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1 Review: Morse homology

Suppose X a smooth manifold, we can talk about f : X → R being smooth by the chain rule. We can talk
about df : TX → R a 1-form.

Definition 1.1. x ∈ X is a critical point, if df |x = 0. In a given chart we can construct the Hessian by
considering the second derivative matrix. f is a Morse function, if at every critical point this Hessian is
nondegenerate

Theorem 1.2. The Morse functions are dense in the space C∞(X,R) on a compact smooth manifold X.

From a Morse function one can determine the Homology of X. Every critical point of a Morse function admits
an index by computing the dimension of the negative definite subspace of the Hessian at the point.

Theorem 1.3. Suppose X to be compact without boundary dimension n, f a Morse function on X. Then∑
(−1)ici = χ(C) where ci denotes the number of index i critical points.

Sylvester’s theorem has a topological conterpart, Morse’s lemma, stating that if x is a Morse critical point,
then there are coordinates about x such that in those coordinates f = −x21− ...−xind(x)+x2ind(x)+1+ ...+x

2
n.

There are multiple versions of homology that can be defined, e.g. singular, CW, and now we do Morse
homology. The chain groups are generated by the index i critical points in each rank. The chain maps are
a bit more complicated, first we fix a metric, which gives us ∇f by dualising the 1-form df . This vectorfield
vanishes exactly at the critical points. For the coefficients consider q, an index i and p an index i− 1 critical
points and the set M(p, q) = {γ : R → X} smooth curves which converge to q at −∞ and p at ∞ with the
added assumption that dγ/dt = −∇f |γ(t). There is a natural R action by reparametrisation γ(t) 7→ (γ(t+s))

giving as another of these flowlines, so we factor out with this relation. We denote M̃ =M/R. We want to
count the points of this space, which would be great if it is a compact 0-dimensional manifold.

Theorem 1.4. For a generic choice of the metric g the space M(p, q) is a smooth manifold of dimension
ind(q)− ind(p).

If p ̸= q, then the R action is free, so the quotient is a manifold of dimension ind(q)−ind(p)−1. Compcatness
is a bit trickier, we need to consider broken trajectories from q to p, which means a sequence of flowlines and
endpoints beginning with q and ending with p, but also connecting to intermediate critical points xi. Addin
broken flowlines we get a compact space. For points with neighboring indicies this compactifying set is empty
for a generic metric, thus the moduli space is already compact.
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We want to see that the map we get in this way is a chain complex. Take a point q of index i, z a point
of index i − 2, what is the coefficient of z in the image of q? M(q, z) is a 2-dimensional space, factoring we
get a 1-dimensional space. This space may be non-compact, if there are critical points with index i − 1 in
between. These broken trajectories correspond bijectively to the compactifying points of the space M(z, q).
This is done by cutting off the part of the curve which breaks the trajectory and finding a nearby sequence
of actual trajectories converging to the broken trajectory. Moreover there is a neighborhood of the broken
trajectory which is of the form (0, ϵ], thus there is no component of the space M(p, q) which is of the form
S1 \{p}. Thus since the compact stick has two ends we get that mod 2 there are 0 broken flowlines between
q, z, thus we really get a chain complex.

Theorem 1.5. The homology if this chain complex is just the singular homology of X with Z2 coefficients.

2 Second lecture

Y is always an oriented closed 3-manifold. Note, that 3-manifolds have a unique smooth structure! To picture
these, begin with an oriented surface Ag and promote it to a 3-manifold Σ× [−1, 1].

2.1 Handle attachment

Dn is the unit disc, an n-dimensional k-handle is Dk×Dn−k. When X is an n-manifold with ∂X an n−1-dim
manifold, we attach a k handle to X by considering an embedding ϕ : ∂Dk × Dn−k → ∂X. This can be
encoded by ϕ0 = ϕ|∂Dk×{0} and a framing, i.e. a trivialisation of the normal bundle of the image of ϕ0.
Since we want to present the manifolds, this information is only considered up to isotopy. The difference
of 2 framings is an element of πk−1(GL(n − k,R)) = πk−1(O(n − k)), so after fixing one, we can describe
every other framing by an element of this group. Moreover if k ̸= 1 we are only interested in the connected
component of the identity, so πk−1(SO(n− k)). For n = 2, 3 and 1 < k ≤ n only π1(SO(2)) is nonzero, its Z.
For the k = 1 case we have two choices, and we always choose the orientable gluing, so for orientable manifolds
it is unique as well. Consider β1...βn disjoint curves in Σ such that Σ \ ∪β is connected and planar (admits
an embedding into the plane) (this happens when n = g and < [β1], ..., [βn] >) are linearly independent). In
this case after handle attachment the boundary will be S2, and the self-diffeomorphisms of the sphere form a
connected group, so we can attach a ball uniquely. This is seen by a simple Euler characteristic computation,
each surgery, i.e. handle attachment we remove an annulus from the boundary, and add two discs, i.e. raise
χ by 2. Likewise we draw the α curves.

