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1 First lecture

The following topics will be covered

1. Riemannian metrics

2. Connections

3. metric properties, geodesics

4. curvature

5. Jacobi �elds and applications

1.1 History/motivation

Gauss studied the theory of curved surfaces in R3. A typical curve on the surface is γ = r◦σ, γ(t) = (u(t), v(t)).

Figure 1: Figure by Botond Miklósi

The arc length is de�ned by
∫ b

a
||γ′(t)||dt. γ′ = (r ◦σ)′(t) = ∂uru

′+∂vrv
′, and the norm can be calculated by√

< ∂ur, ∂ur > (u′)2 + 2 < ∂ur, ∂vr > u′v′+ < ∂vr, ∂vr > (v′)2

The three terms are denoted by E,F,G, and are called Gauss' �rst fundamental functions, together they

constitute the �rst fundamental form with the matrix
E F

F G
being the Gram matrix of the standard dot

product in the tangent space written out wrt the basis ∂ur, ∂vr. Whatver can be de�ned in terms of these
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functions is an "intrinsic" geometric property of the surface. The main discovery is that Gaussian curvature

is intrinsic.

Notations we will commonly use: M will be a di�erentiable manifold. TM will denote the tangent bundle,

TpM , the tangent space of a point p ∈ M , vector �elds are X ∈ X(M), their lie bracket is denoted [X,Y ].

Tensors of type (k, l) on an n − dim real vector space V are denoted by T k
l (V ). Tangent maps/derivatives

are denoted df or Tf : TM → TN . A tensor is covariant if k = 0. The pullback of a covariant tensor �eld

t ∈ T 0
l (N) by a di�eomorphism f : M → N is denoted f∗t ∈ T 0

l (M), de�ned by the usual formula.

De�nition 1.1. IfMn is a manifold, a Riemannian metric onM is a smooth assignment of a positive de�nite

dot product to each tangent space TpM .

In terms of local coordinates x1, ..., xn gp(∂i, ∂j) =< ∂i, ∂j >p= (gij)p, where the gij : U → R are smooth

functions, and (gij)p is a positive de�nite symmetric matrix. From a tensorial viewpoint the matrix g ∈ T 0
2 (M)

is a tensor �eld, locally written as g =
∑

gijdx
i ⊗ dxj .1

Example 1.2. The easiest example is the standard Riemannian metric on Rn. Here gij = δij .

A Riemannian manifold is a pair (M, g) where g is a Riemannian metric on M .

De�nition 1.3. Two Riemannien manifolds (M, g), (N,h) are called isometric, if there is a di�eomorphism

f : M → N such that f∗h = g.

Remark 1.4. In Gauss' viewpoint the �rst fundamental form is just the pullback of the standard Riemannian

metric to the parameter space.

Example 1.5. Submanifolds of Rn of any dimension are a rich source of examples. They all inherit2 the

Riemannian metric from the standard one on the ambient space.

We can be a bit more general even. If f : M → N is an immersion, and (N,h) is a R-manifold, then f∗h will

again give an induced metric on M .

De�nition 1.6. A map f : M → N between R-manifolds is a local isometry at p ∈ M , if there is an open

neighbourhood U ∋ p in M such that f |U : U → f(U) is an isometry.

De�nition 1.7. Let (Mi, gi) be two R-manifolds. Then M1 ×M2 endowed with the metric π∗
1g1 + π∗

2g2 is a

R-manifold (πi : M1 ×M2 →Mi are the standard projections).

2 Second lecture

More examples

Example 2.1. We saw the construction of the product manifold last lecture, for example T 2 = S1 × S1, and

the circle has a natural Riemannian metric. In the same way we get all the tori. Observe that the torus we

get in this way is the "�at" torus, ergo locally isometric to the plane/higher Euclidean space. This happens

because the Euclidean plane itself is a product. We can get general �at tori, by taking two independent

vectors, and the group generated by their translations and quotienting out by the lattice they generate,

R2/Z2 will give another torus. The lattices have to be congruent for two �at tori to be globally isometric.

1the tensor product symbol is usually omitted
2by restriction
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These are called "space forms", spaces that are locally isometric to one of the standard classical geometries

(Euclidean, spherical or hyperbolic). Complete R-mfds are all quotients of their respective geometries (if they

are "space forms").

2.1 Riemannian coverings

De�nition 2.2. A smooth map f : N →M between R-manifolds is a R-covering, if it is a covering map (in

the sense of topology), and f is a local isometry.

Proposition 2.3. If you have a smooth covering, and M has a R-metric, then there is a unique metric on

N , which makes f into a R-covering.

Proof. This is trivial, take f∗g as the metric on N .

Proposition 2.4. If N is an R-mfd, and Γ is a discrete group of isometries of N such that its action on

N is a covering action1 so that the factor N/Γ inherits a smooth manifold structure and the factor map is a

covering map, then there is a unique R-mfd structure on M = N/Γ.

Proof. To get the metric, pick a lift of a point, and take the metric on N , this will be well de�ned, since Γ

acts by isometries, it doesn't matter which lift we pick.

Remark 2.5. Notice that the torus was produced in just this way, we factor by translations (which are

isometries of the plane).

Example 2.6 (More space forms). For spherical geometry the �rst thing that comes to mind is Pn = Sn/Z2,

the action being the antipodal map. Sometimes this is called "elliptic space". For n = 3 we also have lens

spaces. Take p ≥ 2 a natural number, and think of S3 ⊂ C2, and pick a primitive pth root of unity ξ, and q

such that (p, q) = 1. Let the Zp generated by ξ act as (z, w) 7→ (ξz, ξqw), giving the lens space L(p, q), giving

more examples of elliptic2 manifolds.

Remark 2.7. If n is even, then Z2 is the only possible group which can act on the sphere by isometries.

Example 2.8. The most famous elliptic 3-mfd is the Poincaré homology sphere. It looks like S3/I, where

I is the binary icosahedral group. Take the orientation preserving symmetry group of the dodecahedron

(which is abstractly an A5 ≤ SO(3)). Take the inverse image under the 2 : 1 cover S3 q−→ SO(3), now

PHS3 = S3/q−1(A5).

Example 2.9 (Surfaces). S2, RP 2 carry elliptic geometry.

T 2 and the Klein-bottle have �at R-metrics. For the latter take the translations by (0, 1) and the translation

by (1, 0) composed by a re�ection to ensure the right gluing of the fundamental domains.

All the rest have hyperbolic R-metrics.

2.2 Existence of Riemannian metrics

Theorem 2.10. On any di�erentiable manifold there exists a Riemannian metric.

1absolutely discontinous etc etc.
2positive constanst curvature
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Proof. One possible approach is to embed it di�erentiably into some RN , and pull back the inherited metric.

This works for compact manifolds easily, but the embedding theorem is true for non-closed mfds as well, but

is a bit harder to see.

A di�erent approach is to use partitions of unity. On a single chart it is not hard to de�ne a metric, just

pull back from Rn. Now we can paste these together using a suitable partition of unity (in the noncompact

case locally �nite). We need the statement, that any convex combination of positive de�nite bilinear forms

is again positive de�nite, which is more or less clear.

De�nition 2.11. A cover of open sets is locally compact, if every point has a neighbourhood intersecting

only a �nite number of elements in the cover.

A topological space is paracompact, if every open cover has a locally �nite re�nement

Proposition 2.12 (general topology fact). M2 and T2 implies paracompact.

This condition is essential, the long line doesn't have a Riemannian metric.

