
The Geometry of Rings and Schemes

Lecturer: Alex Hof

2024/2025/1

1 First lecture

1.1 The basic idea

Rings are commutative with identity, don’t let anyone convince you otherwise.

Proposition 1.1. X,Y top spaces, Uα an open cover of X, we define Uαβ = Uα ∩ Uβ. Given ϕα : Uα → Y

continous maps such that ϕα|Uαβ
= ϕβ |Uαβ

. Then there is a unique ϕ : X → Y such that it restricts to ϕα on
Uα.

Proposition 1.2. R,S rings, fα ◁ R are chosen such that (fα|α ∈ A) = (1). Note, that localisation at fα
and after at fβ is the same, as localisation in the other order. If ϕα : S → Rfα are given ringmaps, such that
S → Rfα → Rfαfβ is the same as S → Rfβ → Rfαfβ agree. Then there is a unique ringmap ϕ : S → R such
that S → R→ Rfα is fα.

Remark 1.3. AG concepts usually have an algebraic and a geometric interpretation. The algebraic side is
coming from commutative algebra and/or number theory, which we can then reinterpret in geometric terms,
as seen above. This can go in the other direction as well, starting froma geometric/topological concept we
can rephrase them in categorical/algebraic terms.

1.2 More geometry of rings

What ring should be analogous to the empty space?

Proposition 1.4. The empty space is the initial object in TOP .

So we would like to find the final object of CRing, since all of our arrows get reversed in this correspondance
between spaces and rings. This is clearly the trivial ring 0, note that we consider this a unital ring.

Remark 1.5. The map R→ 0 is a localisation.

If R is a ring, f ∈ R. We can localise R→ Rf , another ring we can consider is R→ R/(f).

Remark 1.6. Rf/(f) = R/(f)f = 0, and in general localisation and taking quotients commute.

This gives us the idea, that just as localisation corresponds to open subspaces, quotients should correspond
to inclusions of closed subspaces.
Next question is what should be the points of a ring?
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Definition 1.7. If X is a topological space, then a point of X is a map P → X where P = {∗}.

Now we want to know what the analogue of P is, and the answer to this is that it is the unique non-empty
space with no nontrivial subspaces. Note, that P is the final object in TOP, but this way ruins the analogy,
for example if one would use this definition, many rings would have no points (morphisms to Z) at all. So we
turn to the question of what nontrivial rings have no nontrivial quotients or loalisations. These are exactly
fields.

Definition 1.8 (questionable). If R isa ring, a point of R is a map R→ k, where k is a field.

The problem is, that if we have a field extension l|k, this gives a different map, and there are very many
extensions of any given field.

Definition 1.9 (better). Let R be a ring. A point of R is the natural map R→ Rp/pRp for p a prime ideal.

Homework 1.10. If k is a field, R is a ring and R → k is a ringmap, show that there is a unique prime
ideal p ◁ R such that the map R→ k factorises through R→ Rp/pRp. (verify that Rp/pRp is a field)

Remark 1.11. Given R a ring, f ∈ R I ◁ R then a point Rf → k can be considered a point of R→ Rf → k.
Similarly a point R/I → k is a point of R by the same remark R→ R/I → k.

Homework 1.12. The points of R which factor through R/I like this correspond to prime ideals p such that
I ⊂ p. The points of Rf correspond to the prime ideals p such that f ̸∈ p.

Definition 1.13. Let R be a ring. The spectrum of R is denoted spec R is a topological space, whose
underlying set is the set is the set of prime ideals of R and whose topology is given by either of the following

1. the closed subsets correspond to ideals I ◁ R: {ϕ : R→ k|ϕ factors through R/I}

2. A base for the topology is for any ideal I ◁ R : {ϕ : R→ k|ϕ factors through R→ Rf} for some f ∈ R

Homework 1.14. Verify that the above two definitions give you a topology, and that they agree.

Homework 1.15. Find the spectrum of the following rings:

1. Q

2. C

3. C[x]

4. C[x]x

5. C[x](x)

6. Z

7. C[x, y]

Remark 1.16. Note, for Rf we localise at the multiplicative set 1, f, f2, ..., for a prime ideal p we localise at
the multiplicative set R \ p.
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Homework 1.17. Show that Spec is functorial, i.e. for ϕ : R→ S there is an induced map spec ϕ : spec S →
spec R which takes the identity map to the identity map, and respects composition.

Homework 1.18. Find two non-isomorphic quotients of C[x] whose spectra correspond to the same closed
subset. I.e. find two ideals where the points which factor through are the same.

Homework 1.19. Recall the notion of the characteristic of a field. Give a geometric interpretation. (hint:do
this afer computing spec Z)

Homework 1.20. spec R = ∅ iff R = 0.

Homework 1.21. Let R be a ring, show that spec R is compact.

2 Second Lecture

M I S S I N G

3 Fiber products and such

3.1 Fiber produxts of topoloical spaces

Definition 3.1. Given X,Y, Z topological spaces and maps f : X → Z and g : y → Z then the fiber product
of X and Y over Z is denoted X ×Z Y := {(x, y) : f(x) = g(y)}. There are natural projection maps to X
and Y , so that the square commutes.

Example 3.2. • Given Z = {∗} then X ×Z Y = X × Y .

• If g : Y ↪→ Z is an inclusion, then X ×Z Y = f−1(Y ). If f : X ↪→ Z is also an inclusion, then
X ×Z Y = X ∩ Y .

• If g : Y → Z is the projection of a vector bundle, then X ×Z Y → X is the projection of the pullback
bundle f∗Y .

Homework 3.3. Verify the examples.
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Definition 3.4. We call the diagram of Figure 3.1 a pullback square (or a fiber square). The arrow parallel
to f is denoted f ′ and is called the pullback of f along g, and symmetrically the arrow parallel to g is the
pullback of g along f .

Example 3.5. Being an open (or closed) inclusion is preserved along pullback. The same is true for vector
bundle maps.

Figure 1:

Proposition 3.6 (Universal property of the fiber product). The fiber product if the unique space where for
each W,ψ, ϕ there is a unique χ such that the following diagram commutes.

Homework 3.7. Given a pullback diagram and a map X̃ → X show that (X ×Z Y ) ×X X̃ = X̃ZY . Also
show that given a map Z̃ → Z, we have (X ×Z Z̃)×Z̃ (Y ×Z Z̃) = (X ×Z Y )×Z Z̃.

