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1 First Lecture

1.1 Cech cohomology

Get information about the space from the combinatorics of some open cover of the space.

De�nition 1.1. Let M be an n-manifold, U = {Uα} an open cover (indexed over a well ordered set A).

The Chech n-cochains are real numbers ϕα0...αn (with α0 < · · · < αn) if Uα0 ∩ · · · ∩ Uαn ̸= ∅. Cn(U,R) =∏
α0<···<αn

R if the intersection is non-empty once again. From now on we denote Uα0...αn
:= ∩Uαi

. We

also denote ϕβ0...βn
to be sgn(σ)ϕβσ0,...βσn where σ orders the indicies, or 0, if an index occurs twice. The

boundary map (δϕ)α0...αn+1 :=
∑

(−1)jϕα0...hatαj ...αn+1 . Its clear that δ
2 = 0. From this we get the Chech

cohomology groups Hn(U ;R).

In fact Cn(U,R) can be written as a product of the sets of (locally) constant functions from each Uα0...αn
to

R.

De�nition 1.2. Let X be a topological space. Ox will be the category of open sets of X, where morphisms

are inclusion. A presheaf is a contravariant functor F : OX → C.

De�nition 1.3. A sheaf is a presheaf with

locality if s, t ∈ F (U) are two sections on U , and {Ui} is an open cover of U s.t. s|Ui = t|Ui
for all i, then s = t.

gluing If ∃{si} on some open cover {Ui} of U s.t. on all pairwise intersections they agree, i.e. si|Ui∩Uj
=

sj |Ui∩Uj , then ∃s ∈ F (U) s.t. s|Ui = si.

Example 1.4. Locally constant functions into any group G. We could also take C0(G) of continous maps to

a topological group G. Our most important example will be C∞(G) of smooth functions to a Lie group G.

We need a small modi�cation on the de�nition of Chech cohomology. The maps need to be restricted to the

smaller intersection as well. The chain groups will be the product of the F (Uα0...αn
)'s. We are implicitely

using commutativity to be able to add together the maps in the boundary.

Remark 1.5. If G is an abelian group, we de�ne H∗(U,G|C0(G)|C∞(G)) as before.

Remark 1.6. If U is an acyclic* cover, then H∗(U,R) = HdR(X,R).

Remark 1.7. Given a C0 or C∞ group homomorphismG→ H, one gets mapsH∗(U,C?(G))→ H∗(U,C?(H)).

If we have a SES of C? abelian groups 0→ G→ H → K → 0, then we get a LES in cohomology.

Actually if the sheaf has partitions of unity, the homology is F (X) in degree 0, and 0 everywhere else.

*for all α0 . . . αn we have Uα0...αn either empty or contractible
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1.2 Non-abelian Chech cohomology

Let G be a (potentially) non-Abelian group, let U be an acyclic cover. C0, C∞ still makes sense.

We will de�ne H0(X,F ), what are the 0 cocylcles? In the Abelian case we have that ϕα is a cocycle if

ϕα|Uαβ
− ϕβ |Uαβ

= 0 ∀α, β. This is the same as a global section ϕ ∈ F (X), so H0(X,F ) = F (X) even in the

nonabelian case.

De�nition 1.8. phiα is a 0 cocycle if ϕα|Uαβ
= ϕβ |Uαβ

, or that ϕαϕ
−1
β = 1 on the appropriate set Uαβ .

In the H1(X,F ) case some more interesting things happen. In the Abelian case 1 cocycles are maps Uαβ → G

with the condition, that restricted to Uαβγ ϕβγ − ϕαγ + ϕαβ = 0. We generalize this now

De�nition 1.9. Non-Abelian 1 cocycles are ϕαβ : Uαβ → G maps, such that ϕαβϕβγϕγα = 1, and we require

gαα = 1. These two conditions imply that gαβ = g−1
βα .

Remark 1.10. This is the same condition as in the Abelian case, we just swap γα to αγ.

Now the 1 coboundaries. In the Abelian case two cocycles ϕ and ψ are cohomologous i� ϕαβ − ψαβ = δfα,

i.e. ϕαβ − ψαβ = fβ − fα.

De�nition 1.11. We say that if ϕ, ψ 1 cocycles are coohmologous if ∃f a 0 cochain such that ϕαβ =

fαψαβf
−1
β .

From here we de�ne H1(X,F ) = Z1(X,F )/ ∼, which will be a pointed set. The base point is given by

ϕαβ = 1.

De�nition 1.12. f : A→ B homomorphism of pointed sets one can de�ne a kernel as the preimage of the

basepoint.