3 Third lecture

What makes a Riemannian manifold a geometry? We would like to de�ne distance, angle, volume and the

like. Angle is clear, the angle between two curves is the inner product1 of their unit tangent vectors in the

tangent space of an intersection point. Distance is more intricate.

3.1 Riemannian distance

Arc length of smooth curves is well de�ned the same, as in the classical case: L(γ) :=
∫ b

a
||γ′(t)|| dt, this

is invariant under (regular) reparametrisation by the same argument as in the classical case. This can be

extended to piecewise smooth curves easily.

De�nition 3.1. Let (M, g) be a Riemannian manifold, dg(p, q) := inf{L(γ) : piecewise smooth curve from

p to q} will be the Riemannian distance of p, q.

Remark 3.2. This is a �nite number if p, q are in the same connected component of M . We could allow dg

to take the in�mum over only smooth curves, and get the same distance, but then we would have to worry

about technical di�culties with smoothing corners.

Theorem 3.3. If (M, g) is a connected R-manifold, then dg is indeed a metric on M , moreover the metric

topology coincides with the manifold topology of M .

Proof. dg ≥ 0 is obviously true, the in�mum is taken over nonnegative numbers. Symmetry is also clear, we

can parametrise the curve in the other direction, and the in�mum is taken over the same set. The triangle

inequality is also clear, take another point r, the curves p→ r and r → q can be concatenated, so the in�mum

cantains all of these curves, maybe more.

dg(p, q) > 0 if p ̸= q is the only nontrivial requirement for being a metric. Take p �xed, take a chart U, ϕ

around p. There exists a ball such that B(ϕ(p), r) ⊂ ϕ(U) for some r. Take K = ϕ−1(B(ϕ(p), r)) is a compact

set in U . Let S denote the unit tangent sphere bundle restricted toK, e.g. {v ∈ TM :
√

g(v, v) = ||v|| = 1, v ∈
1given by the metric
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Figure 2: The setup for dg(p, q) > 0

TpM,p ∈ K}. Take v 7→ ||(Tϕ)(v)||, S → R+, strictily positive, since ϕ is a di�eomorphism. It is de�ned on

a compact set, so it has a positive minimum and maximum (c1, c2 respectively). Now for all tangent vectors

v at some point of K we see, that c1||v|| ≤ ||Tϕv|| ≤ c2||v||. This implies, that for any curve in K, we have

the same estimate for its arclength, e.g. c1L(γ) ≤ Euclidean arclength(ϕ ◦ γ) ≤ c2L(γ) Pick a point q ̸= p. If

q ∈ K and γ connects p with q in K, then L(γ) ≥ 1
c 1
d(ϕ(p), ϕ(q)) for the euclidean distance of the images,

which is nonzero, and this is independent of the curve γ, this means, that the in�mum is bounded away from

zero. Lastly, if q ̸∈ K we still get a piece of every connecting curve in K, and we can apply the previous case

plus the triangle inequality.

We have actually seen that the metric topology is �ner, than the original topology, repeating the same

argument as before we �nd a metric ϵ-ball inside any neighbourhood of any point. Conversely, we can choose

r arbitrarily small, and this will give open neighbourhoods of a point with arbitrarily small Riemannian

distance.

Now a little digression.

3.2 Tensors/tensor �elds on Riemannian manifolds

Observe, that a nondegenerate inner product <,> on a �nite dimensional vector space V gives an explicit

isomorphism between V and V ∗2. This means that using this identi�cation the whole tensor buisness gets

simpli�ed, since the di�erence between covariant and contravariant tensors was precisely that they had

vectors/covectors as input. Applying this to tangent spaces of a R-manifolds gp de�nes an isomorphism

TpM → T ∗
pM simultaneously for all p, i.e. X(M) → Ω1(M) are isomorphic using the same formula X 7→

g(X,Y ).

X =
∑

xi∂xi 7→ ω =
∑

ωidxi

where

ωi =
∑

gijx
j .

Funny notation: ω = X♭ and X = ω♯, and the above isomorphisms are called musical isomorphisms3.

Example 3.4. df ♯ = ∇f ∈ X is called the gradient of the smooth function f .

Remark 3.5. The inner product on TpM can be copied to an inner product on T ∗
pM . One can check, that

< ω, ϕ > can be expressed locally as
∑

gijωiϕj with the inverse matrix of the metric.
2v 7→< v, . >
3lol
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3.3 Volume

Let (Mn, g) be an oriented Riemannian manifold. For an n-form λ ∈ Ωn(M) the following are equivalent:

1. for any local oriented orthonormal n-frame E1, .., En ∈ X(U) we have λ(E1, .., En) = 1

2. for any local oriented orthonormal coframe ϵ1, .., ϵn ∈ Ω1(U), λ = ϵ1 ∧ ... ∧ ϵn.

3. for any oriented local coordinate chart x1, ..., xn we have λ =
√
det(gij) dx

1 ∧ ... ∧ dxn

De�nition 3.6. This unique λ is called the volume form of (M, g), denoted by Vg.

This volume form generates a measure on the manifold, and we can talk about integrals of functions.

4 Fourth lecture

Back to volume, we have a unique volume form for any Riemannian manifold, so we can integrate smooth

functions. This is a linear functional on C∞(M), and by the Riesz representation theorem there exists a

unique Borel measure on M , the volume measure. If M is not oriented we use the oriented double cover. We

can equip this with the volume measure, lift a set and take half of its measure.

To do some elementary geometry on M , we need �rst of all straight lines. What makes a curve straight in

the physical world? One possible de�nition would be the distance minimizing property of straight lines, but

this is a bit hard to handle technically. We use the other de�nition motivated by physics, tha path of inert

motion1 will be straight. To phrase this condition precisely, we need the notion of second derivative of a curve,

which we don't have unfortunately. We also would require derivatives of vector �elds, so we need additional

structure on our manifolds.

4.1 Covariant derivative (of vector �elds)

The motivational example is the directional derivative of vector �elds in Rn. At a point p ∈ Rn, v ∈ TpRn

and Y ∈ X, Y =
∑

Y i∂i, the derivative ∂vY =
∑

vY i∂i ∈ TpRn. We list the properties:

� ∂vY is R-linear in both its variables.

� Leibniz rule for the second argument ∂v(fY ) = (vf)Y + f∂vY .

The same thing could be stated globally. For X,Y ∈ X, we could de�ne with the formula (∂XY )p = ∂Xp
Y .

The previous properties extend as follows

� this map is C∞(M) linear in its �rst argument, R-linear in the second

� and it is a derivation in the second ∂X(fY ) = (Xf)Y + f∂XY

� the commutator ∂XY − ∂Y X = [X,Y ]

� X < Y,Z >=< ∂XY,Z > + < Y, ∂XZ >

1no force, i.e. no acceleration
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4.2 Connection on a manifold

2 Let M be a smooth manifold. A connection on M is a map ∇ : X × X → X satisfying the �rst two of our

previous properties:

1. this map is C∞(M) linear in its �rst argument, R-linear in the second

2. and it is a derivation in the second ∇X(fY ) = (Xf)Y + f∇XY .

We can give a local expression on a chart x1, ..., xn in terms of the basis �elds ∂i. Everything can be expressed

in terms of the base �elds:

∇∂i∂j =
∑

Γk
ij∂k.

The functions Γk
ij are called the Christo�el symbols of the connection on this chart. On Rn the standard

covariant derivative has Γk
ij = 0.

4.3 Riemannian (or Levi-Civita) connection

If (M, g) is a Riemannian manifold, then additionally we require the last two conditions:

3. the commutator ∇XY −∇Y X = [X,Y ]

4. X < Y,Z >=< ∇XY,Z > + < Y,∇XZ >

Theorem 4.1 (Levi-Civita). On any Riemannian manifold (M, g) there exists a unique Riemannian con-

nection.