Theorem 2.1. Σg a genus g surface β1, ..., βg disjoint closed curves in Σg × {1} and α1, ..., αg similarly in
Σg × {0} encode uniquely a closed 3-manifold Y . We can superimpose the two sets of curves onto the same
copy of the surface Σ we get a Heegaard diagram.

To draw these we draw circles, which get glued together along a reflection.

Theorem 2.2. Every Y closed oriented 3-manifold can be presented by a Heegaard diagram.
The diagram is unique up to isotopy handle slides and (de-)stabilisation.

One can obviously isotope the α, β curves and the manifold does not change. For handle slides take two α or
two β curves, take a pushoff∗ of α1 and connect sum this pushoff with α2. This is an isotopy the gluing map

∗inside Σg
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of the corresponding handle. Finally stabilisation is a connected sum of the surface Σ with the torus, where
α is a meridian and β is a longitude (this diagram represents the sphere).
Only S3 has a genus 0 diagram. If g = 1 we get lens spaces (and S2 × S1). Usually we pick the α curves to
be standard, and picture the β curves relative to them.
Suppose K ⊂ S3 is a knot, i.e. the image of a smooth embedding of the circle. Assume that K is framed,
∂νK = T 2 ⊃ µ and the framing gives us the longitude λ, so this torus gets trivialises as an S1 × S1. Given
p/q ∈ Q ∪ {∞} with (p, q) = 1 (1/0 =∞). Yp/q(K) = Y \ νK ∪ϕ D2 × S1 where ϕ send ∂D2 to pµ+ qλ.
Heegaard diagrams can encode not just manifolds, but knots inside those manifolds as well. Take two points
w, z ∈ Σ \ α \ β. The complement of the αs is connected, so we cann draw a curve between z, w in Σ \ α and
similarly there is a path from w to z in Σ \ β. To get an embedded curve we push the first arc "down" and
the the second arc "up" into the corresponding handlebodies.
Given a knot in S3, project it onto a plane. Take a small neighborhood of this projection in R3. Take the
regions of the projection to be the alpha curves, i.e. the boundary of the intersection of this thickening with
R2 except for the "outside" large curve. The β curves are attached to the crossings. This will give us g − 1

many β curves. The last β cuve will be a meridian, with z and w on the two sides of it.

Figure 1: How to force the crossings with the β curves

Given Y ⊃ K given by a doubly pointed Heegaard diagram (Σ, α, β, z, w) and associate to it

(Symg(Σ),×α,×β, {z} × Symg−1(Σ), {w} × Symg−1(Σ)).

The product of the α and β curves gives us tori in the manifold Symg(Σ).

Homework 2.3. Symg(CP 1) = CP g.

3 Third lecture

Note, that if α ⋔ β, then the tori ×α ⋔ ×β as well. We define from this data ĈF to be the vector space
over Z2 generated by the (finitely many) points Tα ∩Tβ . The module CF− is generated by the same set over
Z2[u], and a third one CF generated over the power series ring Z2[[u]].
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We specify now the boundary map, defined to be a module morphism with the coefficients < ∂x, y > for
x, y ∈ Tα ∩ Tβ .
Suppose thatM is a 2n-dimensional closed oriented manifold, L1, L2 two transversely intersecting n-dimensional
submanifolds.

Definition 3.1. ω ∈ Ω2(M) is symplectic if dω = 0 and ωn is a volume form for M .

Example 3.2. R2n with coordinates x1, y1, ..., xn, yn. We can take ω =
∑
dxi ∧ dyi to be a symplectic form.

In fact locally every symplectic manifold has this form!

