn), so these ideals are primary.

A concrete example would be (x2, xy) ◁ k[x, y]. To decompose this take (x)∩ (x, y)2 = (x)∩ (x2, y), these are
both primary decompositions of our ideal�

Notice, that (x, y)2 = (x2, y) ∩ (x, y2).

Fact 3.18. I ◁ A is irreducible i� A/I ̸= 0 and ∀0 ̸= a, b ∈ A/I : ∃x, y ∈ A/I : xa = yb ̸= 0.

First I being irreducible isequivalent to having (0) irreducible in A/I =: B. Firstly it is clear, that (0) ̸= (1).

If (0) is irreducible then for a, b ̸= 0, then (a), (b), ̸= (0) we also have (a) ∩ (b) ̸= (0) by irreducibility.

Conversely if J, J ′ are nonzero ideals, and a, b are in the respective ideals, then the assumption of having a

nonzero common multiple gives a nonzero element in the intersection, i.e. zero is irreducible.

*remember, Pn = (
∏n

1 pi|pi ∈ P ) with n �xed
�all prime ideals are primary!+proposition
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Lemma 3.19 (E. Noether). If A is a Noteherian ring, then every irreducible ideal is primary.

Proof. It is su�cient to show, that if (0) is irreducible, then it is primary,since otherwise we can pass to the

factor.

We have to prove, that if every nonzero pair of elements have a nonzero common multiple, then every zero

divisor is nilpotent. Let uv = 0 with v ̸= 0, we want u nilpotent. Take (0) ⊂ Ann(u) ⊂ Ann(u2) ⊂ . . . since

this sequence is increasing, and A is Noetherian this stabilises, i.e. Ann(un) = Ann(un+1).

It is enough to show, that v and un have no nonzero common multiple. xv = yun, then it should follow that

xv = yun = 0. 0 = xuv = yun+1, this means that y ∈ Ann(un+1) = Ann(un),and we are done.

Theorem 3.20 (Lasker-Noether). If A is Noetherian, I is an ideal, then there exists an n, such that I =
⋂
Qi

for some primary ideals Qi.

Proof. Returning to the previous example, the decompositions are not the same, but the radicals are. Suppose

I =
⋂
Qi for some primary ideals Qi, with Pi =

√
Qi. Take x ∈ A and consider (I : x) = {a : ax ∈ I}. The

ideal
√

(I : x) =
⋂
x ̸∈Qi

Pi.

Now (I : x) =
⋂
(Qi : x), so

√
(I : x) =

⋂√
(Qi : x) and we need a lemma.

Lemma 3.21. Q os P-primary, then (Q : x) can be either (1) if x ∈ Q, in this case
√
Q = (1) as well. On

the other hand if x ̸∈ Q, then the radical
√

(Q : x) is P .

Proof. m i s s i n g

De�nition 3.22. If I ◁ A and P ∈ specA, then P belongs to I i� there is an x ∈ A such that
√

(I : x) = P .

Proposition 3.23. If P belongs to I, and I =
⋂
Qi, with Qi Pi primary, then P ∈ {Pi}.

Proof. P =
√

(I : x) =
⋂
x ̸∈Qi

Pi ⊃
∏
x ̸∈Qi

Pi, so there exists an i with Pi ⊆ P where x ̸∈ Qi, but P is also

bigger than every ideal Pi.

4 Fourth Lecture

missing

Theorem 4.1 (�rst uniqueness theorem of primary decomposition). I = Q1 ∩ · · · ∩Qn is a shortest primary

decomposition, then {
√
Qi : P ∈ specA, P belongs to I}. This means, that n is unique.

Example 4.2. k[x, y], and take (x2, xy) = (x) ∩ (x, y)2 = (x) ∩ (x2, y). these are two shortest decompositions

of the same ideal, but notice (x) is in both of them!

If I ◁ A, suppose it has a primary decomposition I =
⋂n

1 Qi, and the primes belonging to I denoted by

{Pi =
√
Qi}. Assume that for all i ≤ k and j > k Pi ̸⊇ Pj , i.e. {P1, . . . , Pk} is downwards closed as a poset

in ({Pi},⊂).

Theorem 4.3 (second uniqueness theorem). Then Q1 ∩ · · · ∩Qk is unique

Example 4.4. If P1 is minimal, then Q1 is unique.

12



Proof. x ∈ A, when is x ∈
⋂k

1 Qi true? we want to give an answer independent of the decomposition. Firstly

this is equivalent to having {i ∈ [n] : x ̸∈ Qi} ⊂ [k + 1, . . . , n], and furthermore this equivalent to saying⋂
x ̸∈Qi

Pi ⊇ Pk+1∩· · ·∩Pn. One direction is clear, for the other, if there exists an index i ≤ k with x ̸∈ Qi, then
Pi ⊇

⋂n
k+1 Pi ⊇ Pk+1 · · · · ·Pn, a contradiction by the downwards closed property, no P>k is contained in Pi.

Finally this is equivalent to having
√
(I : x) ⊇

⋂n
k+1 Pi, and this description does not use the decomposition,

as we wanted.

Theorem 4.5. A is Artinian i� A is Noetherian with dimA = 0.

Lemma 4.6. I ◁ A with A Noetherian, then ∃k :
√
I
k ⊆ I.

Proof.
√
I is �nitely generated (a1, . . . , ar), and here exists exponents for each of these generators where

akii ∈ I. Take k = 1 +
∑

(ki − 1), and any k-fold product in
√
I will have at least one generator to the ki

power, and we are done.

De�nition 4.7. A is Artinian i� there is no decreasing sequence of ideals.

Example 4.8. If |A| <∞, e.g. Zn. If the number of ideals is �nite, then also clearly we get artinian rings, if

A is a PID, then R/(m) is artinian for any nonzero element m. A �nite dimensional algebra over a �eld is

also artinian.

Fact 4.9. An Artinian domain is a �eld.

Proof. 0 ̸= x and consider the ideals (xi), this is a descending sequence, so ∃m : (xm) = (xm+1), i.e.

xn+1y = xm, i.e. xy = 1 since we are in a domain.

Corrolary 4.10. If A is Artinian, then dimA = 0.

Proof. Choose a prime P , A/P is an Artinian domain, i.e. a �eld, i.e. every P is maximal, so the krull

dimension is zero.

Lemma 4.11. If A is Artinian, then there are only �nitely many prime ideals.

Proof. Suppose there are in�nitely many prime ideals P1, . . . . Take In =
⋂n

1 Pi, this gives a descending

sequence, and strictly so, because Pn+1 ̸⊃ P1 ∩ · · · ∩ Pn ⊃ P1 · · · · · Pn, and it does not contain any of these

by primality since all primes are maximal, and these are distinct ideals.

De�nition 4.12. I ◁ A, then I is called nilpotent i� ∃k : Ik = 0.

Theorem 4.13. If A is Artinian, then J(A) is nilpotent.

Proof. Consider the powers of the Jacobson radical J(A) ⊃ J(A)2 ⊃ . . . , let it stabilise at the n-step, and call
the stable ideal J . Clearly J2 = J , we want it to be zero. Assume it nonzero and look for a contradiction.*

Take the set of ideals which are contained in J , and IJ ̸= 0 holds, this is a nonempty set of ideals. Take a

minimal element I by the artinian property, and we �nd an element a ∈ I with aJ ̸= 0, since it was minimal

we have to have aJ = I, thus aJJ ̸= 0, and there is a y ∈ J such that ay = a, and since J is a part of the

Jacobsonradical 1− y is invertible, so a = 0, a contradiction.

*this implies A ̸= 0, and J ̸= (1)
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Corrolary 4.14. If A is Artinian, then there are P1, . . . , Pn ∈ SpecA such that
∏
Pi = 0.

Proof. J(A)=∩Spec(A)P ⊇
∏
specA P , the spectrum is �nite, and J(A) is nilpotent, we are done.

Corrolary 4.15. If A is Artinian, then A is Noteherian.

This shows one direction of the big theorem, now we want to show that a dimension 0 Noetherian ring is

Artinian. In a Noetherian ring the ideals have primary decompositions, e.g. (0) =
⋂n

1 Qi where Qi is Pi

primary. We know that Qi ⊇ P kii for some numbers ki. By the assumption on the dimension we get that the

0 ideal is the product of maximal ideals, and in this case we already know that Noetherian implies Artinian.

We have a structure theorem as well, Artinian rings are sums of local Artinian rings.

De�nition 4.16. A is local, if there is a unique maximal ideal.

Remark 4.17. {I} = m− specA i� I ̸= (1), and A \ I = U(A).

Example 4.18. Zpk for some prime power are local.

Why are these "local"? X ⊆ Kn an a�ne algebraic subset over an algebraically closed �eld K. AX its

coordinate ring, we can de�ne the local ring of X at p consisting of functions only de�ned on an open subset

containing p, and such that the function is represented by a rational function, with nonzero denominator at

p. Two functions are equal in the local ring i� they agree on an open neighborhood. The maximal ideal will

be the functions vanishing at p, the factor is K, so it is maximal, and everybody outside is invertible.

Lemma 4.19. I1, I2, J are ideals in A, and I1 + J = (1), I2 + J = (1), then we claim that I1I2 + J = (1).

Proof. 1 + a1 + b = a2 + b, and 1 = 1 ∗ 1 = (a1 + b)(a2 + b) ∈ a1a2 + J .

Lemma 4.20. If I, J are coprime, then IJ = I ∩ J

Proof. one direction is trivial, take x ∈ I ∩ J . write 1 = a + b, x = 1x = xa + xb, and both terms here are

inside IJ .

Corrolary 4.21. If we are given I1, . . . , In, pairwise coprime,then again the product is the same as the

intersection.

Proof. We can use the previous two lemmas to do induction, to replace I1, I2 by I1I2, and everything stays

intact.

Theorem 4.22 (Chinese remainder theorem). Let I1, . . . , In be pairwise coprime ideals. Take ϕ : A→ ⊕A/Ii.
We claim that ϕ is surjective, kerϕ =

∏
Ii, and A/

∏
Ii = ⊕A/Ii.