Fact: If 1→ G→ H → K → 1 of possibly nonabelian groups, then we still get a LES on non-Abelian Chech

cohomology up to H1. It continues to H2(G) if G < Z(H). Note, that the boundary map from H0 to H1

may be nonzero!

Excercise 1.13. X = RP 2 and take the de�ning S.E.S. of the spin group.

2 Second Lecture

2.1 Principal bundles

Motivation is vector bundles. Let E
π−→ X be such a gadget. E|Uα

can be trivialised over Uα as Uα × Rn.

Over some Uαβ we have two trivialising maps ϕα and ϕβ , which are linear isomorphisms on each �ber, so

ϕαϕ
−1
β maps (x, v) 7→ (x, gαβ(x)v) for some linear maps gαβ dependent on x.

On triple intersections Uαβγ we have three trivialisations, and three transition maps going around. It is clear

that the composition of these three maps is the same as the identity by the commutativity relations of the

trivialisation, which gives us the cocycle condition.

Remark 2.1. A vector bundle E
π−→ X induces a 1-cocycle. Moreover, isomorphic vector bundles induce the

same cocycle.

Pick a trivialisation of E and E′, call it Uα, the isomorphism is ψ, we get a map ϕ−1
α ψϕ′α which maps

(x, v) 7→ (x, fα(x)v). If there are two trivialisations, by commutativity we get that g′αβ = fαgαβf
−1
β , which

we wanted.
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Tétel 2.2. There is an isomorphism of pointed sets from the set of vector bundles of rank n over X modulo

isomorphism, and the �rst Cech cohomology with coe�cients C∞GLn(R).

De�nition 2.3. Let G be a topological or Lie group. A G-principal bundle is a �ber bundle P → X with a

C0 or C∞ right action P ×G→ G that is �ber preserving and transitive on each �ber.

Remark 2.4. Each �ber is a G-torsor (has a free and transitive G action).

G is also a G-torsor with right multiplication.

Example 2.5. A circle is an S1 torsor.

Excercise 2.6. A G-equivariant map of G-torsors is an isomorphism.

Corollary 2.7. A G-equivariant bundle map of G-principal bundles is an isomorphism.

We build a 1-cocycle from P → X. Over Uα we trivialise the bundle. A local section gives 1 in that triviali-

sation. Now we construct the same cocycle, and we get that there are transition maps gαβ : Uαβ → G. The

same conditions will be satis�ed in this case as well, so:

Tétel 2.8. There is an isomorphism of pointed sets from G-principal bundles over X mod isomorphism to

H1(X;C?G).

Example 2.9. For G = Z2 and X = S1 we have H1(S1, C∞Z2) = H1(S1,Z2) = Z2. We know the 0 element is

the trivial bundle, the action interchanges the two copies of S1. The other one is the boundary of the Möbius

band, and the action again interchanges the two lifts.

Example 2.10. G = Z3 is the next example, again over the circle. H1(S1;Z3) = Z3, there are three bundles,

but the connected ones are only distinguished by the action!

Figure 1:

Excercise 2.11. Do the total spaces of nontrivial G-bundles need to be connected?
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Now the case of GLn(R). From the previous theorems we know that the rank n vectorbundles over X, and

GLn(R) principal bundles overX are isomorphic. What is this isomorphism? In one direction, we construct the

frame bundle of E, replacing every �ber with its frames, i.e. bases of Ex, i.e. linear isomorphisms Rn → Ex. In

the other direction, given a principal bundle P → X with structure group GLn(R) we construct P×GLn(R)Rn,

where we identify (pg, v) ∼ (p, gv).

Excercise 2.12. What are GL+
n (R) principal bundles?

Excercise 2.13. What are O(n) principal bundles?

Excercise 2.14. What are SO(n) principal bundles?

Remark 2.15. A C? homomorphismG
ϕ−→ H induces a pointed set homomorphismH1(X,C?G)→ H1(X,C?H).

We can do from P → X to P ×G H → X, where G acts on H as gh = ϕ(g)h.

Remark 2.16. If H < G is a deformation retract of the Lie group G, then H1(X,C∞G) = H1(X,C∞H).

Excercise 2.17. What are GLn(C) principal bundles?

Excercise 2.18. What are C∗ principal bundles?

Excercise 2.19. What are S1 principal bundles?

Excercise 2.20 (*). Show, that H1(X,C∞S1) = H2(X,Z).

3 Third lecture

We show the last excercise.

Proof. Use the exponential exact sequence

0→ Z→ R→ S1 → 1

Were the �rst map is 2π·, the second is e·. Passing to the sheaves C∞ with these groups we get a long exact

sequence of homologies. The H0 part is exact, we get

0→ H1(X,C∞Z)→ H1(X,C∞R)→ H1(X,C∞§1)→ H2(X,C∞Z)→ H2(X,C∞R)→ . . .