Assume L1, L2 to be Lagrangian, which means that ω|Li
= 0. Note, that [ω] ∈ H2(M ;R) and also [omega] ∈

H2(M,L1 ∪ L2;R).
The idea of Floer is to associate a chain complex to (M,L1, L2, ω), generated by L1 ∩ L2, analogously to
Morse homology. Take V = {γ : I → M |γ(0) ∈ L1, γ(1) ∈ L2}, this will be our manifold. TγV consists
of vector fields along γ so that v(0) ∈ TL1 and v(1) ∈ TL2. For the Morse function, assume ω = dα for
some form α (allowing M to be non-compact, since this cannot happen in the compact case) i.e. (M,ω) is
exact symplectic. Further assume that L ⊂ (M,ω) is an exact Lagrangian, i.e. α|L = df . A : V → R will be
γ 7→ f1(γ(0))− f2(γ(1)) +

∫
I
γ∗(α).

• The critical points of A are in 1-1 correspondance with L1∩L2 (the constant paths at the intersections)

• We have to figure out gradient trajectories, so fix a metric on M , which induces a "metric" on V by
< v1, v2 >V =

∫
I
< v1(s), v2(s) >M ds

Remark 3.3. Given ω and a metric on a manifold plus a compatibility condition we get an almost complex
structure J on M as well.
Secondly the gradient flow equation C ⊃ R × I → (M,ω,L1, L2, g, J) says that u has to be pseudo-
holomorphic.

Now we leave the motivation behind and return to our original Lagrangian Floer setup. Given (M,L1, L2, ω)

choose an a.c.s. J such that ω(X, JY ) is a metric. Then consider CF (M,Li, ω, J) = ⊕RL1∩L2
< x > where

the ring R is fixed. Then ∂ will be an endomorphism of this ring which should count

#{u : R× I →M : lim
t→∞

u = x, lim
t→−∞

u = y, u(0, t) ∈ L1, u(1, t) ∈ L2, du ◦ i = J ◦ du.

But! there is an R action on these maps, which we mod out by. Moreover, forgetting about the pseudoholo-
morphic part of the requirements the maps satisfying the boundary conditions fall into homotopy classes.
We prefer to consider the u maps to have domain the unit disk with two points removed from the boundary
D2 \ {(0, 1), (0,−1)}, since this is conformally equivalent to the strip.

Remark 3.4. The dimension ofM = {u : R× I →M |..., [u] = ϕ} is well defined, where ϕ ∈ π2(M,L1, L2) is
fixed.

Remark 3.5. There really are multiple homotopy classes,we can connect sum with a sphere representing some
homology class.

Definition 3.6. dimM = µ(ϕ) is called the Maslow index.
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Now we can define the boundary map

∂x :=
∑
y

∑
ϕ:µ(ϕ)=1

#{u : R× I →M |lim..., PDE, [u] = ϕ}/R · y.

We apply this to Symg(Σg) =M for g = 1 we know that it has no second homotopy, so its easy to see that
no sphere mentioned in Remark 3.5 exist. Sym2(T 2) is a torus bundle over the torus, applying this one can
get that Sym2(Σ2) = T 4#CP 2. This has second homotopy Z∞. After that Symg(Σg) has second homotopy
Z.
Compactness was problematic even in the Morse-theory case, here more things can go wrong, not just one
type of broken trajectories. We can have 1-dimensional submanifolds of the strip, either from one boundary
component to the other, or from one boundary to itself, or a circle inside the strip. The first type will
correspond to broken trajectories. The second picture corresponds to "boundary bubbles", i.e. discs with
bondary completely on one of the Lagrangians, and the third one corresponds to the far away spheres of
Remark 3.5.
Floer’s theory was that if π2(M) = 0 (no sphere bubbles) and π2(M,L1) = π2(M,L2) = 0 (no boundary
bubbles), then ∂2 = 0 and we get a well defined chain complex. In our case these assumptions don’t apply, but
everything still works out. The sphere bubbles are ruled out by a Maslow index argument, and the boundary
bubbles will come in pairs, because the Lagrangian tori are positioned "symmetrically".
What we get this way is a rather simplistic homology, its always the same for integer homology spheres, so
we need to use the divisor Vw as well. So in the ĈF boundary map we only count pseudoholomorphic discs
which are disjoint from Vw, and in the CF− flavor we allow intersections with Vw but record it in the u
variable.
For invariance, consider two different Heegaard diagrams coming from (Σ, α, β) and (Σ, α, γ), so we have
three Lagrangian tori now. We want to specify a map CF (L1, L2)⊗CF (L2, L3)→ CF (L1, L3). The second
term we hope will be simple enough to follow. Until now we counted "bigons", polygons with two sides, one
side in L1, the other in L2. Now we want to use triangles, three points are fixed on the boundary of the circle.
Since three points of a pseudoholomorphic map from the disc determines it, we will consider Maslow index
0 representatives from each relative homotopy class.
This is a chain map! We need to understand the types of degenerations once again. Boundary bubbles, sphere
bubbles, but now a triagle can limit to a triangle and a bigon as well.
This "multiplication" we got looks intriguing. Is it associative? For this we have to take another step. The
two different orders of multiplication gives different elements, but they will be chain homotopic! Now we take
four lagrangians, but the squares have expeced dimension −1, so we have to use a family of a.c.s.’s.