Proof. We want to de�ne a connection from the 4. axiom and the metric. The trick is to cyclically permute

the inputs, and alternatingly add them together.

+ X < Y,Z >=< ∇XY,Z > + < Y,∇XZ >

+ Y < Z,X >=< ∇Y Z,X > + < Z,∇Y X >

− Z < X, Y >=< ∇ZX,Y > + < X,∇Y Z >

Collect like terms to get

X < Y,Z > +Y < Z,X > −Z < X, Y >=< [Y,Z], X > + < [X,Z], Y > + < [Y,X] + 2∇XY, Z > .

Now we have won, since this is a linear system of equations for the connection ∇XY by varying Z (here we

use the nondegeneracy of the inner product). So we have uniqueness, and one can check that the formula we

get actually de�nes a covariant derivation on the manifold.

4.4 Covariant derivative along curves

It is enough to assume that M is a di�erentiable manifold equipped with an a�ne connection ∇. A vector

�eld along a curve is a map V : I → TM such that V (t) ∈ Tγ(t)M . One such guy is the velocity vector �eld γ′,

or the restriction of any element of M. We de�ne covariant di�erentiation along a curve D
dt : V 7→

DV
dt (= V ′)

satisfying the following

2a�ne connections, no metric needed for now
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1. R linear

2. Leibniz rule

3. if V is induced by restriction, then DV
dt = ∇γ′X

Proposition 4.2. Such a D exists uniquely.

Proof. straightforward :) Except its not, a curve can stop, and the vector �eld still change and such, but it

still works.

Knowing this D for every vector �eld along every curve determines ∇ completely.

In a Riemannian manifold we have the extra property that d
dt < V,W >=< DV

dt ,W > + < V, DW
dt >.

4.5 Parallelism of vector �elds

De�nition 4.3. A vector �eld V along a curve γ ⊂M is called parallel if DV
dt = 0.

5 Fifth lecture

Recall X(γ) denoted vector �elds along the curve γ, and we de�ned the covariant derivative along curves D
dt

We can express this locally using the velocity vector �eld of the curve γ̇ =
∑

ẋj(∂j ◦γ), to get the expression

V̇ =
∑
i

V̇ i(∂i ◦ γ) + V i(∇γ̇∂i) =
∑
k

(V̇ k +
∑
i,j

V iẋj(Γk
ij ◦ γ))(∂k ◦ γ).

Remark 5.1. Γk
ij = Γk

ji holds for all i, j. This follows from the torsion free property, and the fact, that for

base �elds [∂i, ∂j ] = 0.

De�nition 5.2. V ∈ X(γ) is a parallel vector �eld, if V̇ = 0.

Locally all coe�cient functions1 must vanish, which is a �rst order ODE system for the V i-s. From the

Cauchy-Peano theorem we see, that for a given initial condition V (0) = v ∈ Tγ(0)M there is a unique solution

de�ned on the domain of γ.

De�nition 5.3. Parallel transport of vectors along curves means precisely the solution of this equation

system, a map P
γ(b)
γ(a) : Tγ(a)M → Tγ(b)M .

This map is clearly linear, moreover it is orthogonal wrt the metric. This is true, because is V,W are parallel,

then < V,W >′=< V ′,W > + < V,W ′ >= 0 + 0 = 0, thus an orthonormal basis in Tγ(a) is taken to

an orthonormal basis in Tγ(b)M . This construction clearly extend to piecewise smooth curves in a natural

manner as well.

Remark 5.4. This parallel transport map depens on the curve, not only the endpoints.

This leads to the notion of holonomy at a point. Take all parallel transport maps generated by piecewise

smooth curves beginning and ending at p, this obviously forms a subgroup in O(TpM), called the holonomy

group of M at p.

1V̇ k +
∑

i,j V
iẋj(Γk

ij ◦ γ)

8



Theorem 5.5 (de Rahm). If the holonomy group is reducible (in the sense of group representations2) at p,

then M is locally3 a Riemannian product.

5.1 Geodesics

De�nition 5.6. γ : I →M is a geodesic, if γ′ = 0.

An immediate consequence of this de�nition, is that ||γ′|| is constant, so the parameter is proportional to arc

length, we call a geodesic "normal", if its speed is 1.

By writing the equation for a vector �eld to be parallel for γ′, we get the geodesic equation(s).

ẍk +
∑
i,j

Γk
ij ẋ

iẋj , k = 1, . . . , n

where xi are the local coordinate functions of our curve γ. We see, that this is a second order ODE, and from

the general theory of ODEs, we get

Theorem 5.7. For any p ∈M , there exists an open neighborhood U of p, and ϵ > 0 such that for all q ∈ U

and v ∈ TpM with ||v|| < ϵ here exists a unique geodesic γv : (−1, 1)→M with γv(0) = p, γ′
v(0) = v.

Furthermore, the map (v, t) 7→ γv(t) is smooth T<ϵU × (−1, 1)→M .4

Example 5.8. � Straight lines in Rn.

� Great circles in Sn.5

� Hyperbolic lines in Hn.

� For surfaces in R3 γ is a geodesic i� γ′′ ⊥ S at all points, or equivalently the principle normal of γ in

R3 must be normal to S.

� Meridians on surfaces of revolution.

6 Sixth lecture

Remember, we've been doing geodesics, given a p ∈ M there is a unique geodesic for a given v ∈ TpM with

this vector as its velocity vector. There is also a universal ϵ such that all of these geodesics are de�ned on

the interval (−ϵ, ϵ) or something bigger. Observe, that geodesics have a certain "homogeneity" to them. The

geodesic for the vector sv for s ∈ R is γv(st), as is easily seen by the chain rule+uniqueness of geodesics.

With all this, we reach today's topic.

2i.e. there are inariant subspaces of TpM under the holonomy group
3we can't say anything globally, a �at torus has trivial holonomy
4T<ϵU := {v ∈ TU : ||v|| < ϵ}
5The "principle of symmetry" states, that if f : M ⟲ is an isometry with N = fix(f) a submanifold, then any geodesic

beginning from N , with initial velocity in TN will stay in N .
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6.1 The exponential map

De�nition 6.1. Consider the set Ω := {v ∈ TM |γvis de�ned at t = 1}, we de�ne the exponential function
exp : Ω→M, v 7→ γv(1).

The key observation is that this map is di�erentiable, and its derivative at the origin T0expp : T0Ωp → TpM

is an endomorphism of TpM .1

Proposition 6.2. This endomorphism is the identity.

Proof. T0expp(v), take a representative curve for v, t 7→ tv will su�ce. We compose this with the exponential

map to get the value of the derivative.

d

dt
expp(tv)|0 =

d

dt
γtv(1)|0 =

d

dt
γv(t)|0 = v

Corrolary 6.3. The exponential map takes a neighbourhood of 0 ∈ TpM di�eomorphically to a neighbourhood

of p ∈ M . Such a neighbourhood of p is called normal2. Normal coordinates around p are the image of an

orthonormal basis of TpM by the exponential map, so we get coordinates which are orthonormal around p. We

can also talk about normal balls (or geodesic balls) about p, the image of the standard metric balls3 in TpM

by the exponential map. Similarly we can de�ne normal spheres. Finally we can talk about uniformly normal

neighbourhoods. A neighbourhood is called uniformly normal, if it is contained in a normal neighbourhood of

any of its points. These also always exist thanks to the theorem from last lecture.