We know that C∞R has partitions of unity, and we get the desired isomorphism.

Denote this isomorphism by c. From the Snake lemma starting from a cocycle gαβ : Uαβ → S1 with the

cocycle conditions. Lift these functions to R. The conditions change to g̃αβ + g̃βγ + g̃γα = 2πK. Pull it back

to Z to see where is its image under the connecting homomorphism c. Cαβγ :=
g̃αβ+g̃βγ+g̃αγ

2π .

Remark 3.1. H1(X,C∞S1) is in bijection with complex line bundles over X modulo isomorphism. This is

true because GL1(C) deformation retracts to S1.

Remark 3.2. H1(X,C∞S1) is a group. Multiplication is given pointwise. Given two line bundles corresponding

to two elements of this group the element corresponding to the product element is the tensor product of the

line bundles.
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Excercise 3.3. c is a group homomorphism, an thus an isomorphism of groups.

Fact 3.4. It is natural. This means, that given f : X → Y , we get an induced map H1(X,C∞S1) →
H1(Y,C∞S1) and H1(X,Z)→ H1(Y,Z), and c commutes with these maps.

We deduce that c = ±c1.

Excercise 3.5. c = c1

3.1 Spin structures

Motivation: take a 1-cocycle (gαβ) de�ning a vector bundle E → X of rank n. GL+
n (R) ≤ GLn(R), if we can

lift the gαβ to this (or some) subgroup, we call this a reduction of the structure group. In the GL+
n (R) case

this means that the bundle is orientable. SO(n) is a strong deformaton retract of GLn(R), so we can always

lift. This corresponds to a choice of Riemannian metric. Since π1(SO(n)) = Z2, one can ask if there is a lift

Spin(n)→ SO(n) to the universal cover.

Remark 3.6. SO(1) = {∗}, SO(2) = S1, SO(3) = RP 3. The last one is seen be either

� S3 → isom(imH) where q 7→ (v 7→ qvq), S3 is taken to be the unit length quaternions. The kernel of

this map will be ±id.

� RP 3 is a 3-ball of radius π with antipodal points of its boundary identi�ed. Every vector can be

interpreted to be a rotation around that axis, the angle de�ned by the norm of the vector.

For n ≥ 3 we really have π1(SO(n)) = Z2.

De�nition 3.7. For n > 2 we de�ne Spin(n) as the universal (double) cover of SO(n). A Lie group of

the same dimension. The group structure is given by the universal property of covering spaces by lifting the

multiplication at the point (e, e) 7→ (e).

For n = 2 Spin(2) is de�ned to be S1 corresponding to the map S1 z2

−→ S1. For n = 1 Spin(1) = Z2 → {∗}.

Remark 3.8.

1→ Z2 → Spin(n)→ SO(n)→ 1

De�nition 3.9. Let E → X be an orientable vector bundle of rank n, with associated principal bundle

PSO(n) → X. A spin structure on E is a pair (PSpin(n)− → X,H) where H : PSpin(n)/Z2 → PSO(n) is

an isomorphism of SO(n) principal bundles. These are taken up to isomorphism of pairs. Two pairs are

isomorphic if there is an isomorphism Φ : PSpin(n) → P ′
Spin(n) which commutes with H and H ′ and the

factorisation maps.*

Remark 3.10. Actually PSpin(n) → PSpin(n)/Z2 is a principal Z2 bundle. This happens because Z2 is a closed

subgroup of Spin(n), this does not happen always!

De�nition 3.11. Spin(E → X) is the set of spin structires on E. Spin(X) := Spin(TX → X).

Remark 3.12. There is a map ϕ : Spin(E → X)→ H1(X,C∞Spin(n)). It is not surjective in general. In the

target you hit only cocycles which project to gαβ for PSO(n). ϕ is not injective in general either.

Example 3.13. There are two spin structures on the trivial principal SO(n) bundle on RP 2,but there is onl

one Spin(n) bundle lifting π1 : RP 3 × SO(n)→ RP 3 for some n.
*the only thing that makes sense, really
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3.2 Spinc structures

Not all simply connected manifolds are spinnable :( You can lift PTX
SO(4) to PSpin(4) away from a surface S.

The boundary of a point of the normal bundle of S has a framing, which either winds around, or it does not.

If it has 0 winding, then we would be able to extend, so we have the second case. Complex numbers would

help us unwind this rotation, and extend the trivialisation through S.

De�nition 3.14.

Spinc(n) :=
Spin(n)× U(1)

±(1, 1)

Remark 3.15.