4 Fourth lecture

Theorem 4.1 (Lefschetz fixed point). The number of fixed points of a map f : X → X can be expressed in
terms of the Lefschetz number #Fix(f) = Λf =

∑n
0 (−1)iTrf∗|Hi,R.

If f ∼ id, then Λf = χ(X). For X = T 2 we do indeed have a fixed point free map by rotation.
Arnold noticed that if (X,ω) is symplectic, and ϕ : X → X is a Hamiltonian diffeomorphism homotopic to
the identity, then #Fix(f) ≥

∑n
0 bi.
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Remark 4.2. Given a family of functions H : R×X → X we get a vector field Xt such that ιXt = dHt. We
take ϕt : X → X a family of diffeomorphisms such that ϕ0 = idX and dϕt

dt = ϕ∗t (Xt). ϕ is Hamiltonian if it is
ϕ1 for some such system.

The idea is that fixed points are intersections of Γ(ϕ) ⊂ X × X with the diagonal ∆ ⊂ X × X. If X,ω is
symplectic, so is X ×X,ω×−ω. ∆ is Lagrangian in this setup, and so is the graph of a Hamiltonian. These
two submanifolds are isotopic as well, that is why we take the chain complex generated by the intersection
points. We need to define δ on this complex in some way and hope, that the homology of this chain complex
is isomorphic to the homology of ∆. Floer considered the case when π2(X) = 0, π2(X,∆ ∪ Γϕ) = 0, in this
case no degenerations can happen and the homology works.
In the Heegaard Floer case the two tori are non-isotopic, a diffeomorphism exchanges them, but not a
Hamiltonian isotopy. This helps us avoid the degenerations. (Σg, ω), being area preserving is all there is in
2 dimensions, but in 4D this is not the case. Taking Σg × ... × Σg with the form ω + .. + ω = η we get a
symplectic form, but how do we get a symplectic form on the Tα, Tβ curves? we want to factor with the
symmetric group, the action is not free unfortunately. We discussed that the space Symg(Σg) is smooth
despite the action being not free, but η/Sg will be singular!! We could try to work upstairs, or find another
strategy. Notice, that the Tα, Tβ tori are disjoint from the diagonal, where the singularities are. The another
strategy comes from

Theorem 4.3 (Varouchas). X̃ → X a branched cover of complex spaces and ω̃ a Kähler form on X̃. Then
there is a Kähler form ω on X which is ω̃ away from an open set containing the branch locus.

"The symplectic camel cannot pas through the eye of a needle." I.e. is there a symplectic embedding ϕ such
that ϕ(B2n

o (R)) ⊂ B2
0(r)× R2n−2? Gromov’s theorem states, that this can only happen if r ≥ R for n ≥ 2 !

4.1 Surgery exact triangle

Suppose Y is a 3-manifold as before (closed oriented connected). We represent it by H = (Σg, α, β, w), and
get CF (H), ∂, whose homology is H∗(CF (H)).

Theorem 4.4 (Ozsváth,Szabó). ∂2 = 0 and HF (H) is an invariant of Y .

We made a bunch of choices along the way, the symplectic form on the symmetric product, the almost complex
structure. We need to show invariance from all of these, but the Heegaard diagam is also non-unique. Isotopy
is simple by the Floer homology package, but handle slides and stabilisations are highly non-obvious, the
genus changes!

Remark 4.5. The Lens space L(p, q) is just −p/q surgery on the unknot. We get ĤF (L(p, q)) = Zp
2. We pick

a toroidal Heegaard diagram, with the slope 0 and the slope p/q curve, there will be no holomorphic discs.

Theorem 4.6. Suppose Y is a closed oriented connected 3-manifold and K ⊂ Y with a framing f . Then we
can relate Y, Yf (K) and Yf+µ(K). There are maps F1, F2, F3 so that the triagnle ĤF (Y )→ ĤF (Yf (K))→

ˆHF (Yf+µ)→ ĤF (Y ) is exact.