Lemma 6.4 (Gauss). Geodesics starting from p intersect normal spheres orthogonally.

Proof. Let B = B(0, ϵ) ⊂ TpM such that expp : B →M is a di�eomorphism, denote the image by D. Denote

by S ⊂ TpM the unit sphere. We want to use polar coordinates to parametrise everything, B\{0} = (0, ϵ]×S,
and the exponential map takes this to D \ {p} by f : (r, v) 7→ γv(r). Pick a vector �eld X̃ ∈ X(S) and extend

it by pullback along the radial directions to B \ {0}. Also de�ne X to be rX̃. We want to project this down

to the manifold, take the pushforward of X to be TfX = Y ∈ X(D \ {p}). Now the claim of the theorem is

that < Y, ∂
∂r >= 0.4

First we will see, that < Y, ∂
∂r > is constant.

d

dr
< Y ◦γv, γ′

v >=<
D

dr
(Y ◦γv), γ′

v > + < Y ◦γv, γ′′
v >=< ∇ ∂

∂r
Y,

∂

∂r
> ◦γv =< ∇Y

∂

∂r
+[

∂

∂r
, Y ],

∂

∂r
> ◦γv =

Where we used that γv is a geodesic, the vector �elds come from vector �elds on the manifold, and symmetry

of the covariant derivative.

=
1

2
Y <

∂

∂r
,
∂

∂r
> ◦γv+ < [

∂

∂r
, Y ],

∂

∂r
> ◦γv =

The �rst term disappears since the inner product is constant (again, γv is a geodesic), secondly, the Lie-

bracket is preserved by di�eomorphisms, so it is enough to evaluate it 'upstairs', in TpM . There X̃, and ∂
∂r

1since T0Ωp = T0TpM = TpM
2we also assume that it is a coordinate neighbourhood, which it always is but whatever
3if they are small enough
4along γv this vector ∂

∂r
is just γ′

v
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are the basis �elds for the polar coordinates, meaning that they commute, we only have to compute [rX̃, ∂
∂r ]

now.5 So in the end we are left with X̃. Continuing the calculation from before, we get

=
1

r
< Y ◦ γv, γ′

v >

So denoting < Y ◦ γv, γ′
v >= ϕ(r) we get the equation ϕ′ = 1

rϕ. The solutions of which are functions of the

form ar, we need a = lim0ϕ
′ = 0 to conclude what we want.

ϕ′(r) =<
1

r
Yγ(r), γ

′(r) >=< f∗X̃, γ′(r) >

The lift of the last term is constant 0 in TpM for r > 0, so the limit is zero as well. Finally T0expp : T0TpM →
TpM is an orthogonal map, so an isometry, and thus preserves the inner product.

7 Seventh lecture

We want to apply Gauss' lemma.

Theorem 7.1. M is a Riemannian manifold, p ∈ U , where U is a normal neighborhood of p. Let B ⊂ U

be a closed proper normal ball about p. γ : [0, 1] → B is a geodesic with γ(0) = p, γ(1) = q. If δ is another

curve from p to q, then L(δ) ≥ L(γ), with equiality exactly when δ([0, 1]) = γ([0, 1]) (and δ is a monotone

reparametrisation of γ).

Proof. We can assume, that the image of δ is also contained in B by the triangle inequality, and also that

δ(t) ̸= p for t > 0, and also, that q ∈ ∂B. We get

B \ {p} radius/r−−−−−→ (0, 1]
γ−→ one radius of B

, call the composition σ. Gauss' lemma says that for any p′ ∈ B \ {p}, p′ ∈ S(p, r′) the tangent space splits as

Tp′M = R⊕ Tp′S(p, r′) (∼ polar coordinates). Note, that σ(p′) = γ( r
′

r ), and Tp′σ : Tp′M → Tγ( r′
r )(γ([0, 1]))

is just projection onto the R component described above. Now

L(δ) =

∫ 1

0

||δ′(t)||dt ≥
∫ 1

0

||σ ◦ γ′(t)||dt ≥ L(σ ◦ γ) ≥ L(γ).

Corrolary 7.2. Geodesics locally minimize arc length.1

Corrolary 7.3. Any distance minimizing curve must be a geodesic.

Remark 7.4. Geodesics don't necessarily minimize arclength globally.

Also in a uniformly normal ball, any two points are connected by a unique minimal geodesic, because expp

is a local di�eomorphism.

The other noteworthy consequence will be the existance of convex neoghborhoods.

Theorem 7.5. If r is small enough, then the minimizing geodesic segment between any two pont p, q in a

normal ball B(x, r) stays in B(x, r). Moreover B(x, r) is strictly convex, ergo γ((0, 1)) ⊂ int(B(x, r)) for all

geodesics γ.
5[∂x, x∂y ]f = ∂x(x∂yf)− x∂2

xyf = ∂yf
1Choose a uniformly normal ball and apply the theorem
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Proof. We need the following lemma, from which the theorem clearly follows.

Lemma 7.6. If r is small enough and γ is a geodesic in B(p, r), which is tangent to some geodesic sphere

S about p of smaller radius at some point q ∈ S, then in some neighborhood of q γ stays outside S.

Proof. Let W be the uniformly normal ball around p, and S(TW ) be the tangent unit sphere bundle. Denote

the function γ(t, v) 7→ expq(tv) by Γ : (−ϵ, ϵ) × S(TW ) → M , these are arclength parametrized geodesics.

Now let u(t, v) = exp−1
p (Γ(t, v)), so u : (−ϵ, ϵ) × S(TW ) → TpM is a smooth map, also denote F (t, v) :=

||u(t, v)||2 ∈ R. Note, that F (t, v) = dg(p,Γ(t, v))
2. We want to show, that if Γ′(t, v) ⊥ S, then F (t, v) has a

strict local minimum at t = 0, this will prove the lemma. ∂F
∂t = 2 < ∂u

∂t , u >. If Γ′(t, v) ⊥ S, at q = Γ(0, v),

then Gauss' lemma implies that < ∂u
∂t , u >= 0, but we need strict positivity of the second derivative, so we

know the function is convex, and we have a strict local minimum.

It su�ces to see ∂2F
∂t2 (0, v) > 0 for v ∈ TpM , i.e. the case p = q, then by continuity we get the same conclusion

in a small neighborhood of (0, v). In this case u(t, v) = tv ∈ TpM , thus ∂2F
∂t2 (0, v) = 2||v||2 > 0.

8 Eight lecture

Still working with geodesics, we have to discuss completeness of Riemannian manifolds. We call a geodesic

complete, if its domain of de�nition can be extended to the whole of R.

De�nition 8.1. M a Riemannian manifold is called complete, if any geodesic curve can be extended to be

de�ned on the whole real line.

A natural question would be, what conditions on M guarantee completeness. Compactness would be a good

guess for example.

Theorem 8.2 (Characterisations of completeness). Let (M, g) be a connected Riemannian manifold. The

following are equivalent:

1. M is complete

2. For all p ∈M , expp : TpM →M is de�ned on the whole tangent space.

3. There exists p ∈M such that expp is de�ned on the whole TpM .

4. Closed and bounded1 subsets are compact in M .

5. (M,dg) is complete as a metric space.

Proof. 1.→ 2.→ 3. are completely trivial.

3.→ 4. is not hard either. If we have a bounded set in H ⊂ M , then it is contained in a certain metric ball

around the point p, guaranteed by 3.. This means that it is in the image2 of a closed ball in TpM , a closed

subset of a compact set is compact.

