Spin and Spinc structures
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1 First Lecture

1.1 Cech cohomology
Get information about the space from the combinatorics of some open cover of the space.

Definition 1.1. Let M be an n-manifold, U = {U,} an open cover (indexed over a well ordered set A).
The Chech n-cochains are real numbers @q,.. o, (With ag < -+ < ) if Uy, N---NU,, # 0. C*(U,R) =
Ha0<~~<an R if the intersection is non-empty once again. From now on we denote Uy, ..o, = NUy,. We
also denote ¢g,.. 3, to be sgn(c)dgso,...30n Where o orders the indicies, or 0, if an index occurs twice. The
boundary map (6¢)aq...ansy = 2.(—1) @aq...hata,...ans, - Its clear that 6 = 0. From this we get the Chech

cohomology groups H"(U;R).

In fact C™(U,R) can be written as a product of the sets of (locally) constant functions from each Uy, .. .o, tO
R.

Definition 1.2. Let X be a topological space. O, will be the category of open sets of X, where morphisms

are inclusion. A presheaf is a contravariant functor F': Ox — C.

Definition 1.3. A sheaf is a presheaf with

locality if s,t € F(U) are two sections on U, and {U;} is an open cover of U s.t. s|U; = t|y, for all 7, then s =t.

gluing If 3{s;} on some open cover {U;} of U s.t. on all pairwise intersections they agree, i.e. s;|y,nv; =

v.nu;, then 3s € F(U) s.t. s

Sj U; = Si-

Example 1.4. Locally constant functions into any group G. We could also take C°(G) of continous maps to
a topological group G. Our most important example will be C°°(G) of smooth functions to a Lie group G.

We need a small modification on the definition of Chech cohomology. The maps need to be restricted to the
smaller intersection as well. The chain groups will be the product of the F(Uy,.. q,)’s. We are implicitely

using commutativity to be able to add together the maps in the boundary.

Remark 1.5. If G is an abelian group, we define H* (U, G|C°(G)|C>(G)) as before.

Remark 1.6. If U is an acyclic* cover, then H*(U,R) = Hyr(X,R).

Remark 1.7. Given a C° or C* group homomorphism G' — H, one gets maps H* (U, C*(GQ)) — H*(U,C*(H)).

If we have a SES of C? abelian groups 0 — G — H — K — 0, then we get a LES in cohomology.
Actually if the sheaf has partitions of unity, the homology is F'(X) in degree 0, and 0 everywhere else.

*for all ag ... an we have Uqyyg...q, either empty or contractible



1.2 Non-abelian Chech cohomology

Let G be a (potentially) non-Abelian group, let U be an acyclic cover. C°, C°° still makes sense.
We will define H°(X, F), what are the 0 cocylcles? In the Abelian case we have that ¢, is a cocycle if
balv.s — ¢8lu.s =0 Va, 8. This is the same as a global section ¢ € F(X), so H'(X,F) = F(X) even in the

nonabelian case.
Definition 1.8. phi, is a 0 cocycle if ¢, |v,, = ¢slu,,, or that qﬁagbgl = 1 on the appropriate set Uag.

In the H!(X, F) case some more interesting things happen. In the Abelian case 1 cocycles are maps U, — G

with the condition, that restricted to Usgy ¢py — ¢y + dap = 0. We generalize this now

Definition 1.9. Non-Abelian 1 cocycles are ¢35 : Ung — G maps, such that ¢ogpsy¢dya = 1, and we require
Jgaa = 1. These two conditions imply that g,5 = ggi

Remark 1.10. This is the same condition as in the Abelian case, we just swap vy to ary.

Now the 1 coboundaries. In the Abelian case two cocycles ¢ and ¢ are cohomologous iff ¢o5 — Yag = 0 fa,
ie. ¢ap — VYap = fz — fa.

Definition 1.11. We say that if ¢,¢ 1 cocycles are coohmologous if 3f a 0 cochain such that ¢.5 =
fobapf5™.

From here we define H'(X,F) = Z*(X,F)/ ~, which will be a pointed set. The base point is given by
Pap = 1.

Definition 1.12. f: A — B homomorphism of pointed sets one can define a kernel as the preimage of the

basepoint.

Fact: If 1 - G - H — K — 1 of possibly nonabelian groups, then we still get a LES on non-Abelian Chech
cohomology up to H'. It continues to H?(G) if G < Z(H). Note, that the boundary map from H° to H!

may be nonzero!