3.2 Fiber products of schemes

Given R,S, T rings and two maps r : T → R and s : T → S we want to produce the pushout P , which is the
opposite of the pullback square considered before, with the dual universal property. This exists, and is called
the tensor product R⊗T S!

Definition 3.8. Given maps of affine schemes, we can use this to define the fiber product of affine schemes
as the spectrum of the tensor product of the underlying maps of rings. For general schemes we define the
fiber product on the affine open subsets.

Homework 3.9. Verify the existence and uniqueness of this construction, and the unviersal property.

Remember the first lecture,where we localised at two different elements of R, f and g, and we saw that we get a
pushout diagram to Rfg, from the preceeding discussion we see that this is the same sa Rf⊗RRg.>:( A similar
procedure happens when we do a localisation at f and factorisation by an ideal I, to get Rf/IRf = Rf⊗RR/I,
similarly R/(I + J) = R/I ⊗R I/J .
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Proposition 3.10. ϕ : X → Y is a map of topological spaces, Uα is an open cover of Y . ϕ defines an open
(closed) inclusion iff X ×Y Uα → Uα is an open (closed) inclusion ∀α.

Definition 3.11. For schemes an open inclusion is an open subset, which is a sub-ringed space, which is
automatically a subscheme.

Proposition 3.12. Being an open or closed inclusion is preserved under pullback.

What should be the product of two schemes? One candidate would be the fiber produt over SpecZ, since
every scheme admits a unique morphism to it, but as seen previously this is not the best way to do things.

3.3 Schemes over a scheme

Definition 3.13. Given a scheme S, a scheme over S is a map of schemes X → S (also called an S-scheme).
This map is called the structure map of X If X,Y are schemes over S, then a morphism of S-schemes is
defined as a map of schemes from X → Y , commuting with the given maps from X,Y → S.
If S = spec k with k a field, then we will just call this k-scheme.

If T → S is map of schemes and X is an S-scheme, then we can produce X → XsT which will be a T-scheme.
This construction is called base-change. If X,Y are S-schemes we define their product X × Y := X ×S Y as
an S-scheme.

Homework 3.14. Let k be a field, show that A2
k = A1

k×spec kA1
k. (More generally An

k =×spec k
A1

k n times.)

Homework 3.15. X → spec C → spec R. Give an example of X,Y C-schemes and a map of R schemes
X → Y which is not a map of C schemes. (hint: don’t get too fancy, an affine scheme is enough).

Homework 3.16. k a field, n ≥ 0 we can define An
Z := spec Z[x1, ..., xn]. Show that An

k = An
Z×spec Z spec k.

Definition 3.17. Let S be a scheme, n ≥ 0 we can define An
S := An

Z ×spec Z S.

Homework 3.18. Let S be a scheme, spec k ↪→ S a point, show that the fiber of An
S over this point is An

k ,
i.e. An

S ×S spec k = An
k .

Definition 3.19. ϕ : X → Y a map of schemes is called finite type if there is an open cover Vα of Y such
that each ϕ−1(Vα) admits a finite open cover by some U such that the restricted map U → V α factors as a
closed inclusion followed by some map from affine space over the given cover element U ↪→ Anαi

Vα
→ Vα.

We call an S-scheme finite type, if its structure map is finite type.

4 Some properties of Schemes

4.1 Local rings

Let R be a ring. R → Rp/pRp for a prime p factorises as R → Rp → Rp/Rp/pRp. What does this mean
topologically? Let ϕ : R → S be a ring map. Let ϕ factor through R → Rp, equivalently ϕ(f) is a unit for
every element not in p. This happens iff ϕ factors through every R → Rf for all f ̸∈ p. This means, that
spec Rp is the intersection of every open subscheme containing the point p. Thus spec Rp contains all points
corresponding to primes q ⊂ p.
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To show some statement for a neighborhood of p, we first see the statement in spec Rp, and realise that you
only used finitely many inverses. This allows us to lift our argument to the corresponding affine open.

Proposition 4.1. Let X be a scheme and a point x ∈ X and x ∈ spec R ⊂ X is an affine chart around x.
Then the inclusion x = spec Rp/pRp → spec Rp → X is independent of spec R. We call κ(x) = Rp/pRp the
residue field of x and OX,x = Rp is called the local ring at x.

4.2 Nilpotents and Reducedness

Example 4.2. Compare spec C[x]/(x) with spec C[x]/(x2). The first one is just a closed point of the affine
line. The second ring is the same point of the affine line, but it contains something more.
If there is a polynomial f , then restricting onto these subschemes we either keep the constant term, or the
first two terms, so we are seeing not just the value at the origin, but also the first derivative!

Example 4.3. spec C[x, y]/(xy, y2). The first generator of the ideal is the union of two lines, the second one
is the x axis with first order derivative information. Doing both leaves us with the x-axis with derivative
information, plus some extra "data" at the origin.

We wish to understand for a scheme X, whene is there a proper closed subscheme Y such that its underlying
topological space sp(Y ) = sp(X). Easiest to start with affine schemes. This translates to the question that
when is there a nonzero ideal, such that R and R/I have the same set of prime ideals? The prime ideals of a
quotient are (canonically identified with) the prime ideals of R containing I, so when is there an ideal which
is ⊂

⋂
p for all primes? This means, in the sense discussed on the second week, that this means, that these

are functions which vanish at every point, but are nonzero.

Proposition 4.4. Let R be a ring, f ∈ R. f ∈ p for all prime p is equivalent to f being nilpotent (i.e. there
is an n such that fn = 0). We define nil(R) =

⋂
p =
√
0 and call it the nilradical of R. If nil(R) = 0 we call

R reduced.

Homework 4.5. Prove this!

Definition 4.6. Rred := R/nil(R) is called the reduction of R. spec Rred is the smallest subscheme of R
which contains all the same points.

Proposition 4.7. For a scheme X, we can define Xred by gluing up the reductions of an affine cover of X.
X is said to be reduced if any of the following equivalent properties hold:

1. the only closed subscheme of X with all of the same points is X

2. X = Xred

3. ∀ U ⊂ X open OX(U) has no nilpotent elements

4. ∀x ∈ X : OX,x has no nilpotent elements

4.3 Connectedness, Irreducibility, Integrality

Definition 4.8. A scheme X is connected iff sp(X) is connected.
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Definition 4.9. A topological space X is irreducible if whenever X = X1 ∪X2 where Xi are closed at least
one of the Xi = X (equivalently every nonempty open subset is dense). A scheme X is irreducible iff sp(X)

is.