1w.r.t. the metric dg on M
2and the image of a compact set is compact
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4. → 5. is some general topology thing. Any chauchy sequence is bounded, its closure is compact, thus we

get convergence.

5.→ 1. is the observation that if a geodesic can only be de�ned on a proper subset of R, we can pick parameter

points, converging to one of the (�nite) ends3 of the interval. The image of this sequence in M is a Cauchy

sequence, so it has a limit, so the geodesic is de�ned on some larger interval, a contradiction.

Theorem 8.3 (Hopf-Rinow theorem). In a complete connected Riemannian manifold any two points can be

joined by a minimal geodesic.

Lemma 8.4 (completeness not needed here). Given p, q ∈M , choose a normal ball of radius r << dg(p, q)

around p. Then there exists p′ ∈ S = ∂B(p, r) such that r + dg(p
′, q) = d(p, q).

Proof. dg(q, S) = inf{dg(q, s) : s ∈ S} by de�nition, but since S is compact, this is a minimum, so we can

pick a point, realizing this minimum, we claim this point will su�ce for the requirements of p′.

If γ is any piecewise smooth curve from p to q, it will hit S at some point p′′. Now L(γ) ≥ dg(p, p
′′)+dg(p

′′, q) ≥
r + d(p′, q), thus d(p, q) ≥ r + d(p′, q), the other direction is given by the triangle inequality, and the lemma

is proven.

Hopf-Rinow proof. Choose r and p′ as in the lemma. By completeness p′ = expp(rv), where v is a unit tangent

vector at p. Now take γ(t) = expp(tv), which is de�ned on the whole real line, again by completeness.

We want to show, that γ hits q at some time T , and γ|[0,T ] is minimal. Consider the set J = {t ∈ [0,+∞] :

t + d(γ(t), q) = d(p, q)} of "good" parameter values. 0 ∈ J is clear, also J ⊆ [0, d(p, q)], and it is an initial

segment of this interval, if t2 ∈ J , then t2 > t1 ∈ J , which is easy to see, for |t2 − t1| << 1, and then going

by small steps.

Let T = max J , and we claim, that it is actually d(p, q). Assume otherwise, and take a small normal ball

around γ(T ) ̸= q, as in the previous lemma. We get a point p′ ∈ S(γ(T ), r), the lemma guarantees, that

r+d(p′, q) = d(γ(T ), q). T ∈ J means that T +d(γ(T ), q) = d(p, q) ≤ d(p, p′)+d(p′, q) adding this inequality

to the previous equality we see that r + T = d(p, p′) and this is certanly less, than d(p, γ(T )) + r = T + r

by the triangle inequality. This means that we had equality everywhere, and T + r ∈ J , and we get a

contradiction.

8.1 Curvature of Riemannian manifolds

Motivation: curvature should measure how much a manifold di�ers from a �at manifold/Euclidean space.

We need to consider 2-d directions in the manifold, i.e. vector �eld pairs, and look at how they are related

by the geometry of the ambient manifold. Look at basis �elds �rst, do covariant di�erentiation in succesion:

∇∂i
∇∂j

Z. For basis �elds the order in which we di�erentiate does not matter, not so in the general case! For

non-basis �elds X,Y in the Euclidean case we get ∇X∇Y Z −∇Y∇XZ = ∇[X,Y ]Z. For general Riemannian

manifolds we can still form

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z : X(M)→ X(M).

De�nition 8.5. On a Riemannian manifold M , equipped with the Levi-Civita connection the map de�ned

by the above formula is called the Riemannian curvature tensor �eld.

3the domain of de�nition is necessarily open, since locally we can always extend about a point by solving the equations
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9 Ninth lecture

Last time, we should have proven the Hopf-Rinow theorem �rst, since for the 3→ 4 part of the characterisation

theorem we need, that every point can be connected to the distinguished point by a minimal geodesic.

Now back to the curvature tensor. Since it is a tensor, we have a local expression for it.R(∂i, ∂j)∂k =
∑

Rl
ijk∂j ,

and we can evaluate the functions Rl
ijk explicitly in terms of the Christo�el symbols:1

Rl
ijk = ∂jΓ

l
ik − ∂iΓ

l
jk +

∑
(Γr

ikΓ
l
jr − Γr

jkΓ
l
ir)

Now we will use the musical isomorphism to turn this into a (0,4) tensor, instead of a (1,3) tensor. This version

is sometimes called the Riemann-Christo�el tensor: Rm = R♭, and Rm(X,Y, Z,W ) =< R(X,Y )Z,W >, we

will write (X,Y, Z,W ) for the same thing also.

There are certain symmetries of these functions, and at large, of the curvature tensor, which we will investigate

next.

Theorem 9.1. The following identities hold for the Riemann-Christo�el tensor:

1. (Y,X,Z,W ) = −(X,Y, Z,W ), obviously

2. (X,Y,W,Z) = −(X,Y, Z,W )

3. (X,Y, Z,W ) + (Y,Z,X,W ) + (Z,X, Y,W ) = 0, this is called the �rst/algebraic Biachi identity

4. (Z,W,X, Y ) = (X,Y, Z,W )

Proof. 2. If X,Y is �xed, (X,Y, ·, ·)→ R is a bilinear function, which we claim is antisymmetric, so we have

to check that (X,Y, Z, Z) = 0.

< ∇X∇Y Z,Z >= X < ∇Y Z,Z > − < ∇Y Z,∇XZ >

< ∇Y∇XZ,Z >= Y < ∇XZ,Z > − < ∇XZ,∇Y Z >

< ∇[X,Y ]Z,Z >=
1

2
[X,Y ] < Z,Z >

By summing up these terms, we get the expression we are looking for being equal to

X < ∇Y Z,Z > −Y < ∇XZ,Z > −1

2
[X,Y ] < Z,Z >

Using the same trick of compatibility of the connection and the metric we can rewrite the �rst two terms as
1
2Y < Z,Z > and 1

2X < Z,Z > respectively, so the expression indeed vanishes.

3. We write with the original curvature tensor. Write out the expression, group terms by the outer covariant

di�erentiation, and use torsion-freeness of the covariant di�erential to get terms like ∇X [Y,Z], and group

these with the corresponding −∇[Y,Z]X terms, and �nally use the Jacobi identity for the Lie bracket.

4. Write out all 4 Bianchi identities and add them up. Notice that a lot of terms cancel, and we get twice what

we wanted to prove (switch the �rst two and the last two arguments in two of the 4 remaining terms).

1as seen above. We will never use this
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Remark 9.2. 1., 2., 4. together means that this is a symmetric bilinear function on Λ2TM , if we interpret the

�rst pair, and the second pair of inputs as bivectors. So it is a self-adjoint operator on this space, since it is

equipped with an inner product, inherited from the metric on TM .2 In our special case3

< x ∧ y, z ∧ w >= det
< x, z > < x,w >

< y, z > < y,w >

If we interpret our tensor as this self-adjoint map Λ2TpM → Λ2TpM it is called the curvature operator.

For example in dimension two, the second exterior product is of dimension one, so the curvature is encoded

as a single scalar, the Gaussian curvature.

Now we turn our attention to sectional curvature. If V is a �nite dimensional vector space, we denote by

GkV the space of k-dimensional subspaces of V . For p ∈M we can form G2TpM , which we will denote G2
pM ,

the union of which will be the second Grassmann-bundle G2M .

De�nition 9.3. For p ∈ M and σ ∈ G2
pM choose a basis x, y of σ. The sectional curvature of M in σ is

de�ned as

K(σ) :=
(x, y, y, x)

< x ∧ y, x ∧ y >
=

< Rp(X,Y )Y,X >

< x, x >< y, y > − < x, y >2

where we use the inherited metric on the second exterior product discussed before.