Excercise 1.13. X = RP? and take the defining S.E.S. of the spin group.

2 Second Lecture

2.1 Principal bundles

Motivation is vector bundles. Let £ =» X be such a gadget. E|y, can be trivialised over U, as U, x R™.
Over some U,s we have two trivialising maps ¢, and ¢g, which are linear isomorphisms on each fiber, so
qﬁagzﬁgl maps (x,v) — (z, gag(x)v) for some linear maps g3 dependent on z.

On triple intersections U,g, we have three trivialisations, and three transition maps going around. It is clear
that the composition of these three maps is the same as the identity by the commutativity relations of the
trivialisation, which gives us the cocycle condition.

Remark 2.1. A vector bundle £ = X induces a 1-cocycle. Moreover, isomorphic vector bundles induce the
same cocycle.

Pick a trivialisation of E and E’, call it U,, the isomorphism is 1, we get a map ¢, ¢!, which maps
(z,v) = (@, fo(x)v). If there are two trivialisations, by commutativity we get that g/,; = fagagfﬂ_l, which

we wanted.



Tétel 2.2. There is an isomorphism of pointed sets from the set of vector bundles of rank n over X modulo

isomorphism, and the first Cech cohomology with coefficients C*°GL,(R).

Definition 2.3. Let G be a topological or Lie group. A G-principal bundle is a fiber bundle P — X with a
C? or C* right action P x G — G that is fiber preserving and transitive on each fiber.

Remark 2.4. Each fiber is a G-torsor (has a free and transitive G action).
G is also a G-torsor with right multiplication.

Ezample 2.5. A circle is an S! torsor.
Excercise 2.6. A G-equivariant map of G-torsors is an isomorphism.
Corollary 2.7. A G-equivariant bundle map of G-principal bundles is an isomorphism.

We build a 1-cocycle from P — X. Over U, we trivialise the bundle. A local section gives 1 in that triviali-
sation. Now we construct the same cocycle, and we get that there are transition maps gog : Usg — G. The

same conditions will be satisfied in this case as well, so:
Tétel 2.8. There is an isomorphism of pointed sets from G-principal bundles over X mod isomorphism to
HY(X;C'G).

Ezample 2.9. For G = Zy and X = S* we have H' (S, C®Zy) = H'(S,Zs) = Z3. We know the 0 element is
the trivial bundle, the action interchanges the two copies of S*. The other one is the boundary of the M&bius

band, and the action again interchanges the two lifts.

Example 2.10. G = Z3 is the next example, again over the circle. H(S';Z3) = Z3, there are three bundles,

but the connected ones are only distinguished by the action!

Figure 1:

Excercise 2.11. Do the total spaces of nontrivial G-bundles need to be connected?



Now the case of GL,(R). From the previous theorems we know that the rank n vectorbundles over X, and
GL,(R) principal bundles over X are isomorphic. What is this isomorphism? In one direction, we construct the

frame bundle of F, replacing every fiber with its frames, i.e. bases of F,, i.e. linear isomorphisms R” — F,. In

n

the other direction, given a principal bundle P — X with structure group G L, (R) we construct P x ¢, r)R",
where we identify (pg,v) ~ (p, gv).

Excercise 2.12. What are GL} (R) principal bundles?
Excercise 2.13. What are O(n) principal bundles?
Excercise 2.14. What are SO(n) principal bundles?

Remark 2.15. A C? homomorphism G 2, H induces a pointed set homomorphism H(X,C’G) — H'(X,C"H).
We can do from P — X to P xg H — X, where G acts on H as gh = ¢(g)h.

Remark 2.16. If H < G is a deformation retract of the Lie group G, then H!(X,C*G) = HY(X,C>*H).
Excercise 2.17. What are GL,(C) principal bundles?

Excercise 2.18. What are C* principal bundles?

Excercise 2.19. What are S' principal bundles?

Excercise 2.20 (*). Show, that H'(X,C*S') = H*(X,Z).

3 Third lecture

We show the last excercise.