Example 4.10. spec C[x, y]/(y2 − x2(x + 1)) and spec C[x, y]/(y2 − x2) a nodal cubic and the union of two
lines.

Proposition 4.11. Let R be a ring, then spec R is irreducible iff nil(R) is prime.

Proof. If nil(R) is prime, then Rred is a domain, so spec Rred has a generic point, which implies that every
open subset is dense, since they all contain the generic point.
If nil(R) is not prime, then there are f, g ∈ R\nil(R) such that fg ∈ nil(R). This means, that sp(spec R/(fg)) =
sp(spec R). On the other hand spec R/(f) has fewer points than spec R, and similarly for g.

Corollary 4.12. A scheme X is irreducible iff there is an x ∈ X such that sp(x) = sp(X).

Proposition 4.13. A non-empty scheme X is called integral if the following equivalent properties hold:

1. X is reduced and irreducible

2. ∀ U ⊂ X open X (U) is a domain

3. X has a point whose scheme-theoretic closure is X

In particular spec R is integral iff R is an integral domain.

4.4 Noetherianity

Definition 4.14. A ring R is called Noetherian if every ascending chain of ideals is eventually constant.
Geometrically this means that every descending chain of closed subschemes in spec R is eventually constant.

Definition 4.15. A scheme X is called locally Noetherian if it has an affine open cover with Noetherian
charts (equivalently every affine open is Noetherian).

Proposition 4.16. If X is a scheme, we call X Noetherian if it satisfies the following equivalent properties.

1. every descending chain of closed subschemes stabilises after finitely many steps

2. X is locally noetherian and quasi-compact∗

3. X admits a finite affine Noetherian open cover

Proposition 4.17. Any locally† closed subscheme a (locally) Noetherian scheme is (locally) Noetherian

Proposition 4.18. Any (locally) finite-type scheme over a (locally) Noetherian scheme is (locally) Noethe-
rian.

Definition 4.19. A topological space is called Noetherian iff every descending chain of closed subsets sta-
bilises after a finite amount of steps.

∗=compact -.-’
†open∩closed
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Proposition 4.20. If X is a Noetherian scheme, then sp(X) is Noetherian.

Example 4.21. k[x1, x2, ...]/(x21, ...) is a Noetherian topological space, but not a Noetherian scheme.

Homework 4.22. Counterexample with reduced structure?

Proposition 4.23. Let X be a noetherian topological space. We can write X = X1 ∪ ... ∪Xn as the union
of irreducible closed subspaces which do not contain each other, and this decomposition is unique up to order.
The Xi are called the irreducible components of X

Proposition 4.24. Let R be a ring the irreducible components of spec R are sp(spec R/p) given by minimal
primes p.

5 Dimension theory and singular points

5.1 Krull dimension

If k is a field, then the "dimension" of spec k we expect to be 0 intuitively. A bit more generally we should
want dimAn

k = n.
Question: Let X be a scheme, Y a proper closed subscheme. "dimY ≤ dimX", when should/shouldn’t there
be equality in this formula?
We want equality for example when Y has all of the same points as X, i.e. Y = Xred. There could also be
some irreducible components, whose dimension is the same as the whole space.
Finally if we restrict ourselves to the case when X is integral. This means in particular that X \ Y is dense,
so we should expect that dim Y < dim X. In particular if Y0 ⊊ Y1 ⊊ ... ⊊ Yk irreducible closed subschemes
of X, we expect dim X ≥ dimYk ≥ dimYk−1 + 1 ≥ ... ≥ dimY0 + k ≥ k.

Definition 5.1. LetX be a nonempty scheme, dimX := max{k ≥ 0 : ∃Y0 ⊊ Y1 ⊊ ... ⊊ Yk integral closed subschemes}.

Proposition 5.2. Let X be a nonempty scheme, dim X = max{k ≥ 0 : ∃p0, ..., pk ∈ X distinct points such that pi ∈
pi−1 ∀1 ≤ i ≤ k}

Corollary 5.3. dim spec R = max{k ≥ 0 : ∃p0 ⊊ ... ⊊ pk prime ideals of R}.

Proposition 5.4. X nonempty Noetherian, then dim X = max{dim Y : Y ⊂ X irreducible component}.

Definition 5.5. Let X be a scheme, x ∈ X. The local dimension of X at x is defined as dimxX := dimOX,x.

Proposition 5.6. Let X be a nonempty scheme, dim X = max{dimxX|x ∈ X} and if X is Neotherian or
finite dimensional one can restrict this set to the closed points of X.

Remark 5.7. There are schemes, which don’t have closed points at all!

Homework 5.8. Let R = C[x, x1/2, x1/3, ...](x,x1/2,x1/3,...). Show that R is not Noetherian, and dim R = 1.

Example 5.9 (Nagata, Vakil excercise 12.1.M). There exists an infinite dimensional Noetherian ring!
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5.2 Codimension and Krull’s height theorem

Consider a plane and a transverse line through it, and a line inside it. We wish to compare these two.

Definition 5.10. Let X be a scheme and Y an integral closed subscheme. We define codimXY := max{k ≥
0 : Y = Y0 ⊂ Y1 ⊂ ... ⊂ Yk integral closed subschemes in X}.
For an arbitrary Y codimXY := minZ⊂Y integralcodimXZ.
If R is a ring, p a prime codimspec R(specR/f) = max{k ≥ 0 : p0 ⊂ ... ⊂ fk = p primes} is called the height
of the prime p.
In general for a scheme X and Y an integral closed subscheme, η ∈ Y its generic point codimXY = dimηX =

OX,η.

Remark 5.11. codimXY ̸= dimX − dimY

Example 5.12. A plane and a transverse line is X. The codimension of the plane is 0! There is no larger
integral subscheme. The codimension of the line is 0 for the same reason. The codimension of the points of
the line is 1, of the plane is 2. The codimension of lines inside the plane is 1.