Example 4.7. Take n surgery on the trefoil. We claim, that ĤF (S3
n(31)) = Zn

2 once n ≥ 1. We give the
argument for n ≥ 5. Apply the exact sequence. For S3 we get Z2. Note, that S3

5(31) = L(5, 1), so we know
two of the spaces. F1 can either be 0 or an injection. In the former case we have to get Z6

2, since it has to
surject onto Z2, and be surjected onto from Z5

2.

6



Figure 2: How 5-surgery on the trefoil is a lens-space

If F1 is an embedding, then a 4-dimensional vector space injects into our space, and F3 = 0, so we could have
Z4 in principle, but the following excludes this possibility:
Fact is, that ˆHF (Y, s) is of odd dimension, indeed it admits a Z2 grading such that χ(ĤF (Y, s)) = 1.

To show isomorphism, given two chain complexes Ci∂i if there is a chain map f between them. Over the field
of two elements this means that f ◦ δ1 + ∂2 ◦ f = 0 we want a map g going the other way, such that f ◦ g and
g ◦ f is homotopic to their respective identities.
For exact triangles things become more complicated.

Proposition 4.8. If Ci∂i are three chain complexes, f i : Ci → Ci+1 are chain maps, and hi : Ci → Ci+2

are module maps (all indicies are to be understood modulo 3) such that ∂i+2 ◦ hi + hi ◦ ∂i = f i+1 ◦ f i. Then
ϕi = hi+1 ◦ f i + f i+2 ◦hi are chain maps. Suppose that the ϕi are chain homotopic to idCi . This implies that
the homological triangle given by the H(f i) is exact.

Proof. First we check that ϕi is a chain map. We need to see that ϕi∂i + ∂iϕi = 0, see Fig 3
Next we need inclusions between the kernels and images between the maps induced on homology. The fact
that f i+1f i = 0 is an assumption. For the other inclusion we take an element b such that ∂i+1(b) = 0 and
f i+1(b) = ∂i−1(c). Take a = hi+1(b) + f i−1 ∈ Ci. We need to prove, that [f i(a)] = [b].

5 Fifth lecture

If we relax the requirement from ϕi being chain homotopic to idCi to it juts being a quasi-isomorphism (i.e.
H(ϕi) is an isomorphism, not neccesarily the identity).

Definition 5.1. Two chain complexes C,C ′′ are quasi isomorphic if there is a C ′′ and maps f : C ′′ → C, f ′ :

C ′′ → C ′ such that f, f ′ are quasi isomorphisms.

Proposition 5.2. If 0 → C1 f1

−→ C2 f2

−→ C3 → 0 is a SES of projective modules, then it induces an exact
triangle.
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Figure 3:

Figure 4:

Definition 5.3. P is projective if for any surjective map ψ : M → N and ϕ : P → N there is a lift
ϕ′ : P →M so that ψϕ′ = ϕ.

Proof. C2 surjects to C3, so we can lift the identity of C3 to R : C3 → C2. Consider ∂2R+R∂2 : C3 → C2.
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This actually maps to ker(f2)which by exactness and injectivity of f1 is C1. Thus we call this map f3. Since
f2 is a chain map, if we compose, we get 2∂3 = 0. f1f3 = ∂2R +R∂2 by construction. We want, f3 to be a
chain map. f1(f3∂3 + ∂1f3) = f1f3∂3 + f1∂1f3 = (∂2R + R∂3)∂3 + ∂2f1f3 = ∂2R∂3 + ∂2(∂2R + R∂3) =

2(∂2R∂3) = 0. Since f1 is injective, we get that f3 is a chain map. We choose h1 = 0, h2 = R to use the
previous proposition, and now we claim, that f2(idC2 +Rf2) = 0, this is trivial, since by the definition of R it
equals 2f2. So Im(idC2+Rf2) ⊂ ker(f2) = Im(f1), so there is a map h2 : C2 → C1 where f1h2 = idC2+Rf2

by the projectivity of C2.
We need to check the three relations for the hi. Since h1 = 0, we need f2f2 to be zero, which is true by
exactness. For the second one f1f3 = ∂2R + R∂2, which is true by definition. Finally ∂1h2 + h2∂2 = f3f2.
Apply f2 agian to get f1(∂1h2 + h2∂2) + f3f2) = ∂2 + ∂2h3Rf2 + f1h2∂2 + (∂2R+R∂3)f2...

Finally we need hi+1f i + f i+2hi = idCi .