Proof. Use the exponential exact sequence
0—-Z—->R—-St—1

Were the first map is 27, the second is e'. Passing to the sheaves C°° with these groups we get a long exact

sequence of homologies. The H part is exact, we get
0— HY(X,C®Z) — H'(X,C*R) — H'(X,C>§") — H*(X,C®Z) — H*(X,C*R) — ...
We know that C*°R has partitions of unity, and we get the desired isomorphism. O

Denote this isomorphism by c. From the Snake lemma starting from a cocycle gop : Uy — S' with the

cocycle conditions. Lift these functions to R. The conditions change to gag + Ggy + Gy = 27 K. Pull it back

to Z to see where is its image under the connecting homomorphism c. Cqpy = %.
Remark 3.1. H'(X,C>S') is in bijection with complex line bundles over X modulo isomorphism. This is

true because GL;1(C) deformation retracts to S1.

Remark 3.2. H'(X,C®°S%) is a group. Multiplication is given pointwise. Given two line bundles corresponding
to two elements of this group the element corresponding to the product element is the tensor product of the

line bundles.



Excercise 3.3. ¢ is a group homomorphism, an thus an isomorphism of groups.

Fact 3.4. It is natural. This means, that given f : X — Y, we get an induced map H'(X,C>®S') —
HY(Y,C>81) and H (X,Z) — H'(Y,Z), and ¢ commutes with these maps.

We deduce that ¢ = +e¢;.

Excercise 3.5. ¢ = ¢

3.1 Spin structures

Motivation: take a 1-cocycle (gap) defining a vector bundle E — X of rank n. GL} (R) < GL,(R), if we can
lift the gop to this (or some) subgroup, we call this a reduction of the structure group. In the GL; (R) case
this means that the bundle is orientable. SO(n) is a strong deformaton retract of GL,(R), so we can always
lift. This corresponds to a choice of Riemannian metric. Since 7 (SO(n)) = Za, one can ask if there is a lift

Spin(n) — SO(n) to the universal cover.

Remark 3.6. SO(1) = {x}, SO(2) = S, SO(3) = RP3. The last one is seen be either

o 53 — isom(imH) where q — (v — qug), S® is taken to be the unit length quaternions. The kernel of
this map will be +id.

e RP3 is a 3-ball of radius m with antipodal points of its boundary identified. Every vector can be

interpreted to be a rotation around that axis, the angle defined by the norm of the vector.
For n > 3 we really have 71(SO(n)) = Zs.

Definition 3.7. For n > 2 we define Spin(n) as the universal (double) cover of SO(n). A Lie group of
the same dimension. The group structure is given by the universal property of covering spaces by lifting the
multiplication at the point (e, e) — (e).

For n = 2 Spin(2) is defined to be S! corresponding to the map S* 2 S Forn=1 Spin(l) = Zs — {}.

Remark 3.8.
1 — Zy — Spin(n) — SO(n) — 1

Definition 3.9. Let £ — X be an orientable vector bundle of rank n, with associated principal bundle
Psom) — X. A spin structure on E is a pair (Pspinm)— — X, H) where H : Psyinn)/Z2 — Pso(n) is
an isomorphism of SO(n) principal bundles. These are taken up to isomorphism of pairs. Two pairs are

isomorphic if there is an isomorphism ® : Pgpi,n) — P ) which commutes with H and H’ and the

Spin(n
factorisation maps.*

Remark 3.10. Actually Pspin(n) — Pspin(n)/Zz2 is a principal Z; bundle. This happens because Z, is a closed
subgroup of Spin(n), this does not happen always!

Definition 3.11. Spin(E — X) is the set of spin structires on E. Spin(X) := Spin(TX — X).
Remark 3.12. There is a map ¢ : Spin(E — X) — H'(X,C>Spin(n)). It is not surjective in general. In the
target you hit only cocycles which project to gaps for Pso(y,)- ¢ is not injective in general either.

Example 3.13. There are two spin structures on the trivial principal SO(n) bundle on RP? but there is onl
one Spin(n) bundle lifting 71 : RP3 x SO(n) — RP3 for some n.

*the only thing that makes sense, really




3.2 Spin° structures

Not all simply connected manifolds are spinnable :( You can lift PgOX( 4 to Pspin(a) away from a surface S.
The boundary of a point of the normal bundle of S has a framing, which either winds around, or it does not.
If it has 0 winding, then we would be able to extend, so we have the second case. Complex numbers would
help us unwind this rotation, and extend the trivialisation through S.
Definition 3.14. Spin(n) x U(1)
e/ Spin(n) x
Spin®(n) := BTV

Remark 3.15.