Theorem 5.13 (Krull’s height theorem or Hauptidealsatz). R Noetherian ring and f1, ..., fc ∈ R. Let Z be
an irreducible component of specR/(f1, ..., fc). Then codimspec RZ ≤ c. (The c = 1 case is called Krull’s
principal ideal theorem)

Homework 5.14. Use this theorem to show that if (R,m) is local Noetherian and m = (f1, ..., fc), then
prove that dimR ≤ c.

Homework 5.15. Use the previous excercise to show that if k is a field, n ≥ 0 then An
k = n.

5.3 Regularity

Definition 5.16. If X is a scheme, x ∈ X a point and k ≥ 0 an integer denote R = OX,x, and m is the
maximal ideal of R. SpecR/mk+1 is called the k’th order infinitesmial neighborhood of x in X.

mk+1 represents function germs vanishing to order at least k+1 at x. Restriction preserves from a "function"
f its derivatives of order ≤ k. The underlying topological space of this infinitesimal neighborhood is just x,
we are just considering some extra nilpotents.
For k = 1 we record the value, and the first order derivatives, the maximal ideal is now m/m2.

Definition 5.17. If X is a scheme, x is a point of X, mx is the corresponding maximal ideal of its local
ring, mx/m

2
x is called the Zariski cotangent module of X at x. Its elements are called cotangent vectors.

Clearly it is a module over OX,x, but this action factors through the residue field κ(x), so we indeed get a
vector space over the residue field at x.
Why is this the cotangent space? mx → mx/m

2
x sends a "function f" and produce "df".

Proposition 5.18. ϕ : X → Y a map of schemes, x ∈ X a point the pullback map ϕ♯ : OY → ϕ∗OX induces
a map on the local rings, and this in turn induces a pullback of cotangent spaces mϕ(x)/m

2
ϕ(x) → mx/m

2
x.

Homework 5.19. Let (R,m) be a Noetherian local ring, κ be the residue field at m. Given r1, ..., fr ∈ m.
Show that their images span m/m2 iff they generate m and conclude that dimR ≤ dimκm/m

2.
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Definition 5.20. If we have equality in the previous the ring is called regular.
A Noetherian ring is called regular if all of its local rings are. A locally Noetherian scheme is regular at a
point, if the local ring is regular. A locally Noetherian scheme is regular if all of its points are.

Proposition 5.21. k a field, n ≥ 0 then An
k is regular.

Homework 5.22. Identify (with proof!) the (non-)singular points of the following schemes:

• specC[x, y]/(y2 − x2)

• specC[x, y]/(y2 − x2(x+ 1))

• specC[x, y]/(y2 − x3)

• specC[x, y, z]/(xz, yz)

• specZ

Homework 5.23. Show that every point of specC[x, y]/(y2) is singular!

Homework 5.24. Show that any non-singular scheme is reduced.

Homework 5.25. Compute the Zariski cotangent space of C[x, x1/2, x1/3, ...](x,x1/2,x1/3,...).

6 Geometry of Modules

6.1 Setup

Definition 6.1. R,S rings, and ϕ : R→ S a ring map, if M ∈ R−Mod, then S⊗RM is the pullback of M .

Proposition 6.2. If R is a ring, M,N ∈ R − Mod, {fα ∈ R} is a generating set, we denote Mα =

Rfα ⊗RM , and similarly for N , double indicies denote intersections as usual. Suppose we have module maps
ϕα : Mα → Nα and suppose that the maps induced on Mαβ → Nαβ by ϕα and ϕβ agree. Then there is a
unique ϕ :M → R, which restricts to ϕα for any given α under ⊗RRfα .

Corollary 6.3. Modules, elements of modules, exactness, etc. are all affine locally determined.

Proposition 6.4. If R is a ring, M ∈ R−Mod and uhh R→ κ(p) is a point of spec R then κ(p)⊗R M is
a κ(p) vector space.

Example 6.5. R = C[x, y] and M = R⊕R,N = (x, y) = Re1⊕Re2
(ye1−xe2)

. For p ⊂ R prime, κ(p)⊗R M = κ(p)2, on
the other hand κ(p)⊗R N is κ(p)2 if p = (x, y) and κ(p) otherwise.

So we want to realize M as a scheme over M with fibers, which are affine spaces, and also to figure out what
happens over non-affine schemes. This leads us to something called linear fiber spaces, and over arbitrary
spaces to the notion of quasicoherent sheaves.
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6.2 Linear fiber spaces in topology

If T is a topological space, a rank n vector bundle is a motivating example, but we also want to be able to
have fibers of different rank. R×T → T , the trivial vector bundle of rank 1. It has a zero section T → R×T ,
and also a well-defined "one section" and a fiberwise addition map R×R×T = (R×T )×T (R×T )→ R×T ,
all of which respect the projection to T . Similarly there is a fiberwise multiplication and all of these maps
satisfy the axioms for a ring fiberwise. Now we define modules over this ring.

Definition 6.6. If T is a topological space, a linear fiber space over T is a topological space X and a map
π : X → T , so that

• a map z : T → X is given, which represents the zero section

• there is a map + : X ×T X → X a fiberwise addition map

• a map · : R× T×T → T a fiberwise map representing scalar multiplication

satisfying the module axioms over R× T , and all of the above commutes with the natural projections to T .
A map of linear fiber spaces over T is a continous map X → Y , commuting with the projections and the
operations defined above.

6.3 Linear fiber spaces over schemes

If S is a scheme, A1
S = S ×specZ (SpecZ[t]). Over any affine open specR ⊂ S this is just specR[t], and the

fiber over a point is specκ(p) = A1
k.

Proposition 6.7. A1
S is a fiberwise ring over S, i.e.

• there is a zero section z : S → A1
S, locally this corresponds to a map R[t]→ R, where t 7→ 0

• u : S → A1
S the one section, locally t 7→ 1

• + : A1
S ×S A1

S → A1
S, as before the domain is just A2

S, the corresponding local map should be t 7→ t1+ t2

• · : A2
S → A1

S, locally t 7→ t1t2

satisfying the fiberwise ring axioms.

Homework 6.8. Write out the whole definition, with all of the diagrams.

Definition 6.9. Let S be a scheme, a linear fiber space over S is an S-scheme X together with maps of
S-schemes:

• z : S → X zero section

• + : X ×S X → X addition

• A1
S ×S X → X scalar multiplication

satisfying the axioms of a fiberwise module.
A map of linear fiber spaces over S is a map of schemes over S, wich commutes with all of the operations.
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Homework 6.10. Let k be a field, n ≥ 0. Show that An
S is a linear fiber space over spec k.