1→ U(1)→ Spinc(n)→ SO(n)→ 1

1→ Spin(n)→ Spinc(n)→ U(1)→ 1

Excercise 3.16. Spinc(n) is a pullback of Spin(n + 2) of the diagram SO(n) × U(1) → SO(n + 2) ←
Spin(n+ 2).

De�nition 3.17. Let E → X be an orientable vector bundle of rank n, with associated principal bundle

PSO(n) → X. A spinc structure on E is a pair (PSpinc(n)− → X,H) where H : PSpinc(n)/U(1) → PSO(n)

is an isomorphism of SO(n) principal bundles. These are taken up to isomorphism of pairs. Two pairs are

isomorphic if there is an isomorphism Φ : PSpinc(n) → P ′
Spinc(n) which commutes with H and H ′ and the

factorisation maps.

Remark 3.18. Actually PSpinc(n) → PSpin(n)/U(1) is a principal U(1) bundle. This happens because U(1) is

a closed subgroup of Spinc(n), this does not happen always!

Tétel 3.19. If Spin(c)(E → X) ̸= ∅, then there is a free and transitive action of H1(X,Z2) or H
1(X,C∞U(1)) =

H2(X,Z) on Spin(c)(E → X).

4 Fourth lecture

4.1 ACTION

De�nition 4.1. A spin(c) structure on PSO(n) → X is a Z2 or U(1) principal bundle on PSO(n) such that

the composition is a spin(c) principal bundle on X up to isomorphism (in the correct sense).

Proof. H = Z2 or U(1). α ∈ H1(X,C∞H) will be represented by [PH → X]. Given a spin(c) structure

P → PSO(n) → X we act by α as PH ×H P → PSO(n) → X by projecction onto the second factor.

We need to check if it is well de�ned. Given P̃H → X isomorphic to PH , with given isomorphism ϕ its an

excercise to construct an isomorphism between the associated bundles P̃H ×H P → PH ×H P by taking the

produt �berwise with the identity.

We need to check that it is free. Suppose that P
Φ−→ PH ×H P are isomorphic with given isomorphism Φ. We

construct a section. Take Φ(p) = (q, λ · p) = (qλ, p) we can assume that the second component is always p,

and can de�ne ϕ(p) = qλ. Consider ϕ(pξ), by

(ϕ(p), pξ) = (ϕ(p), p)ξ = Φ(p)ξ = Φ(pξ) = (ϕ(pξ), pξ)
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we get that phi(pξ) = ϕ(p).

Thus ϕ descends to a map ϕ̄ : X → PH , which is a section of the H principal bundle, thus PH is trivial, and

the action is free.

Finally transitivity. P → PSO(n) → X and another structure P ′ → PSO(n). De�ne Mor(P, P ′) to be the �ber

bundle on X whose �bers are the spin(c) equivariant maps Px → P ′
x commuting with the bundle projections.

Mor(P, P ′) is an H principal bundle over X. The action is given by pre, or postcomposition and it does not

matter which, since the maps are equivariant. Now take Mor(P, P ′)×H P → P ′ and (f, p) 7→ f(p) provides

an isomorphism.

We can also think about this setup in terms of cocycles.

Lemma 4.2. Fix a 1-cocycle Gαβ for PSO(n), then

1. every spin or spinc structure on PSO(n) can be represented with a cocycle projecting on gαβ

2. assuming this, two spin/spinc cocycles projecting on the same SO(n) cocycle de�ne the same spin/spinc

structure i� ∃fα : Uα → H such that g̃αβ = fαgαβf
−1
β .

Proof. For the �rst point consider g̃αβ : Uα → spin(c)(n). Taking the isomorphism from the de�nition we

get pr ◦ g̃αβ = lαgαβl
−1
β for some SO(n) 0-cochain lα. Lift this arbitrarily to Spin(c)(n) to l̃α. Now de�ne

g̃′αβ := l̃αg̃αβ l̃β . Taking its projection we see, that g̃′αβ projects to gαβ as required.

For the second part if g̃αβ = fαgαβf
−1
β then the spin/spinc structures are the same because these elements

project into the same element, fα is in the kernel of the projection from spin/spinc to SO(n). In the other

direction if g̃αβ andgαβ give the same spin/spinc structure, then g̃αβ = fαgαβf
−1
β where fα : Uα → Spin(c)(n)

are chosen from an isomorphism after trivialisation. By assumption the two cocycles project to the same

element, from this we want to conclude that fα is in the kernel.

Corollary 4.3. The action H1(X,C∞H) × Spin(c) → spin(c) is given by the pointwise products of the

representing cocycles. This action is free and transitive.

Remark 4.4. This is the same action as we had for principal bundles. One can compute the transition

functoions.

Remark 4.5. This action is Abelian.