1—=U(1) = Spin°(n) —» SO(n) — 1

1 — Spin(n) — Spin(n) - U(1) = 1

Excercise 3.16. Spin®(n) is a pullback of Spin(n + 2) of the diagram SO(n) x U(1) — SO(n + 2) «
Spin(n + 2).

Definition 3.17. Let £ — X be an orientable vector bundle of rank n, with associated principal bundle
Psomy = X. A spin® structure on E is a pair (Pspinen)— — X, H) where H : Pgpine(n)/U(1) = Psom)
is an isomorphism of SO(n) principal bundles. These are taken up to isomorphism of pairs. Two pairs are

isomorphic if there is an isomorphism @ : Pgpine(n) — P which commutes with H and H’ and the

Spinc(n)
factorisation maps.

Remark 3.18. Actually Pspine(n) — Pspin(n)/U(1) is a principal U(1) bundle. This happens because U(1) is

a closed subgroup of Spin®(n), this does not happen always!

Tétel 3.19. If Spin'®) (E — X)) # (), then there is a free and transitive action of H*(X,Zs) or H(X,C®U(1)) =
H?*(X,Z) on Spin®(E — X).

4 Fourth lecture

4.1 ACTION

Definition 4.1. A spin(® structure on Psom) — X is a Zy or U(1) principal bundle on Pgo(,) such that

the composition is a spin(®) principal bundle on X up to isomorphism (in the correct sense).

Proof. H = Zy or U(1). a € H(X,C>H) will be represented by [Py — X]. Given a spin(®) structure
P — Pso(n) — X we act by a as Py Xy P — Pso(,) — X by projecction onto the second factor.

We need to check if it is well defined. Given Py — X isomorphic to Py, with given isomorphism ¢ its an
excercise to construct an isomorphism between the associated bundles 15H xg P — Py Xy P by taking the
produt fiberwise with the identity.

We need to check that it is free. Suppose that P g Py x g P are isomorphic with given isomorphism ®. We
construct a section. Take ®(p) = (¢, A - p) = (g\,p) we can assume that the second component is always p,
and can define ¢(p) = g\. Consider ¢(p€), by

(¢(p), p€) = (6(p), p)§ = ®(P)§ = B(p) = (H(p€), PE)



we get that phi(pf) = ¢(p).

Thus ¢ descends to a map ¢ : X — Py, which is a section of the H principal bundle, thus Py is trivial, and
the action is free.

Finally transitivity. P — Pgo(n) — X and another structure P’ — Pgo(y). Define Mor(P, P’) to be the fiber
bundle on X whose fibers are the spin®) equivariant maps P, — P, commuting with the bundle projections.
Mor(P, P') is an H principal bundle over X. The action is given by pre, or postcomposition and it does not
matter which, since the maps are equivariant. Now take Mor(P, P') xg P — P’ and (f,p) — f(p) provides

an isomorphism. O
We can also think about this setup in terms of cocycles.
Lemma 4.2. Fiz a 1-cocycle Gog for Pso(n), then

1. every spin or spinc structure on Pso(y,) can be represented with a cocycle projecting on gags

2. assuming this, two spin/spinc cocycles projecting on the same SO(n) cocycle define the same spin/spinc
structure iff Afo : Uy — H such that §op = fagaﬁfgl.

Proof. For the first point consider gog : Uy — spin(®) (n). Taking the isomorphism from the definition we
get pro Jog = lagaglgl for some SO(n) O-cochain I,. Lift this arbitrarily to Spin(®(n) to l,. Now define
Gnp = lagapls- Taking its projection we see, that g, ; projects to gas as required.

For the second part if gog = faﬁaﬂfﬁ_l then the spin/spinc structures are the same because these elements
project into the same element, f, is in the kernel of the projection from spin/spinc to SO(n). In the other
direction if g, 5 andg, give the same spin/spinc structure, then Jas = faGasfs ! where f, : Uy — Spin()(n)
are chosen from an isomorphism after trivialisation. By assumption the two cocycles project to the same

element, from this we want to conclude that f, is in the kernel. O

Corollary 4.3. The action H'(X,C®H) x Spin'®) — spin(®) is given by the pointwise products of the

representing cocycles. This action is free and transitive.

Remark 4.4. This is the same action as we had for principal bundles. One can compute the transition

functoions.

Remark 4.5. This action is Abelian.