• [k[t1, ..., tn]]→ k where ti 7→ 0

• k[x1, ..., xn]→ k[x′1, ..., x
′
n, x1, .., xn] where xi 7→ xi + x′i

• k[x1, ..., xn]→ k[t, x1, ..., xn] where xi 7→ txi

6.4 Modules as linear fiber spaces

If k is a field, V is a k-module, how do we get the affine space geometrically realizing V ? If v1, ..., vn is a
basis, we can think about k[v1, .., vn], but this depends on the choice of basis :(

Definition 6.11. Let R be a ring, M a module. The symmetric algebra of M over R is

Sym(M) =

∞⊕
0

M⊗ℓ/(a⊗ b− b⊗ a).

Example 6.12. If M = R⊕n, then Sym(M) = R[e1, ..., en].

Example 6.13. R = C[x, y],M = (x, y) = Re1⊕Re2
(ye1−xe2)

, then Sym(M) = C[x, y, e1, e2]/(ye1 − xe2).

A (sort of) answer, is going to be specSym(V ).

7 Quasicoherent Sheaves

7.0 Wrap-up

Definition 7.1. R is a ring, M ∈ R −mod. The spectrum of M is defined to be specSymM with an LFS
structure over specR given by R-algebra maps R← Sym(M)m 7→ 0, addition is defined as m⊗1+1⊗m← m

and m 7→ tm is the induced scalar multiplication.

Homework 7.2. If R = k and M = Rx1 ⊕ ... ⊕ Rxn show that these agree with the LFS structure on An
k

from last week.

Homework 7.3. Verify that these make spec M a LFS in general.

Homework 7.4. If R is a ring ϕ :M → N an R−mod map, show that ϕ induces a map Spec N → Spec M

contravariantly functorially. Bonus: Show that every map of linear fiber spaces from Spec N → Spec M

comes about this way.

How do we retrieve M from this construction?

Definition 7.5. If S is any scheme and X is a linear fiber space over S a linear form on X is a map of linear
fiber spaces over S, X → A1

S . L(X) := {linear forms on X}. If Φ : X → Y is a map of linear fiber spaces
over S, then we can pull back linear forms as one would expect, i.e. there is Φ∗ : L(Y )→ L(X) under which
λ 7→ λ ◦ Φ.

Proposition 7.6. If S is a scheme, X is a linear fiber space over S, then there is a map L(X)×L(X)→ L(X)

summing two forms in each fiber (X λ×Sµ−−−−→ A2
S

+−→ A1
S), this makes L(X) an abelian group. If S = spec R,

then we can also define a scalar multiplication R × L(X)→ L(X) using the composition (X
λ−→ A1

S
·r−→ A1

S).
This makes L(X) an R-module, the pullback map is an R-module map in this setting.
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Homework 7.7. If R is a ring, M an R-module, then show that M = L(spec M). Given another R-module
N and tsutsutsutsu let’s see here, and I have a map of R-modules M ϕ−→ N show that the induced map
L(spec M)→ L(spec N) is ϕ (under the previous natural identifications).

Definition 7.8. If X is a scheme, x ∈ X is a point, m ⊂ OX,x the maximal ideal. The Zariski tangent space
to X at x is Spec(m/m2).

7.1 Shaves of Modules

Definition 7.9. (X,OX) is a ringed space. A sheaf of OX -modules is a sheaf of abelian groups F such
that for every U ⊂ X open F (U) is an O(U) module such that it is compatible with the restrictions:
ρ(r ·m) = ρ(r) · ρ(m).

Proposition 7.10. If R is a ring, M is an R-module, then there is a corresponding sheaf of Ospec R modules
specified by M̃(specRf ) := Rf ⊗R M .

Definition 7.11. If X is a scheme, F is a sheaf of OX modules then F is quasicoherent if for every affine
open spec R ⊂ X we have that F |spec R = M̃ for some R-module M . Equivalently we can check it on some
affine cover.
If X is locally Noetherian, F is called coherent if all of the M ’s in the definition of a quasicoherent sheaf are
finitely generated/presented.

We define (most) module things affine-locally (direct sum, tensors kernels, cokernels, exactness).

Remark 7.12. Hom behaves wierdly! If F is coherent, then HomOX
(F,−) is fine though. In particular the

dual sheaf of a coherent sheaf is coherent.

Proposition 7.13. X ϕ−→ Y a map of schemes, F is a quasicoherent sheaf of modules over X, and G

similarly over Y , then ϕ∗F (U) := F (ϕ−1)(U) is the pushforward sheaf (of F along ϕ) is quasicoherent if X
is Noetherian.
Pullback is a bit more nice, ϕ∗G := ϕ−1(G) ⊗ϕ−1OY

OX . Affine locally if Spec S is an open subset of X
contained in some ϕ−1(Spec R), then G|Spec R = M̃ by the quasicoherent assumption. Then ϕ∗G(spec S)) =
S ⊗R M and the pullback is always quasi coherent.
If X,Y are locally Noetherian and G is coherent, then the pullback is coherent as well.

Remark 7.14. Locally given a point (R,m) → (S, n) the stalks with be what we expect, namely Mm →
S ⊗R Mm.

Given a map R → S of rings and M ∈ S − mod, then the pushforward of M along this map is the same
module but considered as an R module, induced by the map.
If X is Noetherian, then HomOX

(ϕ∗G,F ) = HomOY
(G,ϕ∗F ).

Proposition 7.15. Pullback is right exact, i.e. given 0 → A → B → C → 0 a short exact sequence of
quasicoherent sheaves, then the corresponding sequence of pullback ϕ∗A→ ϕ∗B → ϕ∗C → 0 is exact.

7.2 Relative spectra

Definition 7.16. If X is a scheme and A is a quasicoherent sheaf of OX algebras. spec A → X is called
the relative spectrum of A, and is given locally for an affine open spec R ⊂ X, A(spec R) = a, the algebra
structure is given by R→ a, by spec (a)→ spec R.
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Definition 7.17. A map of schemes Y → X is called affine if either of the following equivalent things is
true:

1. Y → X is the structure morphism of spec A for some quasicoherent sheaf of algebras

2. the inverse image of every affine open is affine

Definition 7.18. If X a scheme, I is a quasioherent sheaf of ideals, or just ideal sheaf if it is a quasicoherent
sheaf of OX modules with an inclusion I → OX .
Over affine opens this gives back just ideals of the affine ring.
We can talk about the closed subscheme of X cut out by I, it is defined as spec(OX/I).