5 Fifth lecture

5.1 Chern class

Consider

1→ spin(n)→ spinc(n)→ U(1)/{±1} = U(1)→ 1.

This gives a LES

H1(X, spin(n))→ H1(spinc(n))
det−−→ H1(X,U(1)) = H2(X;Z)

where the isomorphism is given by the �rst Chern class.
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De�nition 5.1. s ∈ Spinc(E → X) determines i(s), a spinc(n) principal bundle. c1(s) is de�ned to be

c1(det(i(s))).

If i(s) is represented by [g̃αβ,λαβ
], then det i(s) is represented byλ2αβ .

Tétel 5.2. c1(s+ h) = c1(2) + 2h, where s ∈ spinc(E → X) and h ∈ H2(X,Z).

Proof. i(s) = [gαβ , λαβ ], then i(s+ h) = [gαβ , λαβlαβ ] where lαβ = h ∈ H1(X,C∞U(1)).

5.2 spin vs spinc

Remark 5.3. The inclusion map j : spin(n) → spinc(n) induces a map Spin(E → X) → Spinc(E → X).

This is constructed as follows. Given PSpin → PSpin/Z2
H−→ PSO(n) → X we can create PSpin×Spin Spin

c →
PSpin ×Spin Spin

c/U(1), this latter space is canonically isomorphic to PSpin/Z2 by the inclusion, we declare

this to be the imgae of the bundle under j.

Tétel 5.4. s ∈ Spinc(E → X) is in the image of j i� c1(s) = 0.

Proof. First [Pspinc(n)] ∈ H1(X,Spinc(n)) is induced by a Spin principal bundle Pspin ∈ H1(X,C∞Spin) i�

H1(X,C∞Spin)→ H1(X,C∞Spinc)
det−−→ H1(X,C∞U(1)), if the image is zero under the determinant i� it

is trivial i� it has 0 Chern class.

Then given s ∈ spinc(E) is a Pspinc → PSO(n) → X, and we know, that there is a spin bundle, such that

P ′ := Pspin ×spin spin
c → X is isomorphic to Pspinc → X. Call this isomorphism Φ. P ′/U(1) is isomorphic

to PSO(n) by the commutativity of our diagram.

Tétel 5.5. j : Spin(E → X) → Spinc(E → X) is modelled over β : H1(X,Z2) → H2(X,Z). This means,
that j(s+ h) = j(s) + β(h). Here β is the Bockstein map induced by 1→ Z→ Z→ Z2 → 1 on homology.

Proof. Let gαβ represent E → X and suppose that s = g̃αβ is a lift to spin(n). If h = (λαβ) ∈ H1(X,C∞Z2)

then s + h is represented by (g̃αβ · lαβ) with lαβ = eiπλαβ . We pass it to the map j : Spin → Spinc. j(s) is

represented by j ◦ g̃αβ and j(s+h) is represented by (j(g̃αβ · lαβ)) = [g̃αβ · lαβ , 1] = [g̃αβ , lαβ ] = j(s)+c1([lαβ ]).

Our goal is now to check β(λαβ) = c1([e
iπλαβ ]). We get a commutative square

Figure 2:

Take integral lifts λ̃αβ its boundary is λ̃αβ + λ̃βγ + λ̃γα. We can lift to
λ̃αβ+λ̃βγ+λ̃γα

2 = bαβγ . Consider

πλ̃αβ ∈ R. The coboundary will be πλ̃αβ + λ̃βγ + λ̃γα, and pulling back to Z coe�cients we have to divide

by 2π, so the two connecting homomorphisms are the same.
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Example 5.6. S1 × S2 has 2 spin structures and Z spinc structures. Both s, s′ 7→ t0.

MISSING

6 Seventh lecture

6.1 Functoriality

Let f : X → Y be a smooth map. We can pull back smooth bundles, and similarly we can pull back E → X

if it is a G-bundle. On the levels of cocycles we can pull back an acyclic cover Uα of Y to some cover f−1(Uα)

of X. This will not be acyclic usually, but contains some Vᾱ acyclic cover of X. If gαβ is a cocycle then

(gαβ ◦ f)ᾱβ̄ is a cocycle. We get a map f∗ : H1(Y,C∞G)→ H1(X,C∞G) of pointed sets.

Everything mentioned thus far extends to spin and spinc structures as well: Take Pspin(c) → PSO(n) → Y ,

and pull back the SO(n) bundle �rst by f , and pull back the spin/spinc bundle using the "upper" side of the

square (or directly X → Y ← Pspin(c)), which gives the same). This way we get a spin or spinc structure over

X from Y , and since we can pull back morphisms, we get a well de�ned map between the Chech cohomologies.