Proof. the kernel is obvious, using the fact that the intersection is the same is the product. The third

claim follows from the �rst by the homomorphism theorem, so we focus on the �rst. ϕ is an A-module

homomorphism. The image is an A-submodule, so we only need to �nd (0, .., 1, ..., 0) in the image. this is

clear, sinceIi + ∩Ij = (1), thus we can �nd a+ x = 1, so we get an element which is 1 mod Ii and 0 mod Ij

for all other j's, and we are done.
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5 Fifth lecture

beginning missing again

Proposition 5.1. A local, e an idempotent, then e = 0 or 1.

Proposition 5.2. M a maximal ideal in A, k ≥ 1, then A/Mk is local.

Finishing the proof of the structure theorem of Artinian rings, and now for something completely di�erent.

Last time we had the ring of local functions of a variety at a point, we wish to generalise this. Suppose A

is a ring, and consider S ⊆ A, with 1 ∈ S, and SS ⊂ S, we wish to allow these elements as denominators.

Consider ordered pairs {[a, s] : a ∈ A, s ∈ S}, and we introduce an equivalence, [a, s] ∼ [b, t] precisely when

∃u ∈ S : u(ta− sb) = 0.

Proposition 5.3. ∼ is an equivalence relation.

Proof. [a, s] ∼ [a, s]:1(sa− sa) = 0, so this is easy.

Symmetry is also completely obvious u(ta− sb) = 0, then u(sb− ta) = 0.

Transitivity is the harder bit. [a, s] ∼ [b, t] and [b, t] ∼ [c, r]. u(ta− sb) = 0, and v(rb− tc) = 0 by de�nition.

tuv(ra− sc) = 0, �rtsly uv ∈ S, since it is closed under multiplication. uta = usb and vrb = vtc by the �rst

equations, and simple calculation shows the sought identity.

We denote the class [a, s]/ ∼= a
s

Introduce S−1A = {as : a ∈ A, s ∈ S}, we introduce operations. as +
b
t :=

ta+sb
st and a

s
b
t :=

ab
st .

Proposition 5.4. S−1A is a ring with these operations.

Proof. Take a
s = a′

s′ , we need to show, that ta+sb
st = ta′+s′b

s′t . There is a u s.t. u(s′a− sa′) = 0. It is a simple

check, that u(s′t(ta+ sb)− st(ta′ + s′b)) = 0, thus addition is well de�ned.

Under the same assumption we need multiplication makes sense. abst =
a′b
s′t ? By de�nition u(s

′tab−sta′b) = 0,

so multiplication is also well de�ned.

Addition is clearly commutative, associativity is also quite clear from the well-de�nedness and associativity

of the operations of A.
0
1 is a zero element clearly, additive inverses behave the expected way as well, −as = −a

s .*

Multiplication is again commutative associative, distributivity is not completely clear, but is a simple com-

putation c
r (
a
b + b

t ) = c
r
a
b + c

r
b
t , expanding both sides by de�nition we only have to check that r

r = 1
1 = 1,

which is clear, 1(ras− rsa) = 0.

There is a canonical homomorphism ϕ : A → S−1A, which sends ϕ : a 7→ a
1 . Observe that for s ∈ S,

ϕ(s) ∈ U(S−1A). This ϕ has a universal property!� Suppose A
ϕ−→ S−1A, and A

ψ−→ B such that ∀s ∈ S :

ψ(s) ∈ U(B). In this case there is a unique homomorphism η : S−1A→ B such that this triangle commutes.

Proof. We need apriori that η(a1 ) = ψ(a) for the diagram to commute. s
1
a
s = a

1 apply eta to this to get

ψ(s)η(as ) = ψ(a), and we are assuming that the elements of the image of S is invertible, thus η(as ) =
ψ(a)
ψ(s) ,

there are no choices. This shows uniqueness, we need to check that this is an actual homomorphism.

*here we use, that actually 0
s
= 0

1
for any s since 1 is the multiplicative identity.

�its the freeest possible ring with the property that the elements of S are invertible
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Well de�ned, since u(s′a − sa′) = 0, and applying ψ gives what we wanted. Why is it a ring homomor-

phism? Trivial calculation applying the de�nition of addition in S−1A, and using that ψ is a homomorphism.

Multiplicativity is even easier, it respects 1 as well, since ψ is a homomorphism.

Example 5.5. P ∈ SpecA, and choose S = A \ P . We denote S−1A =: AP , called the localisation of A at P .

Another basic example is when A = AX for an a�ne variety over an algebraically closed �eld. P will be the

maimal ideal of a point.

Moreover, take a module AM , and S ⊆ A containing 1 and SS ⊆ S. We can consider {[m, s] : m ∈M, s ∈ S}
with the same equivalence relation.

Proposition 5.6. It is actually an equivalence relation on M × S.

Proof. Trivial homework.

De�nition 5.7. S−1M := (M × S)/ ∼, called a module of fractions.

Proposition 5.8. S−1M is a module over S−1A.

Proof. The action of the ring of fractions is the obvious one*, the calculations are trivial homework.

S−1 actually gives a functor A −mod → S−1A −mod. We wish to create from M
f−→ N another morphism

S−1f : S−1M → S−1N . The map is again the obvious one, ms 7→
f(m)
s . It is well de�ned for the same reasons

as before u(ms′ − sm′) = 0, and so u(s′f(m) − sf(m′)) = 0 since f is a module homomorphism. S−1f will

also be a module homomorphism clearly, following from f being a module hom. It's clear that compositions

are also respected, making S−1 a functor as stated.

De�nition 5.9. M
f−→ N

g−→ Q is exact at N , if imf = kerg.

Proposition 5.10. S−1 is an exact functor, i.e. if M
f−→ N

g−→ Q is exact, then S−1M
S−1f−−−→ S−1N

S−1g−−−→
S−1Q is also exact.

Proof. We need imS−1f = kerS−1g. One inclusion is trivial, since S−1(g ◦ f) = S−10 = 0 since the original

sequence was exact.

Assume now, that S−1g(ns ) = 0, we need, that it is in imS−1f . We know, that g(n)
s = 0

0 , ergo ∃t ∈ S :

tg(n) = g(tn) = 0, so tn ∈ kerg, thus we get that tn = f(m) for some m ∈ M . Now n
s = S−1f(mst ) clearly,

thus the new sequence is exact.

Recall the de�nition of a short exact sequence:

0→M ′ f−→M
g−→M ′′ → 0

with the above sequence exact atM ′,M,M ′′. Clearly f is injective, g is surjective and imf = kerg. Basically

M ′ ≤M , and M/M ′ =M ′′.

From the previous proposition its clear that for every short exact sequence of A modules we get a SES of

S−1A modules. Every ideal is a submodule, the factor is also a module, so we get another SES, namely

S−1(A/U) = S−1A/S−1I, and clearly S−1I ◁ S−1A, and these factors are not only isomorphic as modules,

* a
u

m
s

:= am
us
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but as rings as well. The LHS consists of elements ā
s , the RHS are a

s , and we can easily check, that this

identi�cation respects products, and 1 as well.

Generally given a ring homomorphism ϕ : A → B if we have an ideal I ◁ A, we can extend it Ie = ϕ(I)B.

Similarly for J ◁B we can take Jc := ϕ−1(J)◁A. These operations are clearly monotone. What happens if we

take Iec? This ideal clearly contains I. If we take Jce we get some ideal which is contained in J . Furthermore

Iece = Ie by the previous two remarks, similarly Jcec = Jc.

De�nition 5.11. I ◁ A, we call I a contractive ideal (w.r.t. ϕ) if there is J ◁ B : I = Jc, or Iec = I, and

similarly J is an extended ideal i� there is I ◁ A : Ie = J or Jce = J .

Restricted to contracted and extended ideals we see that e, c are bijections between these sets.

Now back to ϕ : A→ S−1A

Proposition 5.12. Every ideal of S−1A is extended.

Proof. Look at Jc = {a ∈ a : a1 ∈ J}. Now extend it Jce. Take a
s ∈ J , and clearly s

1
a
s = a

1 ∈ J , thus a ∈ J
c,

thus a
s = a/sϕ(a) ∈ Jce, the other containment always holds and we are done.

Proposition 5.13. I is contracted i� (s ∈ S, a ∈ A, sa ∈ I implies that a ∈ I)*.

Proof. We want Iec = I, one inclusion is always true, only need Iec ⊆ I. Ie = ϕ(I)S−1A = {
∑
ai/1 · bi/si :

ai ∈ I, bi ∈ A, si ∈ S} = {a/s : a ∈ A, s ∈ S} = S−1I. for a ∈ A a/1 ∈ Ie i� ∃s ∈ S : sa ∈ I, so the two sets

coincide precisely when I is S saturated.

Corrolary 5.14. The ideals of S−1A are in bijection with the S-saturated ideals of A.

6 Sixth lecture

We started studying rings and modules of fractions. We saw that the S-saturated ideals of A correspond

bijectively to ideals of S−1A. Sums and products of ideals behave as expected S−1I+S−1J = S−1(I+J) and

(S−1I)(S−1)J = S−1(IJ). We also discussed localisation at a prime ideal P , S = A \ P is a multiplicatively

closed set and the construction specializes to this case. What are S-saturated ideals in this case?

Remark 6.1. If I is S-saturated, then I = (1) or I ⊆ P .

Proof. If 1 ̸∈ I, then ∀a ∈ I a = 1 · a. By saturatedness a ̸∈ S, thus a ∈ P .

Corrolary 6.2. Q ∈ SpecA another prime ideal is S-saturated i� Q ⊆ P .

Proof. If Q is saturated, by the previous proposition we are done, conversely if Q ⊆ P , then take a ̸∈ Q, and
s ∈ S, so s ̸∈ P , thus s ̸∈ Q so sa ̸∈ Q, and Q is saturated.

What is SpecAP ? As a set it will be {J ◁Ap} = {IP : I ◁A S saturated}. The ideal IP = {a/b : a ∈ I, b ̸∈ P},
and by saturatedness (and I ̸= (1)) I ⊆ P . When will an ideal of this form prime? Clearly i� I is a prime

ideal. So SpecAP = {QP : Q prime in A,Q ⊆ P} ↔ {Q ∈ SpecA : Q ⊆ P}.