Definition 7.19. This gives a bijection between ideal sheafes and closed inclusions.

8 More on Quasicoherent Sheaves

Recall the exercise of constructing the projective line by gluing together two affine lines SpecC[x], SpecC[y]
along C[x]x → C[y]y by mapping x 7→ y−1. The point given by x = 2 on the other affine chart looks like
y = 1/2, let I be the ideal sheaf cutting it out. I|specC[x] = (x − 2) as a module, clearly on the other chart
we get that I|specC[y] = (y − 1/2), and these clearly get identified under our gluing map. Let us try and
compute the global sections of this sheaf. These will look like (f, g) such that f ∈ (x − 2) ⊂ C[x] and
g ∈ (y − 1/2) ⊂ C[y], and under the gluing map f/1 7→ g/1. If f(x) = a(x − 2)(x − r1)...(x − rn) for some
a, ri ∈ C, then g(y) = a(1/y − 2)(1/y − r1)...(1/y − rn) = a/yn+1(1 − 2y)(1 − r1y)...(1 − rny). This implies
that a = 0, otherwise we cannot clear denominators.

Definition 8.1. If X is a scheme, Y1, Y2 are closed subschemes with Ii their respective ideal sheaves, the
union Y1 ∪ Y2 := spec OX/(I1 ∩ I2).

If R is a ring, I, J ◁ R then I∩J
IJ = TorR1 (R/I,R/J).

Homework 8.2. Let q be the origin of specC[y]. Describe the ideal sheaf I cutting out q in P1
C, i.e. compute

the restrictions to the two affine charts, and the global sections. Next do the same thing for the sheaf of p∪ q
where p is the point x = 2 from the previous example.

8.1 Quasicoherent Sheaves as Linear Fiber Spaces

Definition 8.3. If X is a scheme, F is a quasicoherent sheaf over X, then the symmetric algebra sheaf of F
over X is Sym(F ) := (

⊕∞
0 F⊗l)/(a ⊗ b − b ⊗ a) where a, b are sections of F (F⊗0 = OX , multiplication is

tensor product).

Remark 8.4. Locally this gives the construction of symmetric algebra we saw before.

Definition 8.5. Let X be a scheme, F a quasicoherent sheaf on X, then the relative spectrum of F is defined
as spec Sym(F ), endowed with the structure of a linear fiber space using the same operations from the affine
case affine locally.

Remark 8.6. The relative spectrum construction gives a contravariant functor.
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Definition 8.7. If X is a scheme, V a linear fiber space, the sheaf of linear forms on V to be the sheaf
(of OX modules) on X (!!!) given by L(U) := L(V |U ) (remember, that V |U = V ×X U → A1

U ). Given a
map Φ : V → W of linear fiber spaces, there is an induced pullback map Φ∗ : L(W ) → L(V ) given by
precomposition.

Proposition 8.8. Given a scheme X, and a quasicoherent sheaf F over X, then L(spec F ) is naturally
isomorphic to F .
The spec(−), L(−) functors give an anti-equivalence of abelian categories between quasicoherent sheaves over
X anda full∗ abelian subcategory of linear fiber spaces over X.

Proposition 8.9. ϕ : X ′ → X is a map of schemes, F a quasicoherent sheaf over X, then there is a natural
isomorphism of linear fiber spaces between X ′ ×X spec F and spec(ϕ∗F ).

Remark 8.10. Pullback is not exact! A short exact sequence of quasicoherent sheaves 0→ A→ B → C → 0

gives an exact sequence 0→ specC → specB → specA→ 0, but for x ∈ X we only have that 0→ specC|x →
specB|x → specA|x is exact.

Example 8.11. 0 → (x, y) → C[x, y] → C[x, y]/(x, y) → 0. in the middle we see the trivial line bundle over
the plane. On the right side we get the trivial line bundle over the origin. On the left side we get a linear fiber
space which has rank two over the origin, and a line bundle on the complement of the origin. This shows us
the faliure of exactness at the level of fibers.

Definition 8.12. If X is a scheme and V is a linear fiber space over X and n ∈ N. We call V a vector bundle
of rank n if ∀x ∈ X there is x ∈ U ⊂ X an open neighborhood such that V |U = An

U as linear fiber spaces.

Proposition 8.13. If V = specF for F a locally free sheaf of rank n (there is an open neighbrohood around
every point such that F |U = O⊕n

X ) on X, then V is a vector bundle, and the converse also holds.

Homework 8.14. If X is a locally noetherian scheme, show that the coherent sheves on X are identified
under this correspondance with finite rank vector bundles..?

8.2 Nakayama’s lemma

Theorem 8.15 (Nakayama’s lemma). Let R be a ring, M a finitely generated R-module and I an ideal
contained in all maximal ideals. Then

• if IM =M , then M = 0

• if the images of m1, ...,mn ∈M in M/IM generate M/IM , then they generate M

What is the geometric meaning of this theorem? If I is contained in all maximal ideals, then specR/I contains
all closed points of specR. In particular since IM = M is equivalent to saying M/IM = 0, this means that
M̃ |specR/I = 0.

Corollary 8.16. If X is a locally Noetherian scheme and x ∈ X is a point, F a coherent sheaf on X, then
specF |x = 0 implies that there is an open neighborhood U of x such that specF |U = 0.

∗every morphism is in the image
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Proof. Apply Nakayama’s lemma in OX,x with I = m, then lift from local ring to open neighborhood by
starting with specR ∋ x, and using the standard argument of lifting local information to a neighborhood by
noetherianity.
For the second statement, it is equivalent to having R⊕n →M →M/I surjective. This implies, that R⊕n →
M is surjective.

Corollary 8.17 (Upper Semicontinuity of Fiber Dimension). If X is a locally noetherian scheme and x ∈ X
is a point, F a coherent sheaf over X, and define n := dim specF |x, then there exists an open subscheme
x ∈ U such that specF |U embeds as a closed sub-linear fiber space of An

U .

Homework 8.18. If X is a locally noetherian integral scheme, F a coherent sheaf on X with n := dim

of fiber of specF over the generic point of X. Use Nakayama’s lemma to show that there is an open dense
subscheme U such that specF |U is a trivial rank n vector bundle.