5 Fifth lecture

5.1 Chern class

Consider
1 — spin(n) — spin(n) - U(1)/{£1} =U(1) — 1.

This gives a LES
HY(X, spin(n)) — H(spin(n)) % HY(X,U(1)) = H*(X;Z)

where the isomorphism is given by the first Chern class.



Definition 5.1. s € Spin°(E — X) determines i(s), a spin°(n) principal bundle. ¢;(s) is defined to be

c1(det(i(s))).

If i(s) is represented by [Jap,a,,), then deti(s) is represented byA2 ;.
Tétel 5.2. ci(s+h) = c1(2) + 2h, where s € spin®(E — X) and h € H*(X,7Z).

Proof. i(s) = [gap, Aas), then i(s + h) = [gap, Aaplas] Where Iz = h € HY(X,C®U(1)). O

5.2 spin vs spin®

Remark 5.3. The inclusion map j : spin(n) — spinc(n) induces a map Spin(E — X) — Spin®(E — X).
This is constructed as follows. Given Pgpi, — Pspin/Zo i{% Pso(n) — X we can create Pspin X gpin SPIn® —
Pspin X spin Spin®/U(1), this latter space is canonically isomorphic to Pspi,/Z2 by the inclusion, we declare

this to be the imgae of the bundle under j.
Tétel 5.4. s € Spin®(E — X) is in the image of j iff c1(s) = 0.

Proof. First [Pypine(n)] € H' (X, Spin®(n)) is induced by a Spin principal bundle Py, € H*(X,C° Spin) iff
HY(X,C>Spin) — H*(X,CSpin®) det, HY(X,C>U(1)), if the image is zero under the determinant iff it
is trivial iff it has O Chern class.

Then given s € spin®(E) is a Pspine — Psom) — X, and we know, that there is a spin bundle, such that
P’ := Pypin, Xspin spin® — X is isomorphic to Pspine — X. Call this isomorphism ®. P’/U(1) is isomorphic
to Pso(n) by the commutativity of our diagram. O

Tétel 5.5. j : Spin(E — X) — Spin°(E — X) is modelled over 3 : H'(X,Z) — H*(X,Z). This means,
that j(s+ h) = j(s) + B(h). Here [3 is the Bockstein map induced by 1 — Z — Z — Zs — 1 on homology.
Proof. Let gop represent E — X and suppose that s = o is a lift to spin(n). If h = (Aap) € H (X, C*Zy)

then s + h is represented by (Gas - lag) With las = €™ 2. We pass it to the map j : Spin — Spin. j(s) is
represented by jogas and j(s+h) is represented by (j(Gag-lag)) = [§as lags 1] = [Gas, lag] = j(s)+c1([lap])-

Our goal is now to check B(Aa5) = c1([e™=#]). We get a commutative square

4
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Figure 2:

Take integral lifts A\ns its boundary is Aag + Agy + Aya. We can lift to M = bapy. Consider
mAap € R. The coboundary will be mAog + Agy + Ay, and pulling back to Z coeflicients we have to divide

by 27, so the two connecting homomorphisms are the same. O



Example 5.6. S' x S? has 2 spin structures and Z spin® structures. Both s, s’ ~ .

MISSING

6 Seventh lecture

6.1 Functoriality

Let f: X — Y be a smooth map. We can pull back smooth bundles, and similarly we can pull back £ — X
if it is a G-bundle. On the levels of cocycles we can pull back an acyclic cover U, of Y to some cover f~1(U,)
of X. This will not be acyclic usually, but contains some Vg acyclic cover of X. If g, is a cocycle then
(gap © f)ap is a cocycle. We get a map f* : H(Y,C*G) — H'(X,C>G) of pointed sets.

Everything mentioned thus far extends to spin and spin® structures as well: Take P, — Psomn) — Y,
and pull back the SO(n) bundle first by f, and pull back the spin/spin® bundle using the "upper" side of the
square (or directly X — Y < P, (), which gives the same). This way we get a spin or spin® structure over
X from Y, and since we can pull back morphisms, we get a well defined map between the Chech cohomologies.

The induced map is (z,p) — (z, h(p)).

| P~ -sﬁ\a\
E;‘L}D V
A
p@u@) L— ‘C PSOC”)

l

v =8
Voo X

Figure 3:

Remark 6.1. If X™ — Y™ is an immersion of n-dimensional manifolds, then f*TY = T X. This gives a map
Spin¢(Y) — Spin®(X). The actions of the corresponding H? groups are also related by the pullback map of

cohmologies.