Pick a Heegaard diagram for Y,K, denote it (Σ, α, β, z, w). We can always assume, that the two points
are on the two sides of a given β circle. This can be achieved by stabilisation, the meridional circle will
separate the two points, and the α curve is chosen so that it is in the longitudional direction, and connect
the two endpoints such that it only intersects β curves (since the complement of the α’s is connected this
can be done). By sliding the β curves over the new meridional β, we see that this is indeed a stabilisation.
(Σg+1, α∪αg+1, β) = S3 \ ν(K). This gives a Heegaard diagram for the knot complement, if we replace βg+1

with another curve winding around the knot f times, and interseting βg+1 once, we get the diagrams for the
manifolds in the surgery triangle. For f + µ we do one extra twist.
We need to perturb the curves so that our tori become transverse, and any βi, β̄i intersect at to points
without triple intersections and so on. We get Symg+1(σ), Tα, Tβ1 , Tβ2 , Tβ3 . We discussed that there is a map
CF (Tα, Tβ1)⊗ CF (Tβ1Tβ2)→ CF (Tα, Tβ2) where

x⊗ y 7→
∑
z

∑
ϕ∈π2(x,y,z),µ(ϕ)=0

#M(x, y, z)z

counting holomorphic triangles. We want to restrict this map to a specific t ∈ CF (Tβ1Tβ2). The manifold
Σ, β1, β2 is none other than #gS

2 × S2 and the homology of CF will be isomorphic to H∗((S
1)g;Z2). In the

chain complex the boundary map is zero, since there are two discs from a generator to its pair, and none
between the other ones. We pick one intersection point on each curve, distinguished by the orientation, from
which there are discs, and the intersection of the g + 1st curves.
By looking at degenerations of a triangle, one sees that this will be a chain map. For the hi’s we need the
triple map Y ⊗ #gS

1 × S2 × #gS
1 × S2 → (Σ, β3, α). We count holomorphic rectangles, they have a one

parameter family of holomorphic structures, we set µ = −1, so for a one parameter family we see some
discrete set of solutions. We consider degenerations of squares now, no sphere bubbles, boundary bubbles
come in pairs, and two types of "bowtie" degenerations, into two triangles.

6 A∞ algebras

6.1 Historical motivation

Start with (X,x0) pointed topological space and let denote ΩX the loop space, i.e. maps S1 → X such that
1 7→ x0. This spaces comes with an operation m2, that is the concatenation of two loops.
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Remark 6.1. This operation is not associative! This is only a technicality though, either the first or the last
loop takes up half of the circle, these maps are homotopic.

We denote this homotopy by m3 connecting (γ1 ∗ γ2) ∗ γ3 with γ1 ∗ (γ2 ∗ γ3). We use binary trees to encode
the order of the operations.
What happens if we consider 4 loops? Now we have more different ways in which we can concatenate them.
We call the pentagon inside K4, and m4 : K4 × (ΩX)4 → ΩX is a homotopy between all of them.

Figure 5: The 5 different ways we can put parenthesis.

In the n = 5 case we have a polytope K5, with 6 pentagonal and 3 square sides.

Homework 6.2. Check the vertices.

The pentagonal faces represent a K4, and the square faces are products of two interwals, i.e. K3×K3. There
are two vertices which are not part of any square side, which correspond to (g1 ∗ g2) ∗ (g3 ∗ g4) ∗ g5 and
symmetrically g1 ∗ (g2 ∗ g3) ∗ (g4 ∗ g5).

Theorem 6.3 (Stasheff ’64). There is a sequence of polytopes Kn of dimension n − 2, called associohedra
and maps denoted mN : Kn × (ΩX)n → ΩX that satisfies some relations.
Moreover a topological space Y is homotopy equivalent to ΩX iff:

• π0(Y ) to be a group

• there are maps mn : Kn × Y n → Y satisfying certain compatibility and unitality conditions

More generally Stasheff defnies an A∞ space if it satisfies this condition.

Theorem 6.4 (Stasheff ’63). If Y is an A∞ space, then C∗(Y ) is an A∞ algebra where µ1 = ∂, and µ≥2

are induced by mi.

Homework 6.5. Kn can be interpreted as a polytope whose vertices are triangulations of an n+ 1-gon.
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Figure 6: The associohedron from Wikipedia By Nilesj

6.2 Definition

Definition 6.6. Let k be a field. A Z graded A∞ algebra over k is a Z graded vector space A =
⊕
Ap

together with homogeneous k-linear maps µi : A⊗k ...⊗k A→ A subject to relations (Rn) for all n ≥ 1.

Rn = (

n−1∑
r=0

n−r∑
s=1

(−1)r+stµu(id
⊗r ⊗ µs ⊗ id⊗t) = 0)

where r + s+ t = n, i.e. t = n− r − s and u = r + t+ 1 = n− s+ 1. The µi are graded 2− i.