Homework 8.19. M is a complex matrix with entries depending algebraically on some parameter t. Let r
be the rank of M considered as a matrix over C(t). Use the previous exercise to show that for all but finitely
many values of t ∈ C, M is a rank r matrix (over C). (hint: M is a module map C[t]p → C[t]q, and take its
cokernel)

9 Calculus on Schemes

Example 9.1. V (y − x2) ↪→ A2. It is mostly clear what the tangent bundle of the affine plane should be,
corresponding to C[x, y, dx, dy]← C[x, y], pushing forward along the map to the algebra of the parabola we
get the tangent bundle should be living in C[x, y]/(y − x2)[dx, dy], and from differential geometry we know
that it should be obtained by factoring with (dy − xdx).

9.1 Motivation

If X is a smooth manifold, a smooth vector field is a smooth section of the tangent bundle. If V is a smooth
vector field on X, and f : X → R is a smooth function, we get a new function V f : X → R by taking the
derivative of f in the direction of V at each point. Since we can do this locally, V gives us an R linear map
of sheaves OX → OX , which obeys the Leibniz rule.
In fact this correspondance is a bijection, the set of all smooth vector fields is identified with the set of
R-linear sheaf maps with the Leibniz rule.

9.2 Definitions

Definition 9.2. Given a map of rings ϕ : R → S, M ∈ S −mod. An R-linear derivation of S into M is a
map d : S →M of abelian groups obeying the Leibniz rule d(fg) = fdg + gdf , and ∀r ∈ R : d(ϕ(r)) = 0 (or
equivalently d is a morphism of R-modules).
DerR(S,M) denotes the set of all such derivations, which we consider as an S-module by pointwise multi-
plication.
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Definition 9.3. ϕ : R → S a ring map, the module of Kähler differentials of S over R is an S-module
denoted

ΩS/R :=
⊕f∈SSdf

(d(fg)− fdg − gdf |f, g ∈ S) + (d(ϕ(a)f + ϕ(b)g)− ϕ(a)df − ϕ(b)dg|a, b ∈ R, f, g ∈ S)

The map d : S → ΩS/R sending f 7→ df is called the universal derivation of S over R.

Remark 9.4. The same definitions can be given with sheaves of rings and modules.

Proposition 9.5. The universal derivation is a derivation. Moreover if M is an S-module, dM : S → M

is an R-linear derivation, then there is a unique map of R-modules ψ : ΩS/R → M such that dM = ψ ◦ d.
(Equivalently there is a natural isomorphism DerR(S,M) ≃ HomS(ΩS/R,M).)

Proposition 9.6. R → S a ring map, U ⊂ S a multiplicatively closed subset. Then ΩU−1S/R = U−1S ⊗S

ΩS/R.

Proof. Use the quotient rule algebraically.

Corollary 9.7. ΩSf/R = Sf ⊗S ΩS/R for any f ∈ S.
ΩSp/R = Sp ⊗S ΩS/R for any prime ideal p ◁ S.

Definition 9.8. If there is Φ : X → Y a map of schemes, then there is a unique quasi-coherent sheaf of OX

modules denoted ΩX/Y or ΩΦ onX such that ∀spec R ⊂ Y, spec S ⊂ Φ−1(spec R) opens ΩX/Y |spec S = ΩS/R,
and the gluing maps are compatible with this identification. We call this sheaf ΩX/Y the sheaf of (relative)
Kähler differentals of X over Y . The (relative) tangent scheme of X over Y is TX/Y := spec ΩX/Y (sometimes
also denoted TΦ).

Remark 9.9. If we understand to be working in the context of schemes over Y (e.g. Y = spec C, and the
map is the structure map) we drop Y from the notation and just talk about ΩX and Tx, etc.

Proposition 9.10. Let Phi : X → Y be a map of schemes. Sections of TX/Y over X are canonically
identified with DerΦ−1OY

(OX ,OX).

Proof of the affine case. Let Y = spec R,X = spec S. The set of sections of π : TX/Y → X are canonically
identified with maps SymΩS/R → S such that the composition S → SymΩS/R → S is the identity. It
is enough to see the images of the degree 1 elements, since they generate the symmetric algebra. So the
set of such maps gets identified with S-module maps ΩS/R → S. These maps are by definition make up
DerR(S, S).

Proposition 9.11. A map of rings R → S and another map of rings R → R′. Define S′ := S ⊗R R
′, then

we have ΩS′/R′ = R′ ⊗ ΩS/R.
For schemes this means, that given a fiber product square X ×Y Y ′ we have that TX′/Y ′ = TX/Y ×Y Y ′ as
linear fiber spaces over X ′.

9.3 Computing Kähler differentials

Proposition 9.12. If R is a ring, n ≥ 0 and S := R[x1, .., xn], the map is the natural inclusion. Then
ΩS/R =

⊕n
1 Sdxi.

So if Y is a scheme, X = An
Y , then TX/Y = An

X = An
An

Y
= A2n

Y .
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Example 9.13. If Y = specC, then the tangent bundle of Cn is Cn × Cn.

Proposition 9.14. Given ring maps R → S → T , we can compose derivations S → T with the universal
derivation T → ΩT/R, this composition induces an S-module map ΩS/R → ΩT/R, which gives us a T-module
map T ⊗S ΩS/R → ΩT/R.
Hence Φ : X → Y is a map of Z-schemes, there is a natural map of quasicoherent schemes over X Φ∗ΩY/Z →
ΩX/Z , giving us DZΦ : TX/Z → Φ∗TY/Z , which we call the differential of Φ over Z.

Example 9.15. X = A2
C, Y = A1

C are two C schemes. Φ : X → Y is given by t 7→ xy. We have some maps
C → C[t] → C[x, y], what is the map T ⊗S ΩS/R → ΩT/R. Firstly ΩS/R = C[t]dt, so tensoring over R gives
us C[x, y]dt. Secondly ΩT/R = C[x, y]dx⊕ C[x, y]dy. The map Φ∗ will send dt 7→ ydx+ xdy.