Corrolary 6.3. If P is a prime ideal in A, then AP is a local ring, with maximal ideal PP . Further dimAP =

htP = sup{n : P = P0 ⊃ · · · ⊃ Pn, Pi ∈ SpecA}.
*We say that I is S-saturated
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Example 6.4. M ∈ m − SpecA, then A/M = k is a �eld (residue �eld of M). Now AM is local, and

AM/MM = (A/M)M = kM = k. One step further, consider MM/M
2
M , this is a module over AM , isomorphic

to (M/M2)M , this is a module over A/M = k, since M annihilates all elements of this, so it is a k-vector

space, and localisation does nothing, it is isomorphic (as a vector space) to just M/M2.

Consider k = k̄, X ⊆ kn an a�ne algebraic set, A = AX and p ∈ X, M = mp its maximal ideal. Now

A/M = k. The tangent space of X at p is TpX = {v ∈ kn : ∀F ∈ I(X) : dF (v) = 0}, i.e. the vectors which
get annihilated by the di�erentials of the de�ning equations of X (we evaluate the di�erential at p, and apply

it to v). This is clearly a linear subspace of kn. Now take the cotangent space T ∗
pX = Homk(TpX, k).

Proposition 6.5. We claim, that this cotangent space is isomorphic to the previously discussed vector space

M/M2.

Proof. M is the set of polynomial functions on X that vanish at p. To such an f we want to assign its

di�erential at p, which is an element of T ∗
pX. since f is in the coordinate ring, we have to prove that this

assignment makes sense modulo I(X), i.e. F ∈ I(X) has to imply that dpFv = 0, but this is precisely the

de�nition of the tangent space, so ϕ : f 7→ dpf is a well de�ned map M → T ∗
pX. We claim that kerϕ =M2.

Firstly if f, g ∈M , represent them by polynomials F,G with F |X = f , and G|X = g. They both vanish at p,

taking dp(FG) = F (p)dpG+G(P )+dp(F ) = 0. For the converse inclusion let dpf ≡ 0 on TpX for some f ∈M .

Represent it by a polynomial F . The lift of the ideal of p onto the whole kn is M̃ = (x1 − a1, . . . , xn − an) if
p = (a1 . . . , an). Since F (p) = 0, we can write F =

∑
ci(xi − ai) + M̃2, and see that dpF = (c1, . . . , cn). By

assumption this vector is in the span of dpG : G ∈ I(X), so we �nd a G ∈ I(X) such that dpG = dpF , and

this dp(F −G) = 0 and (F −G)(p) = 0, thus F ∈ M̃2 + I(X) as stated.

Finally we need ϕ to be surjective. ∀ξ ∈ T ∗
pX we take a lift ξ̃ : kn → k. We can take ξ̃(x1−a1, . . . , xn−an)|X

which will be adequate to show surhectivity.

The upshot is that T ∗
p = M/M2 = MM/M

2
M , where AM = OX,p with MM being the maximal ideal of AM .

The local ring tells you every local information about the point p.

Lemma 6.6. AM a �nitely generated module, ϕ ∈ EndM , suppose I ◁ A such that imϕ ≤ IM . We claim,

that ∃n∃a0, . . . , an−1 ∈ I : ϕn + an−1ϕ
n−1 + · · ·+ a0 · id = 0.

Proof. M =< m1, . . . ,mn >, ∀i : ϕ(mi) =
∑
cijmj with cij ∈ I. We see, that the product ϕ·1n(m1, . . . ,mn)

T =

C(m1, . . . ,mn) for some C ∈ Mn(I) where 1n is the n × n identity matrix. We get (ϕ1n − C)m = 0 in

Mn(A[ϕ]). Take now the matrix of signed cofactors of ϕ1n −C transposed, as you do, call it B and multiply

on both sides. As is usual we get det(ϕ1n − C)1nm = 0, and since the elements of m generate, the element

det(ϕ1n − C) = 0 ∈ EndM . Expanding the determinant, we get the statement.

Corrolary 6.7 (Nakayama's lemma). M a �nitely generated module with J(A)M =M , then M = 0.

Proof. Apply the lemma to ϕ = id and I = J(A). We get that (1 + a)id = 0 for some a ∈ J(A), and

1 + a ∈ U(A), thus id = 0 and we are done.

Corrolary 6.8. M is a �nitely generated module, N ≤M and N + J(A)M =M , then N =M .

Proof. M/N is again �nitely generated, and by the property required J(A)M/N = M/N , thus M/N = 0

and we are done.
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Corrolary 6.9. If A is local with maximal ideal m, and we are given a �nite module M over A, then if

mM =M , then M = 0.

Corrolary 6.10. Suppose A Noetherian local, with maximal ideal m, and f1, . . . , fn ∈ m such that f̄i span

the vectorspace m/m2. In this case we claim, that (f1, . . . , fn) = m.

Proof. Its clear that (f1, . . . , fn)+m2 = m by assumption. Take N = (fi : i = 1, . . . , n) and M = m. Clearly

m2 = J(A)M , and we are done.*

Corrolary 6.11. k = k̄, X ⊆ kn a�ne algebraic set with p ∈ X. Consider the local ring OX,p of X at p with

maximal ideal m. Suppose f1, . . . , fr ∈ M = {f ∈ AX : f(p) = 0} such that < dpfi : i = 1, . . . , r >= T ∗
pX.

We claim, that m = (fi : i = 1, . . . , r).

Proof. Apply the previous corrolary. OX,p is Noetherian, since it is a localisation of a factor of a Noetherian

ring, and dpfi = f̄i ∈ m/m2, and we are done.

A ring extension B ≥ A is �nite if B is a �nitely generated module over A.

Proposition 6.12. B ≥ C ≥ A, and B is �nite over C and C is �nite over A, then B is �nite over A.

Proof. Actually the statement is if and only if. There are b1, . . . bn B =
∑
Cbi and C =

∑
Acj , thus

B =
∑∑

Acjbi.

De�nition 6.13. B ≥ A a ring extension, b ∈ B is integral over A i� ∃n∃a0, . . . , an−1 ∈ A such that

bn + · · ·+ a0 = 0, i.e. it satis�es some monic polynomial with coe�cients from A.

Remark 6.14. b ∈ A, then b is integral over A, since b+ (−b) = 0.

Proposition 6.15. B ≥ A, and b ∈ B, then TFAE:

1. b integral over A

2. A[b] is a �nite extension of A

3. ∃A ≤ C ≤ B with b ∈ C and C �nite over A

4. ∃A[b]M which is �nite over A, and A[b] acts faithfully�

Proof. 1→ 2→ 3→ 4 is clear, the only hard thing is 4→ 1. Use the lemma with I = A◁A, and ϕ : m 7→ bm,

we get the minimal polynomial of b by the lemma

7 Seventh lecture

Proposition 7.1. L a �eld, A ≤ L a subring, A is integrally closed, α ∈ L. Then α is integral over A is

equivalent to having α algebraic over FracA = K, and mα ∈ A[x] (the monic minimal polynomial of α over

K).

*Noetherien property guarantees that m is �nitely generated as a module or as an ideal
�f ∈ A[b] with fM = 0, then f = 0
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Proof. Right to left is clear. If α is algebraic over K, we are done, call M the splitting �eld of mα|L, here
mα splits into linear factors α = α1, . . . , αn are the roots. Adjoin K(α1, . . . , αn). There is an element of

Gal(K(...)|K) which sends α to αi for any i, since they are roots of the same irreducible polynomial, thus αi

are integral over A. mα(x) = xn− σ1xn−1± · · · ± σn, and since the αi's are integral over A, these symmetric

polynomials are also integral over A, they are elements of K by de�nition, and since A is integrally closed,

they are in A, which is what we wanted.

De�nition 7.2. B ≥ A ▷ I, b ∈ B we call b integrally closed over I i� there is an n, and a0, . . . , an−1 ∈ I
with bn + an−1b

n−1 + · · ·+ a0 = 0.

Proposition 7.3. B ≥ A ▷ I, b ∈ B tfae

1. b integral over I

2. A[b] is �nite over A and b ∈
√
IA[b]

3. there exists C ≤ B with C ≥ A, which is �nite over A, and b ∈ C with b ∈
√
IC

4. there exists a faithful A[b] module M which is �nite over A, and there is an n with bnM ≤ IM .

Proof. 1→ 2 is trivial, 2→ 3 is trivial, choose C = A[b], 3→ 4 is trivial, choose M = C. Interesting case is

4→ 1, here we do the same as before. Consider the map ϕ : m 7→ bm, we constructed a matrix X ∈ Mn(A)

with pX(ϕ) = 0 for its characteristic polynomial, and from this we deduce pX(b) = 0.

Lemma 7.4. If bn is integral over I, then b is integral over I.

Proof. There is a k such that bnk ∈
∑
j Ib

nj ⊆
∑
j Ib

j and we are done.

So we may assume that n = 1, and we get that X ∈Mn(I), and so pX(t) will have coe�cients from I (except

the leading 1).

Corrolary 7.5. Suppose B ≥ A is integral, I ◁ A and b ∈ B. We claim that b is integral over I i� b ∈
√
IB.

Proof. Left to right we have b ∈
√
IA[b] ⊆

√
IB by the previous statement. For the converse bn = a1b1 +

· · · + akbk with ai ∈ I, bi ∈ B. Take C = A[b1, . . . ], a �nite extension of A. Clearly bn ∈ IC, by the third

condition we get that bn is integral over I, thus b is integral over I.

Proposition 7.6. B ≥ A integral, P ∈ specA, then PB ∩A = P

Proof. ⊇ is trivial. for the other one take a ∈ PB ∩ A, and the corollary tells us that a is integrap over P ,

thus a ∈
√
P = P .

Proposition 7.7. B ≥ A some ring extension, P ∈ specA with PB ∩ A = P . Then there is a prime ideal

Q ∈ specB with Q ∩A = P .

Example 7.8. Z[i] > Z, take (5) ∈ specZ, if we extend and contract we just get back (5) as expected, but

5Z[i] is not a prime ideal! There is a prime extesion however, e.g. (2 + i)Z[i].