The induced map is (x, p) 7→ (x, h(p)).

Figure 3:

Remark 6.1. If Xn → Y n is an immersion of n-dimensional manifolds, then f∗TY = TX. This gives a map

Spinc(Y )→ Spinc(X). The actions of the corresponding H2 groups are also related by the pullback map of

cohmologies.

Tétel 6.2. For f : X → Y a smooth map and E → Y a vector bundle of rank n, the map f∗ : Spinc(E)→
Spinc(f∗E) satis�es f∗(s+ h) = f∗(s) + f∗(h) for h ∈ H2(Y ;Z).

Excercise 6.3. Can check it using Z2 or U(1) principal bundles, or by cocycles.

Excercise 6.4. c1(f
∗(s)) = f∗(c1(s)) (should be immediate from the cocycle description, or a line bundle

computation).

6.2 Restriction map

There is a square If n = 2, then the map is reduction mod 2, and the inclusion of S1 into S3.
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Figure 4:

Take the product of the square with U(1), and we get something that passes to the quotient by Z2 a

similar square with Spinc(n) and SO(n) × U(1). The maps are inclusion and identity, and the factor map,

determinant.

Tétel 6.5. i induces a map i∗ : Spinc(E → X)→ Spinc(E ⊕ R→ X).

Given P → PSo(n) → X the map induces P ×Spinc(n) Spin
c(n+ 1)→ PSO(n) ×SO(n) SO(n+ 1)→ X.

Remark 6.6. c1(s) = c1(i∗(s)) because of the square, det is the same on both sides.

� i∗ is well de�ned? yes, check is homework

� on cocycles gαβ 7→ (i ◦ gαβ)

� i∗ commutes with the action ofH1(X,C∞H) forH ∈ {Z2, U(1)}. Check that twisting by anH-principal

bundle commutes with i∗, or do it on the cocycles

All of this gives that i∗ is an isomorphism of H1(X,C∞H) torsors.

Tétel 6.7. Let Z → X be a smooth map that is a framed* immersion. Then the composition

Spinc(TX → X)
f∗

−→ Spinc(TX|Z = TZ ⊕ Rk → Z)→ Spinc(TZ → Z)

is called the restriction map. Denote this composition r. This is a map of pointed sets, and is modelled over

the map f∗ : H1(X,C∞H)→ H1(Z,C∞H), r(s+ h) = r(s) + f∗(h).

Remark 6.8. If Xn is orientable, then ∂X is oriented and framed, so we get a restriction map.

Observe, that if Zn−1 → Xn both orientable, then Z is framed. In paticular we have a restriction map.

6.3 Alternative de�nition

Suppose n ≥ 3, then H1(SO(n), C∞H) = Z2,i.e. there is a unique nontrivial Z2 or U(1) bundle, denoted

Spin(n) and Spinc(n).

De�nition 6.9. A spinc structure is an element of H1(PSO(n), C
∞H) that restricts to the nontrivial element

on each �ber of PSO(n) → X.

The action in this de�nition is even simpler to describe now. Take π : PSO(n) → X, some cocycle in

H1(X,C∞H) acts as follows: pull it back to the PSO(n) bundle, and multiply the cocycles.

*ν(Z ⊂ X) is trivialised

10



7 Eight lecture

7.1 Classifying spaces

Let G be a topological or Lie group

De�nition 7.1. A Universal bundle πG : EG→ BG is a G-principal bundle, with BG weakly contractible

(i.e. πn(BG) = 0). We call BG the classifying space for G.

Tétel 7.2 (Milnor). For every group G a classifying space exists.

Proof. The join of two spaces is de�ned as:

X ⋆ Y := (X × Y × [0, 1])/{((x, y, 0) ∼ (x′, y, 0), (x, y, 1) ∼ (x, y′, 1))}.

Now EG = G ⋆ G ⋆ . . . . This space has an obvious G action, the factor will be BG.

Example 7.3. BSO(n) = Gr+(n,∞).

Tétel 7.4. Let πG : EG→ BG be a universal G-principal bundle, then for any G-principal bundle π : E → X

there exists a continous function f : X → BG such that f∗EG = E. Moreover if f∗1EG = F ∗
2EG i� f1 is

homotopic to f2.

Proof. We choose a CW decomposition of X and apply induction. Suppose f |∗∂DEG = E|∂D. Since D is

contractible E|D = D ×G. Restricting this to the boundary we get a map from the boundary to EG. Since

EG is weakly contractible, this map extends to the whole of D.

Similar reasoning shows the homotopy part.

Fact 7.5. A group homomorphism ψ : G→ H induces a map Bψ : BG→ BH.