Proposition 9.16 (Relative (co)tangent sequence). Let R→ S → T be ring maps, d : T → ΩT/S is R-linear.
This gives us a map ΩT/R → ΩT/S as R-modules. The following sequence is exact:

T ⊗S ΩS/R → ΩT/R → ΩT/S → 0

This means in particular, that given a map of Z-schemes Φ : X → Y , we get an exact sequence of quasico-
herent sheaves:

Φ∗ΩY/Z → ΩX/Z → ΩX/Y → 0

0→ TX/Y → TX/Z → Φ∗TY/Z

i.e. TX/Y = kerDZΦ.̨

Remark 9.17. One can continue this exact sequence to get the André-Quillen homology.

Example 9.18. From the previous example we get that ΩC[x,y]/C[t] =
C[x,y]dx⊕C[x,y]dy

(ydx+xdy) . Let p = V (t − 1) and
i its inclusion map. The fiber over p is C[x, y]/(xy − 1), we will compute the tangent bundle of this fiber.
i∗ΩX/Y = ΩΦ−1(p)/Y = ΩC[x,y]/(xy−1)/C by base change. Thus we get Udx⊕Udy

ydx+xdy where U = C[x, y]/(xy − 1),
and this tangent space is isomorphic to Udx⊕Udy

dy+ y
xdx = Udx⊕Udy

(dy+ 1
x2 dx)

Homework 9.19. Let o be the origin in A1
C. Compute TΦ−1(o)/o, what are the dimensions of its fibers over

the closed points of Φ−1(o) = V (x, y).

10 Calculus on Schemes 2: Electric Boogaloo

10.1 Infinitesimal Neighborhoods and the Zariski Normal Scheme

Recall, that given x ⊂ X, the local ring R = Ox,X with maximal ideal m, we had specR/mk+1, and thought
of it as the k’th order infinitesimal neighborhood of x in X.

Definition 10.1. If Y is a scheme, X ⊂ Y is a closed subscheme, it has a corresponding ideal sheaf I. We
define for any k ≥ 0 the k’th order infinitesimal neighborhood of X in Y as V (Ik+1) ⊂ Y , i.e. spec(OY /I

k+1).

Example 10.2. Y = A2
C = specC[x, y] and X = V (y) = specC[x, y]/(y), the kth order infinitesimal neighbor-

hood is specC[x, y]/(yk+1).

Definition 10.3. X ⊂ Y is a closed subscheme of a scheme Y with I = I(X) is the corresponding ideal sheaf,
then I/I2 (viewed as a quasicoherent sheaf on X) is called the conormal sheaf of X in Y . NX/Y := Spec(I/I2)

is called the Zariski normal scheme (a linear fiber space over X).
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10.2 Relative (Co)normal Sequence

Recall that given a map Φ of Z-schemes X → Y , we had the exact sequence 0→ TX/Y → TX/Z → Φ∗TY/Z ,
or in the other direction on the level of sheaves.

Proposition 10.4. Y is a scheme, X ⊂ Y is a closed subscheme. Then TX/Y = 0 (i.e. ΩX/Y = 0).

Proposition 10.5 (relative (co)normal sequence). If R→ S is a ring map, I ◁ S is an ideal with T = S/I.
The map I → ΩS/R → T ⊗S ΩS/R factors through the map I/I2 → T ⊗S ΩS/R composed with the natural
projection I → I/I2.
The sequence I/I2 → T ⊗S ΩS/R → ΩT/R → 0 is exact. Correspondingly on the level oflinear fiber spaces
over X we have that the sequence 0→ TX/Z → i∗TY/Z → NX/Y is exact.

Corollary 10.6. If R is a ring, n, r ≥ 0 integers, and S = R[x1, ..., xn], f1, .., fr ∈ S with T := S/(f1, .., fr).
Then ΩT/R =

⊕n
1 Tdxi

(df1,...,dfr)
where df =

∑
∂ifdxi. Implying that TspecT/specR = specR[x1,...,xn,dx1,...,dxn]

(f1,...,fn,df1,...,dfn)
.

Example 10.7. Z = specC, Y = specC[x, y], X = V (xy − 1), we get that TX/Z = C[x,y,dx,dy]
(xy−1,xdy+ydx) .

Example 10.8. Z = specC, Y = specC[x, y, z], X = V (xz, yz), now TX = spec C[x,y,z,dx,dy,dz]
(xz,yz,zdx+xdz,zdy+ydz) .

10.3 Smoothness

Proposition 10.9. X
i
↪−→ Y

j
↪−→ Z such that i, j ◦ i are closed inclusions of schemes. Then we have an exact

sequence 0→ i∗TY/Z → NX/Y → NX/Z of linear fiber spaces over X.

Proof. See Stacks Project 065V .

Corollary 10.10. If k is a field, X is a k-scheme and x ∈ X is a k-point (i.e. κ(x) = k), then TX |x is the
Zariksi tangent space to X at x.

Proof. speck = x ↪→ X → speck the closed inclusion of the point into X and the structure map, so we can
apply the prevous proposition. Since Nspeck/speck = 0, we get an isomorphism 0→ i∗TX → Nx/X → 0.

Definition 10.11. If k is a field, X is a k-scheme, n ≥ 0 an integer, we say that X is smooth of dimension
n (over k) if

• X is locally finite type

• X has pure dimension n (i.e. every irreducible component has dimension n)

• TX is a vector bundle of rank n

Proposition 10.12. If i : X ↪→ Y is a closed inclusion of smooth k-schemes, then 0 → TX → i∗TY →
NX/Y → 0 is exact.

Proposition 10.13. If k is a field, then every smooth k-scheme is regular.
If k is a perfect field∗ then every regular locally finite type k-scheme is smooth.

Proposition 10.14. K|k a field extension, there is a corresponding map spec K → spec k. Tspec K/spec k

may be nonzero.
∗char(k) = 0, or the Frobenius map is an automorphism
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Theorem 10.15 (generic smoothness). If k is a perfect field and X is an integral finite type k-scheme, then
there is a dense open U ⊂ X such that U is smooth (of dimension dimkX) over k.

Theorem 10.16 (Jacobian Criterion - special case). If k is a field and n, r ≥ 0 integers, X = spec R ⊂ An
k

of pure dimension d with R = k[x1,...,xn]
(f1,...,fr)

taking the matrix M = [∂ifj ]
n,r
i,j=1,1 ∈ Mn×r(R) we define JX :=

((n− d)× (n− d) minors of M). Then JX is independent of X ↪→ An
k and V (JX) ⊂ X is previsely the locus

where X is not smooth.
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