Remark 6.7. More generally instead of a field, we can take a commutative ring, (bi-)modules instead of vector
spaces and module maps.
More generally the grading can be taken from a non-commutative group!
The action of k on A can differ on the two sides, from now on we denote the domain of µi by A⊗i, but note,
that this is different from Ai!

There is a pictorial interpretation in terms of trees. Now µi is a tree of valence i+ 1, i inputs are leaves "at
the top" and one output "at the bottom". I.e. µ1 is just a line with a dot in the middle, µ2 is a Y shape with
a dot at the intersction and so on. We give a graphical interpretation of the relations. We want to sum over
all possible partition of the n inputs into r+ s+ t many subsets, apply the tree corresponding to µs to the s
subset, and the identity to the rest, and then the µr+t+1=u tree to the bottom of this tree.

Figure 7: The relation in graphical form

Let us unpack the first few relations. R1 states that µ1 ◦ µ1 = 0. The second relation can be read off to
be µ2 ◦ (µ1 ⊗ id + id ⊗ µ1) + µ1 ◦ µ2 = 0, i.e. µ2(µ1(a), b) + µ2(a, µ1(b)) = µ1µ2(a, b), which looks like

11



some sort of Leibniz rule for the differential µ1 and the "multiplication" µ2. The third relation states that

Figure 8: The first three relations in tree form

µ2(µ2⊗id)+µ2(id⊗µ2) = µ1µ3+µ3(µ1⊗id2+idµ1id+id
2µ1), here if we notice that µ1⊗id2+idµ1id+id

2µ1

is the natural differential on A⊗3, we see that µ3 is a chain homotopy between the two different orders of the
multiplication. This means, that our product is associative up to homotopy.
(A less popular pictorial repreesntation is splitting the i+ 1-gon with diagonals.)

Example 6.8. For A∞ algebras. Firstly from Stasheff ’63 C∗(ΩX) with µ1 = ∂, µ2 induced by loop composi-
tion, and the higher operations induced by the mi. The associohedra encode the relations.

Example 6.9. The second example comes from deformation theory. Let B denote some k-algebra. The
Hochschild cochain complex isHom(k,B)→ Hom(B,B)→ Hom(B⊗2, B)→ ... with differential d(f)(b0, ..., bn) :=
b0 · f(b1, ..., bn)

∑
f(b0, ..., (bi−1 · bi), ..., bn) + f(b0, ..., bn−1) · bn, fact is that this is a differential, and it gives

us the Hochschild cohomology of B. Consider a formal variable ϵ of degree 2−N for some fixed N ̸= 2 and
we define A := B[ϵ]/(ϵ2), c : B⊗n → B any linear map. From this we define higher maps µi by setting µ2 to
be induced by the multiplication of B and µN := ϵ · c and all other µi’s zero.

Homework 6.10. Check that this is an A∞ algebra iff the linear map c is a Hochschild cocycle. (hint: The
only relation to be checked is R(N + 1)).

Example 6.11. Differential graded algebras (DGA). This object is an A∞ algebra with µi = 0 for all i ≥ 3.

6.3 Homology

Proposition 6.12. Given a Z graded A∞ algebra A there is a canonical algebra structure on H∗(A).

Proof. µ2 : A ⊗ A → A satisfies R2, which means, that µ2 is a chain map, so it descends to homology,
and as we discussed. Taking the map H(a) ⊗ H(A) → H(A ⊗ A) → H(A) and denoting it µ̄2 we have a
multiplication. R3 then tells us, that µ̄2 is associative.

Remark 6.13. µ̄1 = 0 implies, that µ̄2 is associative, which is the "wrong" reason for it to be asociative, since
µ3 should be the map measuring the non-associativity of µ2. This means, that there can be an A∞ structure
on homology, but it will not be canonical.

6.4 Units

Definition 6.14. A strict unit of an A∞ algebra is an element 1 ∈ A such that µ2(a, 1) = µ2(1, a) = a for
all a ∈ A, and µi(a1, ..., ai) = 0 whenever any of the aj ’s are 1 and i ̸= 1 (in particular µ1(1) = 0).

12



Definition 6.15. A homological unit is 1 ∈ H∗(A) such that it is a unit of µ̄2.

Theorem 6.16. If A is homologically unital then there exists an A∞ quasi-isomorphism with an A∞ algebra
B (with µB

1 = 0) such that B is strictly unital.