Proof. Take S = A \ P , now PB ∩ S = ∅. By Zorn's lemma we see that there is a maximal ideal Q in B

with PB ⊂ Q and Q ∩ S = ∅, and maximal ideals are prime. Now its clear that Q ∩ A ⊇ PB ∩ A = P , and

Q ∩A ⊂ P , since it is disjoint from the complement of P .
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Corrolary 7.9. B ≥ A integral and P ∈ specA, then there is a Q ∈ specB with Q ∩A = P .

Corrolary 7.10 (Going-up theorem (Cohen-Seidenberg)). B ≥ A integral extension, and P0 ⊂ P1 ⊂ · · · ⊂
Pn with Pi ∈ specA. Suppose further that we have a partial lift of this chain, Q0 ⊆ Q1 ⊆ . . . ,⊆ Qm−1 with

0 ≤ m ≤ n and Qi ∩A = Pi. We claim that there exist Qm, . . . , Qn �nishing the job.

Proof. Assume m = n, we extend one step at a time. We can also assume that m = 1, if it is 0, we only have

to lift a prime, which we already did. So P0 ⊆ P1, take B/Q0, which is integral over A/P0 (every element of

B satis�ed some relation over A, we just look at the same relation modulo Q0). By the previous proposition

we get a prime Q ∈ specB/Q0 which lifts P1/P0 and we are done.

Theorem 7.11 (Going down theorem (Cohen-Seidenberg)). B ≥ A domains, A integrally closed, B integral

over A. Given a chain of prime ideals P0 ⊇ P1 ⊇ · · · ⊇ Pn (Pi ∈ specA) which is partially lifted to

Q0 ⊇ Q1 ⊇ · · · ⊇ Qm−1 with Qi ∈ specB with Qi ∩ A = Pi, then the claim is that there is a Qm, . . . , Qn

which completes the lift.

Proof. We may assume n = m = 1 as before. Now instead of factoring we have to localise, we are interested

in primes contined in Q0. In general BQ0
will not be integral over AP0

:( P1AP0
is a prime in the localised

ring, we want to see that P1AP0BQ0 ∩AP0 = P1AP0 , if we know this we get a Q ∈ specBQ0 which lifts P1AP0 .

We pull this Q back, and calculate. Q ∩A = Q ∩AP0 ∩A = P1AP0 ∩A = P1, so it really is a lift. The other

thing we whish to see, is Q0 ⊇ Q1. Q1 = Q ∩B ⊆ (Q0)Q0
∩B = Q0BQ0

∩B = Q0.

For P1AP0
BQ0

∩ AP0
= P1AP0

the ⊇ part is clear. The LHS consists of elements of the form a/s with

s ∈ A \ P0, and there is a b ∈ B \ Q0 such that ba/s ∈ P1AP0 . We get that b is not integral over P0, since

P0B ⊆ Q0. Now all we need is

Lemma 7.12. B ≥ A domains A integrally closed, P ∈ specA, b ∈ B, a ∈ A, a ̸∈ P . If ab is integral over P ,
then b is integral over P .

Proof. Considermb andmab in L|K, with L = fracB,K = fracA. The relation we see is anmb(x) = mab(ax).

We need to go deeper

Lemma 7.13. L a �eld, A is an integrally closed subring, K = fracA, α ∈ L and I ◁ A then α is integral

over I i� α is algebraic over K and mα has all non-leading coe�cients in
√
I.

Proof. Homework.

8 Eight lecture

Lemma 8.1. A integrally closed domain, I an ideal of A, K = fracA, and L|K: α ∈ L integral over I is

equivalent to having α algebraic over K, with the monic polynomial having coe�cients in
√
I.

Proof. mα(α) = 0, αn = −
∑
aiα

i, so αN ∈
∑
Iαi and we are done.

Conversely mα(x) =
∏
(x − αi) = xn +

∑
aix

i, where ai ∈ K and integral over I, because it is integrally

closed and ai is integral over A as well, they are in A.
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Lemma 8.2. B ≥ A integral extension, B domain, Q ◁ B, with Q ∩A = 0, then Q = 0.

Proof. q ∈ Q is integral over A by assumption. qn +
∑
aiq

i = 0 with ai ∈ A and n minimal. Reordering

−a0 = q(qn−1 +
∑
aiq

i−1) shows that it is in both A and Q, thus −a0 = 0, and since qn−1 + . . . cannot be

zero since n is minimal, we get that q = 0.

Corrolary 8.3. B ≥ A integral extension, Q0, Q◁B such that Q0 ∈ SpecB. Assume also that Q0∩A = Q∩A,
then we conclude that Q0 = Q.

Proof. B/Q0 ≥ A/A ∩Q0 is integral, the bigger ring will be a domain since Q0 is prime, and it also satis�es

Q/Q0 ∩A/Q0 ∩A = 0, and we are done.

Theorem 8.4. B ≥ A integral, then dimB = dimA.

Proof. ≥ is just the going up theorem. For ≤ we use the previous corollary, intersect a strictly increasing

chain with A to get another strictly increasing chain.

Proposition 8.5. B ≥ C ≥ A then B ≥ A is integral i� B ≥ C and C ≥ A are.

Proof. → is trivial since A ⊂ C.
for b ∈ B we get bn =

∑
cib

i with ci ∈ C, extend to C0 = A[ci], which is a �nite integral extension of A, B is

integral over C0 as well, so C0[b]|C0 is �nite, thus C0[b]|A is also �nite and we are done with the converse.

Corrolary 8.6. B ≥ A, then clBclBA = clBA.
*

Proof. ⊃ is trivial, for ⊂ clBclBA is ingegral over clBA and also clBA|A is integral, thus clBclBA|A is

integral.

Proposition 8.7. B ≥ A ⊃ S a multiplicative subset in the smaller ring. We get S−1B ≥ S−1A, take

α ∈ S−1B, it is integral over S−1A i� ∃s ∈ S : sα is integral over Ā = {a/1} ≤ S−1B.

Proof. ←: sα is integral over S−1A as well, since Ā is a subring of ot, also 1/s ∈ S−1A and α = 1
ssα, the

product of two integral elements are integral as well.

→: αn =
∑ ai

s α
i since we can choose a common denominator. Thus (sα)n =

∑
ais

n−1−i(sα)i shows that sα

is really integral over Ā.

Example 8.8. B = C, A = Z, S = Z \ {0}, so that S−1A = Q and S−1B = C. Now if α ∈ C α is an algebraic

number i� there exists a nonzero number for which nα is an algebraic integer.

De�nition 8.9. A a UFD, take K = fracA, p ∈ A irreducible, then we can de�ne the p-adic valuation

vp : K → Z ∪∞. vp(0) =∞, and vp(p
n a
b ) = n where a, b ∈ A and p ̸ |a, b, and n ∈ Z.

From now on (Γ,+,≤) will denote an ordered Abelian group.�

De�nition 8.10. A Γ-valuation of a �eld K is: v : K → Γ ∪ {∞} with

� v(x) =∞ i� x = 0

� v(xy) = v(x) + v(y)

*integral closure
�≤ is a total order, γ ≤ γ′ implies γ + δ ≤ γ′ + δ
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� v(x+ y) ≥ min(v(x), v(y))

We call a surjective Z valuation discrete valuation.

De�nition 8.11. v : K → T ∪ ∞ a valuation, then the valuation ring of K given by v is Av = {x ∈ K :

v(x) ≥ 0}

Proposition 8.12. Av is a subring.

Proof. 0 ∈ Av is clear, also v(1) = 0 by the multiplicative axiom, thus 1 ∈ Av, and by the properties we get

that it is closed under operations, and 2v(−1) = v(1) = 0, and you cannot have a nonzero element of �nite

order in an ordered abelian group.

Proposition 8.13. K a �eld, A ≤ K when is there a valuation such that Av = A? I� ∀0 ̸= x ∈ K x ∈ A or

x−1 ∈ A

Proof. →: is clear since v(x) + v(x−1) = 0

←: Take Γ = U(K)/U(A), we order it: x ≤ y i� y/x ∈ A. This is a total order by the assumption, and

antisymmtery comes from the factorisation. We get our ordered abelian group, the valuation we get trivially

by sending 0 to in�nity, and every other element to its class. Its clear tha Av = A, and the �rst two valuation

axioms as well, what about addition? (x + y) ≥ xU(A) or yU(A). We can assume x, y nonzero, otherwise

its trivial. We need that either x + y/x or (x + y)/y ∈ A, which is clear since 1 + x/y or 1 + y/x is in A

(1 ∈ A).

Theorem 8.14. K a �eld, A ≤ K, then clKA = ∩{Av : A ≤ Av} for all valuation rings, i.e. {x ∈ K :

∀vv|A ≥ 0→ v(x) ≥ 0}.

Proof. If x is integral over A, xn +
∑
aix

i = 0 and a valuation is given. Apply v to the relation to see

nv(x) ≥ min{v(ai) + iv(x) ≥ iv(x)}, so there is an i < n such that (n− i)v(x) ≥ 0.

For the other inclusion x ∈ K not integral over A, we want a Valuation ring containing A and excluding x.

Lemma 8.15. x not integral over A, then x is not integral over A[x−1].

Proof. If it were xn ∈
∑n−1

0 A[x−1]xi ⊂
∑N

−N Ax
i, thus xn+N ∈

∑n+N−1
0 Axi a contradiction.

Let Σ = {K ≥ B ≥ A[x−1] : x not integral|B} Zorns lemma says that we get a maximal such B. We want

to prove that for all y ∈ K either y or y−1 is in B. Observe that B is integrally closed in K, if the integral

closure were bigger, it would contradict its maximality, since x is not integral over A. If y ̸∈ B we want that

y−1 ∈ B, and its su�cient to show that y−1 is integral over B. x is integral over B[y] by maximality, thus

xn ∈
∑
B[y]xi, i.e. 1 ∈

∑
B[y]xi−n =

∑n
1 B[y]x−j .

x−1 is actually in the jacobson radical of B. 1 + x−1b is nonzero at least, since x ̸∈ B, we need that

B[ 1
1+x−1b ] = B. x is not integral over B, so x+ b is also not integral over B, so its not integral over B[ 1

x+b ],

and B[ b
x+b ] is a subring of this, so its not integral over this either, and

1
1+x−1b = 1− b

x+b , so x is not integral

over B[ 1
1+x−1b ], and by maximality this has to be equal to B.