Tétel 6.2. For f: X — Y a smooth map and E — Y a vector bundle of rank n, the map f* : Spin®(E) —
Spin®(f*E) satisfies f*(s+h) = f*(s) + f*(h) for h € H*(Y;Z).

Excercise 6.3. Can check it using Zo or U(1) principal bundles, or by cocycles.
Excercise 6.4. ¢1(f*(s)) = f*(c1(s)) (should be immediate from the cocycle description, or a line bundle

computation).

6.2 Restriction map

There is a square If n = 2, then the map is reduction mod 2, and the inclusion of S! into S3.



LoD

Sptrw ("?> \\\_/’5 g/\;n [wﬂ

| |
v Y

So(w) —> Colwtid

Figure 4:

Take the product of the square with U(1), and we get something that passes to the quotient by Z, a
similar square with Spinc(n) and SO(n) x U(1). The maps are inclusion and identity, and the factor map,

determinant.
Tétel 6.5. i induces a map i, : Spin®(E — X) — Spin°(E @R — X).
Given P — Pgo(ny — X the map induces P X gpine(n) Spin®(n + 1) = Pso(m) Xsom) SO(n +1) — X.
Remark 6.6. c1(s) = c1(i«(s)) because of the square, det is the same on both sides.
e i, is well defined? yes, check is homework
e on cocycles gog — (40 gap)

e i, commutes with the action of H*(X,C*H) for H € {Zs,U(1)}. Check that twisting by an H-principal

bundle commutes with 4., or do it on the cocycles
All of this gives that i, is an isomorphism of H'(X,C°H) torsors.
Tétel 6.7. Let Z — X be a smooth map that is a framed* immersion. Then the composition
Spin(TX — X) L5 Spin®(TX|z = TZ ®R* — Z) — Spin®(TZ — Z)

is called the restriction map. Denote this composition r. This is a map of pointed sets, and is modelled over
the map f*: HY(X,C®H) — HY(Z,C*H), r(s+ h) =1r(s) + f*(h).

Remark 6.8. If X" is orientable, then 0X is oriented and framed, so we get a restriction map.

Observe, that if Z"~! — X" both orientable, then Z is framed. In paticular we have a restriction map.

6.3 Alternative definition

Suppose n > 3, then H!(SO(n),C®°H) = Zs,i.e. there is a unique nontrivial Zy or U(1) bundle, denoted
Spin(n) and Spin(n).

Definition 6.9. A spin® structure is an element of H 1(Pso(n), C*° H) that restricts to the nontrivial element

on each fiber of Pso,) — X.

The action in this definition is even simpler to describe now. Take 7 : Pso(,) — X, some cocycle in
HY(X,0>H) acts as follows: pull it back to the Pso(n) bundle, and multiply the cocycles.

*v(Z C X) is trivialised

10



7 Eight lecture

7.1 Classifying spaces
Let G be a topological or Lie group

Definition 7.1. A Universal bundle ng : EG — BG is a G-principal bundle, with BG weakly contractible
(i.e. mp(BG) = 0). We call BG the classifying space for G.

Tétel 7.2 (Milnor). For every group G a classifying space exists.

Proof. The join of two spaces is defined as:

XY = (X xY x [0,1)){((2,y,0) ~ (2',4,0), (z,y,1) ~ (2,9, 1))}
Now EG = G x G x.... This space has an obvious GG action, the factor will be BG. O
Ezample 7.3. BSO(n) = Gr™(n,00).

Tétel 7.4. Let ng : EG — BG be a universal G-principal bundle, then for any G-principal bundle m : E — X
there exists a continous function f : X — BG such that f*EG = E. Moreover if ff EG = F;EG iff f1 is

homotopic to fs.

Proof. We choose a CW decomposition of X and apply induction. Suppose f|5,EG = E|sp. Since D is
contractible E|p = D x G. Restricting this to the boundary we get a map from the boundary to EG. Since
EG is weakly contractible, this map extends to the whole of D.

Similar reasoning shows the homotopy part. O

Fact 7.5. A group homomorphism ¢ : G — H induces a map By : BG — BH.
From EG — BG we canconstruct an H principal bundle EG xg H — BG, and take its classifying map
BG — BH for By.

Remark 7.6. A vector bundle or SO(n) principal bundle corresponds to a map f : X — BSO(n).