This K gives a smooth map G2 → R, once we argue that is well de�ned. But that is a simple check, scalar

multiples obviously don't change anything, and for an elementary basis transformation the new terms drop

out. Things are a bit clearer, if we restrict ourselves to orthonormal bases in σ, in this caseK(σ) = (x, y, y, x)p.

Theorem 9.4. K determines R uniquely. More precisely, this is an algebraic statement: If V as any �nite

dimensional real vector space and Rm and Rm′ are algebraic curvature tensors (meaning a (0, 4) tensor on

V satisfying the symmetries 1 − 4 from before) for which K and K ′ coincide (as functions on G2V ), then

Rm = Rm′.

Proof. We will use (x, y, z, w) and (x, y, z, w)′ for the two tensors. By assumption (x, y, x, y) = (x, y, x, y)′,

we will manipulate this. (x + z, y, x + z, y) = (x + z, y, x + z, y)′ is also true for all x, y, z ∈ V , we expand

by multilinearity. (x, y, x, y) + (z, y, x, y) + (x, y, z, x) + (z, y, z, y), and this is equal with the same expression

with ′-s, the �rst and last terms are also on the right hand side, and thus vanish, we are left with

2(x, y, z, y) = 2(x, y, z, y)′.

We do the same trick for this identity again, substitute y + w for y in both places and expand. (x, y, z, y) +

(x,w, z, y)+(x, y, z, w)+(x,w, z, w) and this is equal to the same thing with ′-s, and by the original assumption

the �rst and last terms are equal, and thus vanish again. What remains is (z, y, x, w)+(x, y, z, w) being equal

to its primed counterpart (after an application of the 4th symmetry). Subtracting we get

(x, y, z, w)− (x, y, z, w)′ = (y, z, x, w)− (y, z, x, w)′

and notice, that this identity implies, that the expression is invariant under cyclic permutations of the �rst

three variables. Now we apply the Binachi identity, to get that

3[(x, y, z, w)− (x, y, z, w)′] = 0

2basically �x an orthonormal ordered basis, and declare the basis they induce on some ΛkV to be orthonormal
3a special case of this formula is the Lagrange identity in R3 expressing (a×b) ·(c×d) as a determinant of their inner products
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Remark 9.5. K is the quadratic form of the induced symmetric map on Λ2V , and this determines the bilinear

map completely, think this through!

10 Tenth lecture

Continuing curvature. Recall the formula for R(X,Y )Z, and the modi�ed version Rm(X,Y, Z,W ). We also

had the R : Λ2(TM)→ Λ2(TM) curvature operator, a self adjoint linear map. If σ = span(x, y) ∈ G2(TM),

then K(σ) = Rm(x,y,y,x)
||x||2||y||2−<x,y>2 , and these sectional curvatures determine the curvature tensor completely.

Remark 10.1. A small digression into the world of Grassmannian "things". If we have an n-dimensional

vector space, we can create the GkV manifolds, consisting of the k-dimensional subspaces of V , and also the

Grassmann algebra ΛV = ⊕ΛkV . There is a natural map GkV → P (ΛkV ), which sends a basis of a subspace

in GrkV to its class in the target, which is well de�ned, any two bases of the same subspace di�er only by a

scalar. This map is not surjective by simple dimension count1. These dimensions do coincide just by accident

for k = 2, n = 2, 3 for example.

Example 10.2 (algebraic curvature tensor). Suppose an inner product <,> is given on V and de�ne

Rm0 = (x, y, z, w)0 =< x,w >< y, z > − < x, z >< y,w > .

It is an immediate check, that this satis�es the symmetries we want from a curvature tensor. In an orthonormal

basis Rijkl = δilδjk− δikδjl will be the coe�cient system. Substituting z = y, w = x we see that the sectional

curvatures are all equal to 1.

Corrolary 10.3. Suppose that in a manifold M , p ∈ M is such that K is constant on G2
pM , then Rmp =

K(p)Rm0.

Theorem 10.4 (Schur). If K(p) is constant at all p ∈M , where M is connected and dimM > 2, then this

constant does not depend on p.

Example 10.5 (Manifolds of constant curvature). 1. Rn, everything is 0.

2. Sn, we notice that isometries preserve curvature, and they are transitive on G2Sn

3. Hn by the same reasoning2

4. also anything locally isometric to any of the above

Remark 10.6. If q : N → M is a Riemanian covering, all the sectional curvatures are preserved by q, and

RN = q∗RM . In particular having constant curvature is preserved in either direction.

10.1 Curvature of submanifolds

The setup: M ⊂ M̃ Riemannian submanifolds, every symbol will be distinguished by the tilde. We have ∇, ∇̃,
we get ∇ by orthogonal projection (a routine application of Koszul's formula). We know, that for vector �elds

X,Y ∈ X(M) ∇XY = (∇̃X̃ Ỹ projected orthogonally to TM), where X̃, Ỹ are local extensions of X,Y to M̃ ,

so moving forwards, we will denote this by just writing ∇̃XY , since it does not depend on the extension.

1source is k(n− k), traget is
(n
k

)
− 1

2we don't know the exact value of the constants just yet
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De�nition 10.7. Second fundamental form of M will be de�ned as the normal component of ∇̃XY , i.e.

b(X,Y ) := ∇̃XY −∇XY for X,Y ∈ X(M).

Proposition 10.8. This b is symmetric and tensorial in both variables.

Proof. Symmetry can be seen by looking at b(X,Y )− b(Y,X) = [X̃, Ỹ ] + [Y,X] by writing out the de�ning

formula, and this vanishes, when we restrict to M .

Tensoriality comes from this for free, since the covariant derivative is tensorial in the �rst variable, by

symmetry it is tensorial in the second as well.

Remark 10.9. IfM is a hypersurface, then locally b is a real valued function, in general b takes its values in the

normal bundle of M . In this way we recover Gauss' classical second fundamental form from this construction.

In hypersurface theory we identify b(X,Y ) with b(X,Y )N , where N is the unit normal vector �eld. If

X,Y ∈ X(M) then < Ỹ , Ñ > |M = 0, so

0 = X̃ < Ỹ , Ñ > |M =< ∇̃X̃ Ỹ , Ñ > |M+ < Ỹ , ∇̃X̃Ñ > |M

here the �rst term is just b(X,Y ), the second is the Weingarten map.

So we have ∇XY = ∇̃XY − b(X,Y ), this is called the Gauss formula. We need the formula for curvature3.

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z =

= ∇X(∇̃Y Z − b(Y,Z))−∇Y (∇̃XY − b(X,Y ))− (∇̃[X,Y ]Z − b([X,Y ], Z)) =

Next we expand the outer ∇s as well, collecting like terms, we get

R(X,Y )Z = R̃(X,Y )Z − ∇̃Xb(Y, Z) + ∇̃Y b(X,Z) + b([X,Y ], Z)

Similarly for the Riemann-Christo�el tensor

< R(X,Y )Z,W >=< R̃(X,Y )Z,W > + < b(Y,Z), b(X,W ) > − < b(X,Z), b(Y,W ) >

this is called the Gauss equation for the cirvature tensor. For sectional curvature σ =< x, y >∈ G2
pM we get

K(σ) = K̃(σ) +
< b(x, x), b(y, y) > − < b(x, y), b(x, y) >

< x, x >< y, y > − < x, y >2
.

This is the Gauss equation for sectional curvature.

An important special case is whenM is a hypersurfaceK(σ) = K̃(σ)+ det(b|σ)
det g|σ . In this case sectional curvature

and Gausian curvature coincide.