Continuing on 1 =
∑N

0 ykbk, where bk ∈ J(B), so y−N =
∑
yk−Nbk, i.e. y

−N(1− b0) ∈
∑N

1 yk−Nbk, where

1− b0 is invertible, since b0 ∈ J(B) and thus y−1 is integral over B.
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Proposition 8.16. A is a domain, dimA = 1 and Noetherian. Take an ideal I of A, we claim that

∃Q1, . . . , Qn primary ideals such that I =
∏
Qi, moreover the radicals of the Qi are distinct, and such a

decomposition is unique up to order.

Proof. By the Lasker-Noether theorem we write I = ∩Qi where Qi is Pi primary, and the Pi are distinct,

Qi nonzero, and they are pairwise coprime, so the intersection is the same as the product. We can't have

inclusion between nonzero prime ideals, so the primary decmposition is unique. The converse direction is

clear as well, we only have to check that the decomposition we get is really a shortest primary decomposition,

but that is clear since by taking radicals we see, that no Qi can contain the intersection of the others.

De�nition 8.17. Dedekind domain is an integrally closed Noetherian domain with dimension 1. We abbre-

viate it as DD.

Fact 8.18. If A is a DD, and Q a primary ideal, then Q = Pn for some P ∈ specA and n ∈ N.

Fact 8.19. |K : Q| ≤ ∞ then oK = K ∩ Ω is DD.

Most of this is simple enough, ok is clearly integrally closed in K, and so in its �eld of fractions as well,

domain and dimension one is also clear, since it is an integral extension of Z its dimension is equal to

dimZ = 1, the Noetherian property is unclear.

De�nition 8.20. A a domain, A is a discrete valuation domain if there is a v on fracA discrete valuation

such that A = Av.

Example 8.21. Z(p) is a DVD of the p-adic valuation.

9 Ninth lecture

Let K be an algebraic number �eld, i.e. |K : Q| < ∞. Consider the trace function tr : K → Q, where
α 7→ tr(β 7→ αβ), we consider the multiplication as a linear map on the �nite dimensional Q vector space K.

tr1 = |K : Q| clearly. We also have the bilinear form K ×K → Q de�ned as α, α′ 7→ tr(αα′). It is clearly Q
bilinear and nondegenerate, since if 0 ̸= α, then tr(α 1

α ) ̸= 0. If α ∈ OK = K ∩ Ω, then the trace will be an

integer, since f(α) = 0 for some f ∈ Z[x], and the map of multiplication by α also satis�es this polynomial,

thus all eigenvalues are integers.

Take α1, . . . , α|K:Q| ∈ Ok a basis of K as a rational vector space. We can do this by choosing some basis, and

multiplying the elements by some number so they become algebraic integers. Take the dual basis α1, · · · ∈ K
so that tr(αiα

j) = δji . OK ≤
∑

Zαi is a �nite module over Z, so OK is also a �nite submodule, so he is

a Noetherian Z module, and thus a Noetherian ring. All this implies that the algebraic integers of K are a

Dedekind Domain.

The other basic example is if we take K = K̄ a �eld and C ⊂ Kn an irreducible smooth curve. In this context

smooth means, that ∀p ∈ C dimTpC = dimC = 1. If all this is satis�ed, then AC is also a Dedekind Domain,

we will not prove this.

If A is a domain, K = frac A. We want to think of submodules M ≤A K. We can multiply M,N ≤A K

in the usual way, MN is also an A-submodule, we get a semigroup, the identity is A. We want to think of

the invertible elements in this semigroup. If M is invertible, then it is �nite over A, since if MN = A, then∑
mini = 1, then m = m · 1 =

∑
mnimi, and mni ∈MN = A, so M =

∑
Ami.
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De�nition 9.1. If M ≤A K we call M a fractional ideal i� ∃0 ̸= a ∈ A : aM ≤ A.

Observe that if M is �nite over A, then it is a fractional ideal, the �nitely many generators have a common

denominator, which multiplies it into A. The converse is true if A is Noetherian, since multiplication by a

nonzero a is amodule isomorphism, and aM isa submodule, i.e. an ideal of A, and in a Noetherian ring all

ideals are �nitely generated.

If MN = A, then obviously N = (A : M) = {x ∈ K : xM ⊂ A}, since neccesarily M(A : M) ⊆ A, and we

can only include elements of (A :M) into N . We get that M is invertible i� M(A :M) = A. This is the case

i� M is �nite over A and for all maximal ideals m ◁ A we get Mm(Am : Mm) = Am, so the above property

has to hold locally.

Lemma 9.2. AM and two submodules given P,N ≤ M , and S a multiplicative subset of A. Consider

S−1(P : N) and we want to compare it to (S−1P : S−1N). ⊆ is clear*, and the other inclusion is also true

if N is �nite over A.

Proof. Take the generators of N , some element multiplying S−1P into S−1N , then it multiplies the generators

as well, then we can multiply by the common denomintator from S since we only have �nitely many, and we

are done.

For the statement we can assumeM �nite over A by the previous calculation. We want to considerMm(Am :

Mm) =Mm(A :M)m by the lemma and since M is �nite. This is equal to (M(A :M))m, and the statement

that this is equal to Am for all m is equivalent to saying M(A : M) = A. One implication is clear,since we

just localise back. For the converse the M(A : M) ⊆ A is trivial, for the other one M(A : M) is an ideal of

A, and the assumption says that M(A :M) is not contained in any maximal ideal, i.e. it is the unit ideal.

Proposition 9.3. Suppose A is a domain, we claim that some properties being true is equivalent to them

being true locally for all maximal ideals m.

� Noetherian

� dim = 1

� integrally closed

� primary ideal is a power of a prime ideal

� Noetherian and every nonzero fractional ideal is invertible

Proof. First one. One implication is clear, ideals of Am correspond monotonically to ideals of A. If we have

an in�nite sequence in A,the union is also an ideal contained in some maximal ideal, localisation at that

ideals shows the converse.

The last one is also clear by the previous statement, Mm(Am : Mm) is equivalent to having Mm invertible.

Observe that if M is a fractional ideal, then Mm is as well. It is enough to check the statement for integral

ideals actually, since the principal fractional ideal a−1A inverts.

For dimension dim A = sup ht m = sup dim Am = 1 in one direction, and if the dimension of A is 1, then

any local ring has precisely two prime ideals.

*
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Every primary ideal is a power of a prime: Ideals of Am correspond to ideals contained in m, and primes

and primary ideals correspond to each other, so if the statement if true in A, then is will be true in Am.

Conversely take a Q primary, it is contained in some m, localise at that ideal, there it is a prime power, and

then contract so Q = A ∩Qm = Pnm ∩A = Pn.

Integrally closed: Let K be the �eld of fractions of A, clearly frac Am = K = frac A. If A is integrally

closed, take α ∈ K which is integral over Am. We want to prove that α ∈ Am. For α there is an s ∈ A \m
such that sα is integral over A, so it is contained in A, so α ∈ Am clearly. For the converse take α ∈ K which

is integral over A, we need to see that it is contained in A. α is integral over each Am as well, thus α ∈ Am
for all m,if we take {a ∈ A : aα ∈ A} is an ideal of A, which is not contained in any maximal ideal,i.e. it is

the unit ideal.

This means, that from now on we work with only local Dedekind Domains, which turn out to be precisely

discrete valuation rings.

Theorem 9.4. For a domain the following are equivalent

1. DVD

2. Local DD

3. Noetherian local domain such that the unique maximal ideal m ̸= 0 but is principal

4. Noetherian local domain with dim m/m2 = 1

5. local, not a �eld and every nonzero fractional ideal is invertible

6. Noetherian local and the maximal ideal is invertible

7. Noetherian not a �eld and there exists an ideal m such that all nonzero ideals are a power of m

8. Noetherian local, dim = 1 and every primary ideal is a prime power

9. not a �eld, there is an element x such that every nonzero ideal is principal, generated by some powr of

x

10. PID and there exists a unique nonzero prime ideal

11. local PID, not a �eld

12. PID, there exists a "unique"* irreducible element

13. UFD and there is a "unique" irreducible element

Proof. 13 → 1 is clear, take the discrete valuation corresponding to the unique irreducible element, every

element is of the form pnu for n ∈ Z, this is every element of the �eld of fractions.

12→ 13 is also trivial, every PID is a UFD.

10→ 12 is also clear, that prime ideals are generated by irreducible elements.

10↔ 11 is also trivial, locality ensures that we only have a single prime, and thus maximal ideal.

9→ 10 the ideal (x) will be the unique prime. x cannot be a unit since it would be a �eld.

*up to unit factor
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3↔ 4 is also clear. Nakayamas lemma guarantees that the dimension is not 0, and the ideal being principal

says that we can generate the vectorspace with one vector.

7 ↔ 8 is also easy. The increasing direction we see that m is the unique maximal ideal, so it will be local.

Only (0) and m are primes so the dimension is 1, and every primeary is a prime power, since everyone is

a prime power. The other direction there is a unique maximal ideal m, why is everyone a power of it? In a

1-dimensional Noetherian domainevery ideal is a product of primaries as seen last time, and every primeary

is a prime power and we only have one nonzero prime, namely m, so everyone is a powerof m.

3, 7→ 9 is basically tautological, the element generating m willsu�ce for x-

3→ 6 is trivial,...

6 → 7 is mostly clear, we only need that every ideal is a power of m. We use downwards induction (we can

do this since it is Noetherian). Consider 0 ̸= I ◁ A and write m−1I by the hypothesis. We claim that this

strictly contains I. m−1 = (A : m) ∋ 1 by assumption, so I ⊆ m−1I, but why is it strict? Suppose its equal,

then I = mI, and by Nakayama's lemma (we are noetherian local) we get that I = 0, a contradiction. Now

the downwards induction, m−1I = mr, thus I = mr+1.

7→ 3 it will be local, since m is the unique biggest ideal, m is nonzero since it is not a �eld. m is principal

since m ⊃ m2 strictly by Nakayama, choose t ∈ m \ m2. Now (t) = mr, it is contained in m, but not in

m2,thus it generates m, and it is principal.