Definition 7.7. A spin or spin® structure on f is a lift of f to BSpin(n) or BSpin®(n).

/ Poocy —— o Lol (%)
O

]Pgofh] - — [M
/\/E gﬁ )v— - ’3 f!) ,’V\UB(//\>
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VAN Y

Figure 5: Equivalence of the two definitions
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Definition 7.8. A Spin® structure on £ — X is a complex line bundle L — X together with a spin structure
on £ & Lg.

Proof. From (f,g) : X — BSO(n) x BU(1) we can push forward to BSO(n + 2) to get the classifying map
of E @ Lg. A spin structure on this bundle is a lift of this map to BSpin(n + 2), and we can just pull back

to BSpin®(n) and vice versa. O

Definition 7.9. A spin® structure is an almost complex structure is an almost complex structure on sko X

that extends to sks3X up to homotopy.
Definition 7.10. An a.c.s.is a J : E — E map of vector bundles with the condition, that J o J = —idg.

Proof. An a.cs. is a lift of f : X — BSO(2n) to BU(n). Every unitary matrix induces an orthogonal
transofrmation on the underlying real space U(n) — BSO(2n), and this induces the map BU(n) — BSO(2n),

over which we want to lift.
Fact 7.11. this map lifts to BJ : BU(n) — spin®(2n)
Fact 7.12. The homotopy fiber of Bj is 2-connected

We can lift the map s to the 3 skeleton because the fiber is 2-connected. Given homotopic maps s,s’ : X —
BSpin©(2n) we can lift the whole homotopy between them to the 3-skeleton of X x I = skoX X I.
Other direction??? O
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8 Ninth lecture

8.1 Other definitions of spin structures

Recall, that a spin structure on Pgo(y,) is an element s of Hl(PSO(n),Zg) such that Vx € X the map
iz : SO(n) = Pso(n) (fiber inclusion) such that %(s) is the nontrivial element of H*(SO(n),Zs) for n > 2.
The action of H(X,Zs) is by pullback and addition.

Tétel 8.1. A spin structure on X is a trivialisation of Pson) on the 1-skeleton ski(X) that extends to the
2-skeleton, considered up to homotopy (n > 3).

For principal bundles a trivialisation is the same as a section. Given s : X — F for some G-bundle E; we

define s(z) = 1¢, and this trivialises the bundle.

Proof. Take two sections s1, s : ska X — Pgo(n)- Define s1/so € Hom(m1 (X, Z3)). Since s1(x) = so(x) - g(z),
we get a map g : skoX — SO(n), and Hom(H(X),Z2) = HY(X,Zs).

e We need to check, that s; is homotopic to ss iff s1/s5 = 0.
e The H'(X,Z,) action is transitive. For this we need to check, that defining s; = s1/s2 - s2 works

Define a map H'(Pso(n), Z2) > Spin(X) — Triv(Psom)|skex )/ ~- Over each 1-cell we have two choices to

lift the loop to Pso(n), one of them gives 0 under ¢ : 71 (Pso(n)) — Zo.
22977 ]

8.2 Euler structures

Eul(X™) with x(X) = 0 are an H;(X,Z) torsor. If X? is closed, then H(X) = H?(X) by Poincaré duality,
and we get that Spin®(X) = Eul(X).

13



Definition 8.2 (Combinatorial Euler structure). Suppose, that A is a CW complex with geometric realisation

X". A singular 1-chain 6 on A is an Fuler chain if
0= (-1,
eccells of A

*

, where x, is the "center"* of the cell’ e. Two Euler chains are homologous if they differ by a boundary of

some 2-chain. Ful(A) = Euler chains/ ~.

Definition 8.3. v, w non-singular vector fields tangent to X, a connected closed manifold. We say that v ~ w

are homologous if 3D™ C X™ such that w|x\ p is homotopic through non-vanishing (nowhere 0) vector fields

to U|X\D-
Vect(X) is defined as the set of non singular vector fields up to this homotopy. These are called wvectorial
Euler structures. Vect(X) is a torsor over Hy(X,Z) (if x(X) = 0).

9 Tenth lecture

Tétel 9.1. vect(X) is an Hy(X,Z) torsor.