Remark 10.10. The Theorema Egregium follows as a consequence.

11 Eleventh lecture

De�nition 11.1. p ∈ M ⊂ M̃ , M is called a geodesic submanifold at p, if any geodesic in M̃ through p in

any tangent direction from TpM stays in M for some time.

3:'(
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Proposition 11.2. If M is geodesic at p, then bp = 0.1

Proof. It su�ces to show, that bp(v, v) = 0 for all v ∈T pM . Let γ be a geodesic from p, with γ′(0) = v.

Extend γ′ to a vector �eld X and X̃.

∇γ′γ′ = 0 = ∇̃γ′γ′ since it is a geodesic. It follows, that ∇vX = ∇̃vX = 0, thus bp(v, v) = 0.

Corrolary 11.3. If M is geodesic at p, then K(σ) = K̃(σ) for all σ ∈ G2
pM .

De�nition 11.4. M ⊂ M̃ is a totally geodesic submanifold, if it is geodesic at all p ∈M .

Theorem 11.5. For M ⊂ M̃ the following are equivalent.

1. M is totally geodesic

2. b = 0 everywhere

3. ∇̃XY is tangential for all X,Y ∈ X(M)

Proof. The equivalence of 2. and 3. is clear. 1.→ 2. follows from the preceding proposition.

2.→ 1. follows from 3., the geodesics are the same.

Example 11.6. 1. Let p ∈ M̃ arbitrary, choose an arbitrary linear subspace V ≤ TpM̃ and consider

M = expp(Ωp ∩ V ), then M is a geodesic submanifold at p.

2. If f : M̃ ⟲ is an isometry with fix(f) ̸= ∅. Then connected components of fix(f) are totally geodesic.

3. In Rn, Sn, Hn totally geodesic submanifolds are just tje geometric subspaces.

Corrolary 11.7. Sectional curvature of these are 0, 1,−1 respectively.

More precisely K(rSn) = 1
r2 , and similarly K(rHn) = −1

r2 , so all real constants occur as sectional curvature

of some constant curvature space.

11.1 Jacobi �elds

The motivation behind this notion, is the interest in the singular behaviour of the exponential map. Take

a Riemannian manifold M , a point p, and v ∈ TpM , we are interested in Tvexpp, if we denote epxp(v) =

γ(1) = q, this map has image in TqM . Also remember, that we can identify the tangent space of a vector

space with itself, so w ∈ TvTpM = TpM . One may take w = v′(0), where v is a curve in TpM , with v(0) = v,

representing the tangent vector w. From this (Tvexpp)w = d
dsexppv(s)|s=0.

The idea is, that we may consider this vector along the whole of γ as a vector �eld: (Ttvexpp)tw =
∂
∂sexpp(tv(s))|s=0. This gives the idea of "variation vector �elds" along γ.

De�nition 11.8. Let γ : I →M be a smooth curve. A variation of γ is a smooth map α : (−ϵ, ϵ)× I →M

such that α(0, t) = γ(t). This is called a geodesic variation, if α(s, .) : I →M is a geodesic for all s ∈ (−ϵ, ϵ).
The variation vector �eld corresponding to α is Vα(t) =

∂
∂sα(s, t)|s=0, clearly Vα ∈ X(γ).

De�nition 11.9. Suppose γ is a geodesic in M . A vector �eld J ∈ X(γ) is called a Jacobi �eld along γ if

J = Vα for some geodesic variation α of γ.

1the converse is false
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Theorem 11.10. Given a geodesic γ : I → M a vector �eld J ∈ X(M) is a Jacobi �eld i� it satis�es the

"Jacobi equation"

J ′′ +R(J, γ′)γ′ = 0 J ′′ = R(γ′, J)γ′

where J ′′ = D2

dt2 J is the second covariant derivative.

Proof. Firstly let α be a geodesic variation such that J = Vα. Now
∂α
∂t are parallel �elds along α(s, .) for all

s by de�nition, so D
dt

∂α
∂t = 0 for all s.

0 =
D

ds

D

dt

∂α

∂t
=

D

dt

D

ds

∂α

∂t
+R(

∂α

∂s
,
∂α

∂t
)
∂α

∂t

Evaluating at s = 0 we get the equation we wanted, use D
ds

∂α
∂t = D

dt
∂α
∂s , and that ∂α

∂s |s=0 = J, ∂α
∂t |s=0 = γ′.

12 Twelfth lecture

Remember, we discussed Jacobi �elds along a geodesic, and variation vector �elds through geodesics. We have

already seen, that Jacobi �elds along γ satisfy the Jacobi equation J ′′ = R(γ′, J)γ′. Note, that this is a second

order ODE for J , given γ, J(0), J ′(0), there is a unique solution along γ. In particular, for a given γ, the

dimension of the vector space of Jacobi �elds along γ is 2n.

Proof of the other direction of 11.10. Given γ, choose t0, t1 ∈ I close enough so that p = γ(t0), q = γ(t1) are

contained in a uniformly normal ball in M . For any Jacobi �eld along γ, assign the pair (u, v) ∈ TpM ×TqM ,

where u = J(t0), v = J(t1). Put α(., t0) to be some curve with derivative u at s = 0, and similarly for α(., t1).

For any small s, connect α(s, t0) to α(s, t1) with a geodesic de�ned on [t0, t1] (note this is unique in U). This

α becomes now a geodesic variation of γ with J = Vα. This map is onto, thus the dimension of Jacobi �elds

is at least 2n, they all satisfy the Jacobi equation, so from the converse direction we are done.

Example 12.1. The trivial examples of Jacobi �elds we can get by reparametrisation of γ. Choose α(s, t) :=

γ(t+ s), with this choice J(t) = γ′(t).

Another important special case is when J(0) = 0

Corrolary 12.2. If J is a Jacobi �eld along γ with J(0) = 0, γ′(0) = v, J ′(0) = w, then a formula for the

geodesic variation α such that J = Vα is α(s, t) = expp(t(v + sw)).

Proof. This is clearly a geodesic variation, we only need to check Vα(0) = 0, and V ′
α(0) = w, and then apply

the preceding proposition.

D

dt
Vα =

D

dt
(
∂

∂s
α(s, t))|s=0 =

D

dt
((Ttvexpp)tw) =

D

dt
(t(Ttvexpp)w) = (Ttvexpp)w + t

D

dt
(Ttvexpp)w

Evaluating at t = 0, this shows V ′
α(0) = (T0expp)w = w.

De�nition 12.3. Given p ∈M , a point q ∈M is called conjugate to p, if q is a singular value of expp, thus

q is conjugate to p along the geodesic γ if γ = γv (here v ∈ TpM) and q = γv(1) and Tvexpp is non-invertible.

dim kerTvexpp is called the order of conjugacy.

Proposition 12.4. Suppose γ : [0, 1]→M is a geodesic with γ(0) = p, γ(1) = q. q is conjugate to p i� there

exists a nonzero Jacobi �eld along γ which vanishes at p, q.
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Corrolary 12.5. Conjugacy of points is a symmetric relation.

Proof. '→' suppose q is conjugate to p. Let 0 ̸= w ∈ kerTvexpp, also denote v = γ′(0). J(t) = (Ttvexpp)tw =
∂
∂sexpp(t(v+ sw))|s=0 is a Jacobi �elds, which vanishes at 0, and also J(1) = (Tvexpp)w = 0, since its in the

kernel.

'←' If J is as stated, then α(s, t) = expp(tγ
′(0) + sJ ′(0)) is a geodesic variation such that Vα = J . Now

0 ̸= (Tvexpp)J
′(0) = J(1) = 0 by assumption.