5 → 6 is also easy, it is Noetherian since all frac ideals are invertible, and so in particular m is, since every

integral ideal is also a fractional ideal.

1 → 5 take the discrete valuation, A = {x ∈ K : v(x) ≥ 0}. x|y is equivalent to having v(y) ≥ v(x), both

say that y/s ∈ A or x = y = 0. Take the smallest valuation of elements of an ideal, any one with smallest

valuation will generate the whole ideal, the same is true for fractional ideals, i.e. the nonzero fractional ideals

are precisely {v ≥ c} for some c ∈ Z. We have to have a lower bound on our fractional ideals to be able to

multiply it into A, and these are all infact ideals, and {v ≥ c}{v ≥ −c} = A, so they are all invertible, and

�nally {v ≥ 1} is clearly a unique maximal ideal of A.

1 → 2 is clear, we see dimension 1 and Noetherian property already. We saw that A ⊆ clK A = ∩Av ⊆ A

since A itself is a valuation ring.

2→ 3 is the only hard thing. Noetherian and local is already assumed by saying local DD, and m is nonzero

since the dimension is 1, we only need that it is principal. Take a nonzero element a ∈ A. Spec A = {0,m}, so
Spec A/(a) = {m/(a)}, thus A/(a) is Artinian, and in an artinian local ring (m/(a))N = 0, thus mN ⊆ (a).

Do this with a ∈ m, there is a highest power with mn ̸⊆ (a),mn+1 ⊆ (a). We can �nd b ∈ mn with a ̸ |b.
This means that b

a ̸∈ A, so
b
a is not integral over A either (since it is a DD, integrally closed), and b

am ̸⊆ m,

but b
am ⊆ A, further it is an ideal, which is not contained in m (it is true since bm ⊆ mnm ⊆ (a)), so in fact

b
am = A, thus m = a

bA, and it is principal.

Theorem 9.5. A Noetherian domain TFAE

1. DD

2. for every maximal ideal m, Am is a DVD

3. dimA = 1 every primary is a prime power

4. not a �eld and every nonzero fractional ideal is invertible
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Proof. 2↔ 3 these are local properties, and we can read o� from the last theorem.

2 ↔ 4 locality we know, if we have the properties for A, then we have the properties locally and the other

desciption from above gives us what we want.

1↔ 2 local DD is the same as DVD as we just saw.

Corrolary 9.6. If A is a DD, any nonzero ideal decomposes uniquely as a product of primes up to order.

Proof. P r = P 2, then r = s, and Pn is P -primary.

For nonzero fractional ideals I = P k11 . . . Ikrr for some ki ∈ Z and unique again up to order.

10 Tenth lecture

De�nition 10.1. B an algebra over k, αi ∈ B (k a �eld). Consider the map ϕ : k[x1, . . . , xn] → B the

substitution by α, the image is the subalgebra generated by the αi. We call the αi algebraically dependent if

ϕ is not injective, independent if it is.

Remark 10.2. α is algebraically dependent i� α is algebraic over k, independent i� it is transcendental. If

α1, . . . , αn is independent, then k[α1, . . . , αn] = k[x1, . . . , xn] as a k algebra.

Lemma 10.3 (Noether normalization). Suppose k a �eld, B is a �nitely generated algebra over k, generated

by n elements. Then ∃d ≤ n, ∃y1, . . . , yd ∈ B algebraically independent over k such that B is �nite over

A = k[y1, . . . , yd].

Proof. B = k[x1, . . . , xn], if x1 are algebraically independent, then we are done. Otherwise there is a nonzero

polynomial such that F (x1, . . . , xn) = 0. Let yn = xn, yi = xi − xrin , where ri > 0 will be chosen later.

Now xi = yi + yrin , so the yi still generate B. Plug in F (y1 + yr1n , . . . , yn) = 0, we want to arrange this to

be a monic relation for yn. This will mean that yn is integral over k[y1, . . . , yn−1] and by induction we will

be done. Substitute formal variables, so we can work with F as a polynomial F (Y1 + Y r1n , . . . ). Originally

F =
∑
cα1,...,αn

Xα1
1 . . . Xαn

n , after substitution we have to take the Y ∗
n term from each component to get

cα1,...,αnY
α1r1+···+αnrn
n ,* we want that the exponent α1r1 + . . . are distinct for all (α1, . . . , αn), and this can

be achieved easily, since we only have �nitely many vectors, since we have a polynomial, we can just put

rn = r, rn−1 = r, rn−2 = r2, . . . , with r > maxα, we get a top leading term, which appears only once, we

divide by te coe�cient and are done.

Lemma 10.4 (Zariski). L|k a �eld extension of �nite type (L �nitely generated as an algebra), then L is a

�nite dimensional vector space over k.

Proof. L is �nite of some subalgebra k[X1, . . . , Dd], if a �eld is integral over a ring, then the small ring is a

�eld, this is true since every �nite extension is integral, a polynomial ring is a �eld i� d = 0.

Theorem 10.5 (Weak Nullstellensatz). k a �eld, consider F ⊂ k[X1, . . . , Xn], assume (F) ̸= (1), then ∃L|k
�eld extension which is �nite (|L : k| <∞) with α1, . . . , αn ∈ L such that ∀f ∈ F : f(α1, . . . , αn) = 0.

*rn = 1
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Proof. ∃M ∈ m − speck[X1, . . . , Xn] containing F . Take L = A/M with A = k[X1, . . . , Xn]. This is a �eld,

the images of the Xi will su�ce for the αi. This is clearly �nite since L = k[αi] is of �nite type, thus by

Zariskis lemma we are done.

Proof. If k = k̄, then every �nite extension is isomorphic to k, and V (F) = ∅ i� (F) = (1).

Theorem 10.6 (Hilbert's Nullstellensatz). 1. Suppose k a �eld, F ⊂ k[X1, . . . , Xn] ∋ g ̸∈
√
(F), then

there is L|k �nite �eld extension and a point α ∈ Ln with f(α) = 0∀f ∈ F and g(α) ̸= 0.

2. Assume k = k̄. V (F) ⊂ V (g) i� g ∈
√
(F).

3. k = k̄, I(V (F)) =
√

(F).

Proof. Rabinowitsch trick! Suppose for contradiction ∀|L : k| < ∞ VL(F) ⊂ VL(g), and want to prove that

g ∈
√
(F). If we take F ∪ {1−X0g}, where we extended our polynomialring with a new variable its variety

will be empty. Applying the weak nullstellensatz (F , 1−X0g) = (1). Now 1 = h0(1−X0g) +
∑N

1 hifi with

fi ∈ F , hi ∈ k[X0, X1, . . . , Xn]. First case g = 0, then we are done. If it is nonzero, substitute (factor) X0 = 1
g ,

and

1 =

N∑
1

hi(
1

g
,X1, . . . , Xn)fi(X1, . . . , Xn)

Now clear denominators by multiplying with gm to get

gm =

N∑
1

gmhi(
1

g
,X1, . . . , Xn)fi(X1, . . . , Xn)

and the coe�cients are polynomials for m >> 0, this represents an element of gm ∈ (F) and we are done.

The other two follow trivially.

Remark 10.7. If k = k̄, then this theorem tells you that a�ne algebraic sets correspond bijectively to radical

ideals, the correspondence being the I and V operators.

Dimension theory

Theorem 10.8 (Krull's Hauptidealsatz). A Noetherian, x ∈ A and P ∈ spec A. Assume P is a minimal

prime ideal containing x, then ht P ≤ 1.

De�nition 10.9. Q ∈ spec A, n ∈ N, then the n-th symbolic power of Q, denoted Q(n) := {a ∈ A : ∃s ∈
A \Q : sa ∈ Qn}.

Remark 10.10. ϕ : A→ AQ the obvious map, then ϕ−1(QnQ) = Q(n). In particular Q(n) is Q-primary.

Proof. We may assume that A is local and P = m, we could pass to AP , and PP is a minimal ideal containing
x
1 , and htP = htPP . Take Q ∈ spec A, with Q ⊂ P . We want to show that Q is a minimal prime. Clearly

x ̸∈ Q, moreover Spec A/(x) = {P/(x)}, and this quotient is Artinian (every prime is maximal). Because of

this we know that ∃n : Q(n) ⊆ Q(n+1)+(x). ∀q ∈ Q(n)∃q′ ∈ Q(n+1)∃a ∈ a : q = a′+xa, thus xa = q−q′ ∈ Q(n),

and x is not contained in this symbolic power, so a is. We get something stronger: Q(n) = Q(n+1)+xQ(n) (the

converse inclusion is trivial). By Nakayama's lemma since x ∈ P and P is the Jacobson radical by locality

we get also that Q(n) = Q(n+1). Thus ϕ−1(QnQ) = ϕ−1(Qn+1
Q ) implying that QnQ = Qn+1

Q since every ideal of
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a local ring is an extended ideal. AQ is a local ring with maximal ideal QQ and by Nakayama we get QnQ = 0

and AQ is Artinian. Now ht(Q) = ht(QQ) = 0, since QQ is the only prime ideal of AQ, thus Q is a minimal

prime.

Now generalize.

Theorem 10.11. A Noetherian, x1, . . . , xc ∈ A and P a minimal prime ideal containing these elements. We

claim that htP ≤ c.

Proof. If c = 0, 1 we are done. Now apply induction, let c ≥ 2 and the statement is true for c − 1. We may

also assume A to be local with maximal ideal P . Consider Q ⊂ P , want to show that htQ ≤ c− 1. We may

assume Q to be a maximal prime contained in P (this exists by the Noetherian property). Say xc ̸∈ Q by

minimality and reindexing if necessary. We want to show that ∃y1, . . . , yc−1 such that Q is a minimal prime

ideal containing them. Consider A/(Q + (xc)), here P̄ is a minimal prime, and P̄n = 0, since that ring is

Artinian, thus Pn ⊆ Q + (xc). We can write xni = yi + aixc. We want to check that Q is a minimal prime

containing these yi's. Consider spec A ∋ Q0 ⊆ Q containing the yi, we want to see that Q0 = Q. Observe

that
√
Q0 + (xc) ∋ xi and P is a minimal prime containing Q0 + (xc), so in A/Q0 we see htP̄ ≤ 1 by the

Hauptidealsatz, and there cannot be another ideal Q0 ⊂ Q ⊂ P since the second inclusion is strict.