We need some obstruction theory (cf. Steenrod). Let v,w be nonsingular vector fields on X, i.e. sections
of SX — X of the unit sphere bundle of the tangent bundle. Since the fiber is n — 2 connected, v can be
homotoped to w on sk, _2X. There is an obstruction class d(v,w) € H" 1 X, m,_1(S"71)).

Tétel 9.2 (Steenrod). v is homotopic to w on skn_1X iff d(v,w) = 0.

v and w point in opposite directions on a 1-submanifold of X generically. Restricting to a small ball intersect-

ing this 1-dimensional submanifold, we get a map ¢, : "~ — 5"~ We take the 1-cycle % := " (dege, ),

where the sum runs over connected components of the 1-manifold {v = —w}. This cycle is equal to
PD(d(v,w)).
Tétel 9.3 (Steenrod). 2 + 2 =12

Now we can prove theorem 9.1

Proof. For h € H1(X,Z) and [w] € vect(X) we define [w] + h as the class of a vector field w such that £ = h.
How do we construct such a w? Assume that w points in the opposite to h along h. This can be achieved by
a small homotopy. Using Reeb turbulance

Well definedness: if w;, wo are homotopic on sk,,_1 X and they pairwise have the same obstruction class with
some v1, vg, then we use Steenrod’s theorem Z—; =h+0— h =0, thus v; is homotopic to v,.

Action is transitive by definition, the obstruction class gives the element required.

It is also free, since if v is homotopic to w, then their obstruction class vanishes, thus they represent the same

class. O

Tétel 9.4. Given a manifold X, equipped with a handle structure A, then there is a map Eul(A) — vecet(X),

which is an isomorphism of Hy torsors.

*some point in the cells interion
fthe sum runs over cells of every dimension, that’s why |e| is there
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Proof. Define the map, let # be an Euler class, pick a Morse function. 8 connects critical points of opposite
parity, call the tubular neighborhood of this curve v. On dv the Morse function has degree 0, and we can
extend the gradient vectorfield inside v in a nonsingular manner.

If [0 —n] = h € Hi1(X,Z). We have 3 vector fields, V f, vg,v,. Take a neighborhood of a critical point p, here
degVd = 1. We can modify in a tubular neighborhood to get a degree 1 vector field representing v—, which

is also 0 — n... O

Definition 9.5. A normal Euler structure on X" a cohomology class ¢ € H"~}(SX,Z) that restricts to the
canonical*generator of H"1(S"~! Z) on each fiber. nor(X) denotes the set of normal Euler structures on
X.

Tétel 9.6. nor(X) is an H" (X, Z) torsor.

Tétel 9.7 (Leray-Hirsch). F' — E — B a fiber bundle such that H*(F) is freely generated and 3c; € H*(E)
such that i%(c;) is a basis for the cohomology of the fiber. Then H*(F)® H*(B) — H*(E) is an isomorphism,
where the map is i%,(c;) @ by — ¢; Un*(b;).

Proof of the theorem using Leray-Hirsch. If £ is a normal Euler structure, then {1, £} are global classes, which
restrict to a basis on each fiber. This means, that H"~!(SX) elements can be represented as 1@b+E@n- 15+ (x)-
Normal Euler structures are classes where n = 1, the action of H*~! is by pullback and addition, this leaves
the n = 1 condition intact.

We can also give a more abstract definition of this action. (£,b) — & + 7*(b). Since thecomposition of fiber
inclusion andbundle projection is the constant map, we see that the pullback restricts as 0 on the fiber, giving

what we wanted. From Leray Hirsch however we get more, namely that this action is free and transitive. [
Tétel 9.8. IH(X,Z) equivariant isomorphism between vect(X) and nor(X).

Proof. Suppose that [v] € Vect(X), sov: X — SX defines a submanifold Xy = I'mv C SX. [3,] € H,(5X).
The Poincaré dual of this surface is in H""!(SX), and we will prove, that it is a normal Euler structure.
Consider a point x € X, the fiber over it and the fiber inclusion 4. i*(PD([%,])) = PD([i~*(%,)]). Since the
section intersects the fiber in exactly one point, we get the canonical generator as required.

Now for equivariance. For a € H,,(SX), PD(a) is the cohomology class represented by ¢, € C"~1(SX) such
that < ¢4, >= aNe for each n— 1 cell e. (We are implicitly assuming a CW structure on SX, induced from
such a structure on X.) Let v =w + h, i.e. £ =h € H{(X) = H" }(X).

w

O

*note, that this needs X to be oriented
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