Consider a Jacobi �eld J along a geodesic γ. What do we know about the angle between J(t) and γ′(t)?

d

dt
< J, γ′ >=<

D

dt
J, γ′ > + < J,

D

dt
γ′ >

Here the �rst term the derivative is what we called J ′, and the second vanishes since γ is a geodetic.

d

dt
< J ′, γ′ >=<

D

dt
, γ′ > + < J ′,

D

dt
γ′ >=< R(γ′, J)γ′, γ′ >= 0

Here we used the Jacobi equation.

From all this, we conclude that < J ′, γ′ > is constant. If J(0) = J(1) = 0, then somwhere in between

< J ′, γ′ > must vanish, so it is constant 0, and from this < J, γ′ > is constant as well, i.e. it is zero

everywhere. All this means, that if a Jacobi �eld shows two points' conjugacy along γ, we see that J ⊥ γ′ all

the way between the two points.

Example 12.6. 1. In Rn R = 0, so J(t) = J(0) + tJ ′(0)

2. In Sn geodesics are great circles, i.e. γ(t) = cos(t)x + sin(t)v, where v ∈ TxS
n, ||v|| = 1. Choose

w ∈ TxS
n, w ⊥ v, ||w|| = 1, we get α(s, t) = cos(t)x+ sin(t)(cos(s)v+ sin(s)w) as a geodesic variation.

Now J(t) = sin(t)w, the equation becomes J ′′(t) = −J(t). From this we can calculate, that the unit

sphere has curvature 1 as well.

3. A very similar calculation works for Hn as well, exchange sin, cos by their hyperbolis counterparts.

J(t) = sinh(t)w and J ′′ = J , and from this K ≡ −1.

13 Thirteenth lecture

13.1 Some applications of Jacobi �elds

Recall J ′′ = R(γ′, J)γ′, the Jacobi equation. Firstly, if dimM = 2, we can express curvature in terms of

"geodesic polar coordinates". Now we think of manifolds abstractly, since embedded surfaces in R3 have their

own well-developed theory due to Gauss. Pick p ∈M , and exp−1
p as a chart around it. Pick an orthonormal

basis in TpM , and take r, θ polar coordinates correspondingly. Gauss' lemma from earlier states, that locally

exp∗p = dr2 + f(r, θ)2dθ2, we get no mixed terms!1

Remark 13.1. All three classical geometries have metrics in this form, with f = r, or sin(r), or sinh(r)

We want a formula for the curvature in terms of this function f . Geodesics have the form γ(r) = expp(ru),

and we de�ne V ∈ X(γ) by parallel transport of v along γ. We can turn this geodesic a little bit to get

1notice f(0, θ) = 0 and ∂rf(0, θ) = 1
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a variation α(θ, r) = expp(r(cosθu + sinθv)). We can calculate, that the corresponding Jacobi �eld will be

f(r, 0)V (r). Now J ′′(r) = ∂2
rrfV (r), since v is parallel. The Jacobi equation can be written now

R(γ′(r), J(r))γ′(r) = J ′′

From the sectional curvature formula we see K(γ(r)) = −∂2
rr(r,0)
f(r,0) , where we use that γ′, V is an orthonormal

basis in the tangent space, the previous calculations were also used, and symmetry properties of the curvature

tensor, �nally ||V || = 1.

This also implies the previous calculation on the curvature of R2, S2, H2.

Remark 13.2. This formula is not the most practical in practice, abstract surfaces aren't usually given by

geodesic polar coordinate patches.

Secondly, we can �nally classify manifolds of constant curvature. Note, that if the curvature is constant, we

can scale by a positive factor, so only the cases 0,−1, 1 need to be considered.

We also saw previously, that the curvature tensor looks like the simplest algebraic one, times a scalar K <

xz >< y,w > − < x,w >< y, z >. Choose p ∈M , v ∈ TpM of norm one, γ(t) = expp(tv), and pick u ∈T pM

orthogonal to v. Let u be the parallel vector �eld along γ with u(0) = u. We get a Jacobi �eld satisfying

J(0) = 0, J ′(0) = u as before.

First case is K = 0, so the Jacobi equation says J ′′ = 0., a solution looks like tu(t). Now we use Gauss'

lemma once again, which says, that Ttvexpp : TtvTpM = TpM → Tγ(t)M is an orthogonal linear map, so

the exponencial map is not only a local di�eomorphism, but a local isometry! If M is complete, then this

is a Riemannian covering2. So if we assume M complete, we get that if M is simply connected, complete of

constant 0 curvature, then M is isometric to Euclidean space.

If K = −1, the equation becomes

J ′′ = R(γ′, J)γ′ = −(< J, γ′ > γ′ − ||γ′||2J) = J.

We get the solution as sinh(t)u(t). Choose now a reference point a ∈ Hn and an orthogonal map ϕ : TpM →
TaH

n. Do the same construction, which we did earlier in Hn, with ũ = ϕ(u) to get γ̃, ũ, J̃ , the solution will

be the same to the Jacobi equation J̃ ′′ = sinh(t)ũ(t).3 Our map will be f : expp ◦ ϕ−1 ◦ ˜expa
−1, using the

fact, that the exponential map is a local di�eomorphism. Now again Gauss' lemma implies that this f is a

local isometry, thus if M is complete, then f is a Riemannian covering map.4 As a corollary we get, that

any simply connected complete Riemannian manifold with constant −1 curvature is isometric to hyperbolic

space.

Some changes need to be made for the K = 1 case, since it is not di�eomorphic to its own tangent space.

The exponential map itself is unde�ned outside the bal of radius π, so we have to delete the antipodal point

of our chosen reference point, so we have to do the construction twice, with two di�erent reference points,

and we get the same corollary.

In all cases above, if we replace simply connected, with just connected, we get space forms.

One �nal application on manifolds of nonpositive curvature.

Theorem 13.3 (Hadamard (n=2), Cartan). Let M be a connected, complete Riemannian manifold with

K ≤ 0 everywhere. Then for any p ∈M expp : TpM →M is a covering map.
2by a statement from the problem sessions
3We know, that Hn has curvature ≡ −1.
4We need to do the construction in all directions, to see that it is norm preserving in the complementary directions
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Proof. Choose an arbitrary geodesic γ in M , and a Jacobi �eld J along it, which is normal5. Look at

(||J ||2)′ = 2 < J, J ′ >. Second derivative will be (||J ||2)” = 2 < J ′, J ′ > +2 < J, J ′′ >, this second term

can be expanded using the Jacobi equation. < J,R(γ′, J)γ′ >= − < R(γ′, J)J, γ′ >=6−K(span(J, γ′)) ≥ 0.

Here we used, that J ⊥ γ′, and the supposition on the sectional curvatures. This means, that ||J ||2 is convex
function, so if J(0) = J(1) = 0, then J = 0 everywhere, there are no conjugate points along γ in M . This

means expp is regular everywhere, so expp : TpM → M is a local di�eomorphism. Pull back the metric of

M using this local di�eomorphism, to get another metric on TpM , wrt this metric, our map is now a local

isometry. The main thing is that our tangent space will be complete with this new metric, since all geodesics

through p are complete.

Corrolary 13.4. 1. If M is also simply connected, then it is di�eomorphic to Rn

2. In general, the universal covering of M is di�eomorphic to Rn, so M is aspherical.

5orthogonal to γ′

6this isn't completely true, since we don't know if J, γ′ are orthonormal, but only a positive constant comes if if they are not.
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