Theorem 10.12. k a �eld, then dimk[x1, . . . , xd] = d.

Proof. ≥ is clear, we have 0 ⊂ (x1) ⊂ (X1, x2), . . . , a chain of length d.

≤ it is su�cient to show that any maximal ideal M ◁ k[x1, . . . , xd] = A has htM ≤. There is an |L : k| <∞
and α ∈ Ln with f(α) = 0∀f ∈ M . Take B = L[x1, . . . , xd], then B ≥ A is an integral ring extension. If we

have a chain M = P0 ⊃ P1 ⊃ · · · ⊃ Pn with Pi ∈ spec A we can lift it by the going down theorem. Choose

Q0 = (x1 − α1, . . . , xd − αd), a maximal ideal of B. P0 ⊂ Q0 by the relation, thus Q0 ∩ A = P0 and we can

lift. We get that htM ≤ htQ0 ≤ d by the general Hauptidealsatz.

De�nition 10.13. L|K �eld extension, the transcendece degree of this extension is de�ned as sup{n : ∃α ∈
Ln : algebraically independent over K}.

Theorem 10.14. k a �eld, B a �nitely generated algebra over k which is a domain also, and L = fracB.

We claim that dimB = tr.deg(L|k).

Proof. Noether normalisation A = k[x1, . . . , xd] ≤ B such that B �nite over A. dimB = dimA = d as we

saw. Take K = fracA = k(x1, . . . , xd), now tr.deg(K|k) = d. One direction is clear, the other direction we

need to think about later. L|K is an algebraic extension since B is �nite over A. It follows that tr.deg(L|k) =
tr.deg(K|k). One inequality is clear, for the other one we need to think through that algebraic extensions

don't raise the transcendence degree.

11 Eleventh lecture

Proposition 11.1. L|K �eld extension, α1, . . . , αn ∈ Lalgebraically independent over K and β ∈ L, then
αi, β is algebraically dependent precisely when β is algebraic over K(α1, . . . , αn)
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Proof. If the numbers are algebraically dependent, then there is F ∈ K[x1, . . . , xn, y] not identically zero, and

vanishing at αi, β. Group the polynomial according to y F =
∑
fi(x)y

i, and since the αi's are algebraically

independent, and since there is an fi nonzero, we get that β is algebraic over the �eld extension.

Conversely if there is a polynomial G ∈ K(αi)[x] vanishing at β. We can also assume that G ∈ K[αi][y], since

the �eld extension is the ring of fractions of this ring, we can clear denominators. G =
∑
f(α)yi, at least one

of the coe�cients is nonzero again, we can replace the α's by abstract variables xi, and we are done, the set

αi, β is algebraically dependent.

Corrolary 11.2. Suppose L|K a �eld extension, (α1, . . . , αn) = S TFAE:

1. S is a maximal algebraically independent system

2. S is algebraically independent and L|K(S) is an algebraic �eld extension

3. S is minimal such that L|K(S) is algebraic

Proof. 1→ 2 is just the previous proposition.

2→ 3 : ∀i αi is transcendental over K(α1, . . . , α̂i, . . . , αn) clearly, so S is minimal as claimed.

2→ 1 is the other direction of the proposition.

3 → 2 We may assume α1, . . . , αi algebraically independent with α1, . . . , αi, αj algebraically dependent for

all j > i. This means αj is algebraic over K(α1, . . . , αi), so L itself is already algebraic over this �eld since

algebraic extension of an algebraic extension is algebraic, contradicting the minimality of S.

De�nition 11.3. S is called a trnascendence basis, if it satis�es any (and all) of the previous three properties.

Theorem 11.4. L|K �eld extension, α1, . . . algebraically independent over K, and β1, . . . , βn are such that

L|K(β1, . . . , βn) is algebraic.

We claim, that ∀i ∈ [k]∃j ∈ [n] : α1 . . . , α̂i . . . αkβj is algebraically independent over K, and k ≤ n.

Proof. Indirectly. ∀j βj would be algebraic over K(α1, . . . , α̂i, . . . ), this means, that αi is also algebraic over

this �eld (since the β's generate), a contradiction. The second statement follows easily (?)

Corrolary 11.5. All transcendence bases of L|K have the same cardinality, and is equal to tr.deg(L|K).

Corrolary 11.6 (of the Hauptidealsatz). A noetherian, P ∈ specA, then htP <∞.

Proof. P (x1, . . . , xc), then htP ≤ c.

Corrolary 11.7. If A is Noetherian and local, then dimA <∞.

Proof. dimA = htm.

Lemma 11.8 (prime avoidance). A is a ring, I is an ideal, also P1, . . . , Pn are ideals with Pi prime with at

most two exceptions (3 ≤ i ≤ n) if I ⊂ ∪Pi, then there is an i with I ⊆ Pi

Proof. We may further assume that ∀i : I ̸⊆ ∪j ̸=iPi since otherwise we could use induction. So there is

xi ∈ I \ ∪j ̸=iPj ⊂ Pi. Now take x1 . . . xn−1 + xn. Clearly xn ∈ Pn, and the latter product is not in Pn. If

n ≥ 3 we are done by primality, if n = 2 then there is only one term in the product, not in Pn. This element

is clearly not in the union of the Pi's and we are done.
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Proposition 11.9. In a Noetherian ring A every minimal prime ideal belongs to (0). There are �nitely many

minimal prime ideals. x ∈ P with P prime and htP = 0, then x is a zero divisor.

Lemma 11.10. A Noetherian, I an ideal, then there is an n such that I ⊇
√
I
n
.

Proof.
√
I = (a1, . . . , an), take 1 +

∑
ri where a

ri
i ∈ I.

Proof of the proposition. Lasker Noether say that (0) has a primary decomposition Qi. Qi ⊇ Pni
i by the

lemma, now
∏
Pni
i = (0) ⊂ P , so Pi ⊆ P for some i, contradicting minimality.

Theorem 11.11 (Converse of the Hauptidealsatz). A Noetherian, P ∈ specA. htP ≤ c, then there exists

x1, . . . , xn ∈ A such that P is a minimal prime containing these elements.

Proof. If x1, . . . , xi−1 ∈ P is already chosen such that ∀Q ∈ specA with x1, . . . , xi−1 ∈ Q and htQ ≥ i − 1,

then we want to choose xi ∈ P so that the same property holds, any prime containing these i elements has

height at least i. We have to assume that htP ≥ i. The process starts, for i = 1 the statement is empty. After

that A/(x1, . . . , xi−1) is Noetherian, the image of P here is not a minimal prime by the Hauptidealsatz (a

minimal prime containing i − 1 elements has height at most i − 1). By the prime avoidance lemma we can

choose x̄i ∈ P̄ which is not contained in any minimal prime (there are only �nitely many minimal primes).

Thus we are done, there is Q′ containing Q which has height at least i. This process goes until we reach the

height of P , as claimed.

Corrolary 11.12. A a Noetherian local ring, then dimA = htm = min{d :
√

(x1, . . . , xd) = m}, i.e. the
minimal number of elements needed to generate an m-primary ideal.

De�nition 11.13. A is a Noetherian local ring, dimA = d. x1, . . . , xd is a sequence of parameters if√
(x1, . . . , xd) = m. We call such a sequence of parameters regular if (x1, . . . , xd) = m.

Remark 11.14. There always exists a sequence of parameters.

Suppose we have an a�ne algebraic set, take the local ring at a point. A sequence of parameters are d local

functions, and the variety germ of these functions is just the point we are considering.

De�nition 11.15. A Noetherian local ring with a regular sequence of parameters is called a regular local

ring.

Remark 11.16. If A is a Noetherian local ring, then dimA/mm/m
2 is precisely the minimalnumber of gen-

erators of m. This number is at least the dimension, as we just saw. Equality is achieved if and only if A

is regular. Since this vectorspace is the cotangent space, the point will be smooth if and only if the ring is

regular, a regular sequence of parameters locally paramterises the variety.

Theorem 11.17 (Auslander-Buchsban). Every regular local ring is a UFD.

Proof. We only prove that it is a domain. A a Noetherian local ring, x ∈ A, look at dimA/(x). If x ̸∈ m,

then the factor is the 0 ring, and the dimension is < 0. Otherwise it is ≥ dimA− 1. dimA/(x) = htm/(x) =

min{k : m/(x) is a minimal prime containingx̄1, . . . , βxk} this means, that m is a minimal prime containing

x, x1, . . . , xk. Observe that the dimension of the factor is ≤ dimA− 1 if x ̸∈ ∪htP=0P .

dimA/(x)/m/(x)m/(x)/(m/(x))
2 = dimA/mm/(m

2+(x)) = dimA/mm/m
2/(m2+(x))/m, and this dimension

is the same if x ∈ m2, or one less if x ̸∈ m2.
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Corrolary 11.18. If A is a regular local ring, and x ∈ m \ (m2 ∪htP=0 P ), then dimA/(x) = dimA− 1 and

A/(x) is regular.

Proposition 11.19. A regular local ring is a domain.

Proof. Induction on the Krull dimension. If dimA = 0, then m = (0), and A is a �eld. Assume dimA ≥ 1.

Now htm ≥ 1, so m is not a minimal prime, and m ̸= m2 (it would be zero otherwise by Nakayama). By

prime avoidance there is an x ∈ m \ (m2 ∪htP=0 P ). By the corollary A/(x) is regular, the dimension is

strictly less. By induction A/(x) is a domain, so (x) is prime. By the assumptions on x, its principal ideal is

not minimal, so we have a prime strictly contained in it, call it P . We want P = 0. P = x(P : x) ⊂ mP and

by Nakayama we are done.

De�nition 11.20. k = k̄ with X ⊂ kn an a�ne algebraic set, p ∈ X. We call p a smooth/nonsingular point

i� OX,p is regular.

L|K with X ⊂ Ln a K-Zariski closed set, then X is a Noetherian topological space.

Proposition 11.21. A Noetherian topological space can be written as a union of irreducible closed subspaces

in an irredundant way. This decomposition is unique up to order.