From EG → BG we canconstruct an H principal bundle EG ×H H → BG, and take its classifying map

BG→ BH for Bψ.

Remark 7.6. A vector bundle or SO(n) principal bundle corresponds to a map f : X → BSO(n).

De�nition 7.7. A spin or spinc structure on f is a lift of f to BSpin(n) or BSpinc(n).

Figure 5: Equivalence of the two de�nitions
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Figure 6:

Figure 7:

De�nition 7.8. A Spinc structure on E → X is a complex line bundle L→ X together with a spin structure

on E ⊕ LR.

Proof. From (f, g) : X → BSO(n)× BU(1) we can push forward to BSO(n+ 2) to get the classifying map

of E ⊕ LR. A spin structure on this bundle is a lift of this map to BSpin(n+ 2), and we can just pull back

to BSpinc(n) and vice versa.

De�nition 7.9. A spinc structure is an almost complex structure is an almost complex structure on sk2X

that extends to sk3X up to homotopy.

De�nition 7.10. An a.c.s. is a J : E → E map of vector bundles with the condition, that J ◦ J = −idE .

Proof. An a.c.s. is a lift of f : X → BSO(2n) to BU(n). Every unitary matrix induces an orthogonal

transofrmation on the underlying real space U(n)→ BSO(2n), and this induces the map BU(n)→ BSO(2n),

over which we want to lift.

Fact 7.11. this map lifts to BJ : BU(n)→ spinc(2n)

Fact 7.12. The homotopy �ber of Bj is 2-connected

We can lift the map s to the 3 skeleton because the �ber is 2-connected. Given homotopic maps s, s′ : X →
BSpinc(2n) we can lift the whole homotopy between them to the 3-skeleton of X × I = sk2X × I.
Other direction???
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Figure 8:

8 Ninth lecture

8.1 Other de�nitions of spin structures

Recall, that a spin structure on PSO(n) is an element s of H1(PSO(n),Z2) such that ∀x ∈ X the map

ix : SO(n)→ PSO(n) (�ber inclusion) such that i∗x(s) is the nontrivial element of H1(SO(n),Z2) for n ≥ 2.

The action of H1(X,Z2) is by pullback and addition.

Tétel 8.1. A spin structure on X is a trivialisation of PSO(n) on the 1-skeleton sk1(X) that extends to the

2-skeleton, considered up to homotopy (n ≥ 3).

For principal bundles a trivialisation is the same as a section. Given s : X → E for some G-bundle E, we

de�ne s(x) = 1G, and this trivialises the bundle.

Proof. Take two sections s1, s2 : sk2X → PSO(n). De�ne s1/s2 ∈ Hom(π1(X,Z2)). Since s1(x) = s2(x) · g(x),
we get a map g : sk2X → SO(n), and Hom(H1(X),Z2) = H1(X,Z2).

� We need to check, that s1 is homotopic to s2 i� s1/s2 = 0.

� The H1(X,Z2) action is transitive. For this we need to check, that de�ning s1 = s1/s2 · s2 works

De�ne a map H1(PSO(n),Z2) > Spin(X)→ Triv(PSO(n)|sk2X)/ ∼. Over each 1-cell we have two choices to

lift the loop to PSO(n), one of them gives 0 under ϕ : π1(PSO(n))→ Z2.

?????

8.2 Euler structures

Eul(Xn) with χ(X) = 0 are an H1(X,Z) torsor. If X3 is closed, then H1(X) = H2(X) by Poincaré duality,

and we get that Spinc(X) = Eul(X).

13



De�nition 8.2 (Combinatorial Euler structure). Suppose, that A is a CW complex with geometric realisation

Xn. A singular 1-chain θ on A is an Euler chain if

∂θ =
∑

e∈cells of A

(−1)|e|xe

, where xe is the "center"* of the cell� e. Two Euler chains are homologous if they di�er by a boundary of

some 2-chain. Eul(A) = Euler chains/ ∼.

De�nition 8.3. v, w non-singular vector �elds tangent to X, a connected closed manifold. We say that v ∼ w
are homologous if ∃Dn ⊂ Xn such that w|X\D is homotopic through non-vanishing (nowhere 0) vector �elds

to v|X\D.

V ect(X) is de�ned as the set of non singular vector �elds up to this homotopy. These are called vectorial

Euler structures. V ect(X) is a torsor over H1(X,Z) (if χ(X) = 0).

9 Tenth lecture

Tétel 9.1. vect(X) is an H1(X,Z) torsor.

We need some obstruction theory (cf. Steenrod). Let v, w be nonsingular vector �elds on X, i.e. sections

of SX → X of the unit sphere bundle of the tangent bundle. Since the �ber is n − 2 connected, v can be

homotoped to w on skn−2X. There is an obstruction class d(v, w) ∈ Hn−1(X,πn−1(S
n−1)).

Tétel 9.2 (Steenrod). v is homotopic to w on skn−1X i� d(v, w) = 0.

v and w point in opposite directions on a 1-submanifold of X generically. Restricting to a small ball intersect-

ing this 1-dimensional submanifold, we get a map ϕγ : Sn−1 → Sn−1. We take the 1-cycle v
w :=

∑
(degϕγ)γ,

where the sum runs over connected components of the 1-manifold {v = −w}. This cycle is equal to

PD(d(v, w)).

Tétel 9.3 (Steenrod). v
w + w

z = v
z

Now we can prove theorem 9.1

Proof. For h ∈ H1(X,Z) and [w] ∈ vect(X) we de�ne [w]+h as the class of a vector �eld w such that v
w = h.

How do we construct such a w? Assume that w points in the opposite to h along h. This can be achieved by

a small homotopy. Using Reeb turbulance

Well de�nedness: if w1, w2 are homotopic on skn−1X and they pairwise have the same obstruction class with

some v1, v2, then we use Steenrod's theorem v1
v2

= h+ 0− h = 0, thus v1 is homotopic to v2.

Action is transitive by de�nition, the obstruction class gives the element required.

It is also free, since if v is homotopic to w, then their obstruction class vanishes, thus they represent the same

class.

Tétel 9.4. Given a manifold X, equipped with a handle structure A, then there is a map Eul(A)→ vecet(X),

which is an isomorphism of H1 torsors.

*some point in the cells interion
�the sum runs over cells of every dimension, that's why |e| is there
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Figure 9:

Proof. De�ne the map, let θ be an Euler class, pick a Morse function. θ connects critical points of opposite

parity, call the tubular neighborhood of this curve ν. On ∂ν the Morse function has degree 0, and we can

extend the gradient vector�eld inside ν in a nonsingular manner.

If [θ− η] = h ∈ H1(X,Z). We have 3 vector �elds, ∇f, vθ, vη. Take a neighborhood of a critical point p, here

deg∇d = 1. We can modify in a tubular neighborhood to get a degree 1 vector �eld representing
vη
vθ
, which

is also θ − η...

De�nition 9.5. A normal Euler structure on Xn a cohomology class ξ ∈ Hn−1(SX,Z) that restricts to the

canonical*generator of Hn−1(Sn−1,Z) on each �ber. nor(X) denotes the set of normal Euler structures on

X.

Tétel 9.6. nor(X) is an Hn−1(X,Z) torsor.

Tétel 9.7 (Leray-Hirsch). F → E → B a �ber bundle such that H∗(F ) is freely generated and ∃cj ∈ H∗(E)

such that i∗x(cj) is a basis for the cohomology of the �ber. Then H
∗(F )⊗H∗(B)→ H∗(E) is an isomorphism,

where the map is i∗x(cj)⊗ bi 7→ cj ∪ π∗(bi).

Proof of the theorem using Leray-Hirsch. If ξ is a normal Euler structure, then {1, ξ} are global classes, which
restrict to a basis on each �ber. This means, thatHn−1(SX) elements can be represented as 1⊗b+ξ⊗n·1H∗(X).

Normal Euler structures are classes where n = 1, the action of Hn−1 is by pullback and addition, this leaves

the n = 1 condition intact.

We can also give a more abstract de�nition of this action. (ξ, b) 7→ ξ + π∗(b). Since thecomposition of �ber

inclusion andbundle projection is the constant map, we see that the pullback restricts as 0 on the �ber, giving

what we wanted. From Leray Hirsch however we get more, namely that this action is free and transitive.

Tétel 9.8. ∃H1(X,Z) equivariant isomorphism between vect(X) and nor(X).

Proof. Suppose that [v] ∈ V ect(X), so v : X → SX de�nes a submanifold ΣV = Imv ⊂ SX. [Σv] ∈ Hn(SX).

The Poincaré dual of this surface is in Hn−1(SX), and we will prove, that it is a normal Euler structure.

Consider a point x ∈ X, the �ber over it and the �ber inclusion i. i∗(PD([Σv])) = PD([i−1(Σv)]). Since the

section intersects the �ber in exactly one point, we get the canonical generator as required.

Now for equivariance. For a ∈ Hn(SX), PD(a) is the cohomology class represented by ϕa ∈ Cn−1(SX) such

that < ϕa, e >= a∩ e for each n−1 cell e. (We are implicitly assuming a CW structure on SX, induced from

such a structure on X.) Let v = w + h, i.e. v
w = h ∈ H1(X) = Hn−1(X).

*note, that this needs X to be oriented
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