Proof. Induction, we may assume ∀Y ⊊ X is a unique union of irreducible closed sets, so X is as well.

Irredundancy is also clear.

Take two decompositions ∪Xi = ∪Yj . Now Xi ⊂ ∪Yj , but it is irreducible, so Xi ⊂ Yj ⊂ Xi′ if we make the

argument once again, by irredundancy this can only happen if i = i′, and we are done.

Back to the story. X = X1, . . . , Xk is the decomposition into irreducible sets, OX,p = OXp,p where Xp =

∪p∈Xi
Xi, if p is smooth, then there is only one component, if there would be more, we could create zero

divisors. If p is contained in only one component, then it is a smooth point of X i� it is a smooth point of

its component.

Remark 11.22. If X is a�ne algebraic, p ∈ X then p is smooth i� dimTpX = dimXp.

Proposition 11.23. k = k̄, X a�ne algebraic in kn. X → Z≥0 where p 7→ dimTpX is upper semicontinous,

i.e. {p ∈ X : dimTpX < c} is a Zariski open set in X.

Proof. Let I = I(X), I = (f1, . . . , fk) for some polynomials fi ∈ k[x1, . . . , xn] = A. dimTpX = n −
rk(J(f1, . . . , fk)(p)), the Jacobian has size k × n. Now we only have to check, that the rank of the Jacobian

is lowers semicontinous, i.e. {p ∈ X : r(Jp) < r} is Zariski closed. This is clear, since this is equivalent to

having all r× r minors of the matrix vanish, this gives additional polynomial equations and we are done.

12 Twelfth lecture

Let Kbe an algebraically closed �eld, X ⊂ Kn a�ne algebraic. We claim, that X is irreducible i� AX is a

domain.

Proof. If Y,Z ⊂ Kn Zariski closed cover X we need, that Y or Z covers X by de�nition of being irreducible.*

We switch to ideals by the nullstellensatz, X,Y, Z corresponds to radical ideals. In this language X being

*X is nonempty by assumption
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irreducible means exactly that I(X) ⊂ ab, then a or b is contained in I(X) for all radical ideals a, b. I(X) ̸= (1)

since X is nonempty. We want to conclude, that this is equivalent to having I(X) prime. Take an arbitrary

ideal a, b ̸⊂ I(X) with ab ⊂ I(X), then it follows that
√
a,
√
b ̸⊂ I(X), but their product will be contained in√

I(X) = I(X) since
√
ab ⊂

√
a
√
b and we are done.

Proposition 12.1. Let k be any �eld, consider m ∈ m−specA, where A = k[x1, . . . , xd]. We claim htm = d.

Proof. htm ≤ dimA = d is already checked. By the nullstellensatz there is a �nite extension L|k such that

α ∈ Ld. Consider M = (x1 − α1, . . . ) ∈ m − specB where B = L[x1, . . . , xn], and m ⊂ M . M = M0 ⊃
M1 ⊃ ... ⊃ Md, where Mi = (x1 − α1, ..., xd−i − αd−i). Take Pi = Mi ∩ A to get another chain P0 ⊃ ....

P0 = M ∩ A ⊂ m so it is equal, since m is maximal. The primes will be distinct by a previous lemma, B is

integral over A.

Theorem 12.2. k is a �eld, B is a k algebra of �nite type which is a domain. m ∈ m − specB, then

htm = dimB =: d.

Proof. One inequality is clear, for the other direction we use Noether normalisation. B is �nite over A =

k[x1, . . . , xd]. Consider P = m ∩ A ∈ m − specA, it will be maximal by the going up theorem. We already

know the statement in the polynomial ring case to get a chain P0 ⊃ P1 ⊃ ... ⊃ Pd in A and by the going

down theorem we can lift this to B and we are done.

If we have an irreducible a�ne algebraic set X over an algebraically closed �eld k, then AX will be a domain.

Take p ∈ X, and localise at this point, we saw that the height of any maximal ideal is equal to the Krull

dimension of B, which is the dimension of X. This means also, that p is a smooth point if and only if

dimTpX = dimX. An inequality is always true as seen last time, but does it occur actually?

Theorem 12.3. k = k̄ and X ⊂ kn is a�ne algebraic, irreducible, then the set os smooth points of X

denoted Xsmooth is a Zariski dense open set.*

Proof. We only have to see, that it is nonempty. Let d = dimX, and A = k[x1, . . . , xn], denote the ideal of X

by I. B = A/I = AX , and fracB = KX (since B is a domain). Consider the �eld extension KX |k. We know

that tr.dg(KX |k) = d, since it is the same as the Krull dimension of B. Denote the image of xi restricted to

our variety by x̄i. Clearly KX = k(x̄1, . . . , x̄n), we extract a transcendence basis, so assume that x̄1, . . . , x̄d

is such a basis over k. For all i > d we get that there is a polynomial F ∈ k[x1, ..., xd, xi] which is nonzero,

but F (x̄1, . . . , x̄d, x̄i) = 0. Assume that degF is minimal. This means in particular, that F ∈ I. Take the

di�erential dF = [∂jF ]. Minimality implies, that deg∂iF < degF , it must really depend on the last variable

xi. If this polynomial would be in I, then it would be zero, which it isn't by the previous remark (we use

here that chark = 0, since otherwise the derivative behaves badly). We get, that for all i > d there is an

Fi ∈ I, such that ∂iFi ̸∈ I. Take
∏n
d+1 Fi, this is still not in I, i.e. there is a point on X, where the product

evaluates to a nonzero number. This means also that dpFi are linearly independent for i = d+ 1, ..., n. This

means, that dimTpX ≤ d, since we found at least codimension many vectors orthogonally (the dFi).

And now for something completely di�erent.

*char k=0
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Tensor products of modules

De�nition 12.4. Fix a ring A, M,N A-modules, and Z also. We want to study bihomomorphisms, i.e.

ϕ :M ×N → Z where: ϕ is linear in both arguments.

For �xed M,N we want to study all bihomomorphisms for �xed M,N , which we do by constructing a

universal bihomomorphism denoted ⊗ to a ring denoted M ⊗ N . If X is a set, then the A module freely

generated by X is denoted FX := ⊕XA.* Take the free module FM×N and mod out by a certain submodule

to be constructed S. We have a map M ×N → FM×N where (m,n)→ 1(m,n), and we want to mod out by

a submodule, such that the composition becomes a bihomomorphism, with S as small as possible.

S =< (v1 + v2, w)− (v1, w)− (v2, w), (λv,w)− λ(v, w), (v, w1, w2)− (v, w1)− (v, w2), (v, λw)− λ(v, w) >

(m,n) + S will be denoted m ⊗ n. The composition of the injection into the free module, and the factor is

called the tensor map, which is clearly the bihomomorphism by construction. Moreover this has a universal

property: M ×N ⊗−→M ⊗N ∃!ψ−−→ Z ∀ϕ :M ×N → Z.

Lemma 12.5. M ⊗N =< m⊗ n : m ∈M,n ∈ N >.

Proof. Completely trivial, since FM×N =< (m,n) : ... >, and we take a surjective image of this generating

system.

For the universal property uniqueness of ψ is trivial, since ψ(m⊗ n) = ϕ(m,n), it has to be. We can extend

ϕ to FM×N , since it is free, η : (m,n) 7→ ϕ(m,n), now we want to extend it to the tensor product module.

For this one needs to check, that S ⊂ kerη. This is clear, since ϕ was a bihomomorphism, so η will also have

the same identities and we are done (one only needs to check this on the generators).

Proposition 12.6. If M ×N ⊗′

−→M ⊗′ N which also has the universal property, then there exists q unique

isomorphism between M ⊗N →M ⊗′ N , which makes the triangle commute.

Proof. Take ϕ = ⊗′ and Z =M ⊗′ N , there is a unique ψ with ψ⊗ = ⊗′, and in the other direction as well,

there is a unique ψ′ with ⊗′ψ′ = ⊗. Consider the composition ψ′ψ which makes a triangle commute, and the

same triangle is commutative with idM⊗N , and similarly for ⊗′.

Proposition 12.7. A⊗M =M

Proof. Take the map m 7→ 1⊗m, this map is surjective since A⊗M is generated by a⊗m = 1⊗ am. Why

is it injective? Because it has an inverse, a⊗m 7→ am, and we are done�

Proposition 12.8. M ⊗N = N ⊗M , moreover there is a unique isomorphism with m⊗ n 7→ n⊗m.

Clear by construction, or by the universal property. It is also associative up to isomorphism. M ×N × P →
(M ⊗ N) ⊗ P with (m,n, p) 7→ (m ⊗ n) ⊗ p is a trihomomorphism, moreover it is the universal one! One

can look at the section functions ϕp : (m,n) 7→ ϕ(m,n, p) and use the universal property for the tensor

product. This gives a map from (M ⊗ N) × P → Z, we get a unique bihomomorphism, and then use the

universal property again. If one takes the tensor products the other way around, we get another universal

trihomomorphism, but it is an easy check, that the universal trihomomorphism is also unique up to unique

isomorphism.

*direct sum, not product, so only �nitely many coe�cients are nonzero in any element
�all modules unital!

35



Example 12.9. A = Z, take abelian groups and consider Z ⊗ F2 = F2. Note, that in the tensorial way of

writing 2 ⊗ 1 = 1 ⊗ 2 = 1 ⊗ 0 = 0. Take 2Z ≤ Z and tensor it with F2 again, here 2 ⊗ 1 is nonzero, since

2 is a generator of 2Z, which is isomorphic as a module to Z. 2Z ι
↪−→ Z is injective, but the induced map

2Z⊗ F2 → Z⊗ F2 is not injective.

All types of other terrible behaviour arises as well, compared to vector spaces at least, for exampleQ⊗Z/(m) =

0 for all nonzero m,q ⊗ r = q/m⊗mr = q/m⊗ 0 = 0.

A �nitely generated algebra k[S], we can ask how fast it generates, i.e. take products from S of length at

most n, and consider the dimension of the generated subspace. This is a function f(n) will be the Hilbert

function, the degree.

At the exam there will be 2 topics, you choose one, and I choose one:D send the chosen topic 23 hours before

the exam.
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