7 Eight lecture

7.1 Modern Perspective

More motivating examples, firstly Bordered floer homology. Given Y 3, s we associate ĤF (Y, s) to it, a Z2

vector space, we wish to compute it. To do this you need a presentation of Y as a Heegaard diagram
(Σ, α, β, z), and count holomorphic discs. For Bordered Floer homology we wish to compute the invariant
locally, i.e. break the surface in two. The correct invariant turns out to be an A∞ algebra AT corresponding
to the cut, which is in fact a dga. The two parts will give us an A∞ module denoted MAT

, and a type-D
structure over AT denoted ATN .

Theorem 7.1 (Lipshitz Ozsváth Thurston). ĈF (H)is quasi isomorphic to MAT
⊠AT N

Secondly Hanselmann Rasmussen Wattson’s immersed curve invariant. Let Y 3 be a compact oriented 3-
manifold with torus boundary (e.g. a knot complement). Pick a parameterasation of the boundary T 2. The
previous theorem gives a type-D structure on AT , N .

Theorem 7.2 (Hanselmann Rasmussen Wattson). N can be geometrically interpreted as a collection of
curves immersed in the torus (with local systems).

Example 7.3. For the trefoil complement the lift of such a curve on the torus is depicted on the figure.

Figure 9: The curve corresponding to one of the trefoils on the universal cover R2.

The third example is bordered knot floer homology. Given a knot projection, slice it up such that every slice
contains either one critical point of the height function or a single crossing. To each regular section they
associate a dga and to each neighboring slice pair they associate a DA-bimodule.
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Theorem 7.4 (Ozsváth-Szabó). ˆCFK is quasi isomorphic to M1 ⊠ ...⊠Mn

This definition is very efficient for computation.

7.2 The Bar Construction

Recall, k is a commutative ring for today. An A∞ algebra over k is a k-bimodule A together with k-linear
maps µi : A

⊗i → A for all i ≥ 1 subject to structure relations Rn for n ≥ 1.

Rn =
(∑

µn−i+1(id⊗ µi ⊗ id) = 0
)

Definition 7.5. A a k-bimodule. The bar construction is TA := k ⊕ A ⊕ A⊗2 ⊕ .... There is an obvious
algebra-structure as the tensor algebra of A, the unit map is the linear extension of the map sending the unit
of k to its image in TA.

Definition 7.6. A counital coassociative coalgebra over k is a tuple (C,∆, ϵ) where C is a k-bimodule,
∆ : C → C ⊗ C is the comultiplication and ϵ : C → k is the counit, subject to two relations:

1. (id⊗∆) ◦∆ = (∆⊗ idC) ◦∆ (coassociativity)

2. (ϵ⊗ id) ◦∆ = idC = (id⊗ ϵ) ◦∆ (counit)

Definition 7.7. The deconcatenation comultiplication on TA is a map ∆ : TA→ ⊠TA given as a1⊗...⊗an 7→∑
i a1 ⊗ ...⊗ ai ⊠ ai+1 ⊗ ...⊗ an (the empty tensor product is 1).

Example 7.8. The image of A⊗n is in k ⊠A⊗n ⊕ ...⊕A⊗n ⊠ k.

Proposition 7.9. (TA,∆, ϵ) is a coalgebra, where ϵ : TA→ k is projection onto the first factor.

Homework 7.10. Prove this.

Remark 7.11. TA with the tensor product and ∆ is not a bialgebra (in particulra not a Hopf algebra).

Remark 7.12. There exists another comultiplication called the standard comultiplication on TA, which makes
it a bialgebra (Hopf algebra even).

Remark 7.13. There is another multiplication on TA, that makes it, together with deconcatenation, that
makes it a bialgebra (also a Hopf algebra).

7.3 Reduced bar construction

Definition 7.14. An augmentation of a unital algebra (A,∇, η) is a map ϵ : A→ k such that ϵ ◦ η = idk.
Dually a coaugmentation of a counital coalgebra (A,∆, ϵ) is a map η : k → A such that ϵ ◦ η = idk.
Coaugmented counital coalgebras are in bijection with non-counital coalgebras. Concretely A 7→ Ā =

A/im(η) = kerϵ, and in the other direction Ā 7→ k ⊕ Ā. Moreover this is an equivalence of categories.

Remark 7.15. TA is naturally coaugmented by taking the inclusion of k inside TA, so uner the above
equivalence

←−
TA = A⊕A⊗2 ⊕ ... with a comultiplication, which is no longer counital denoted ∆̄, called strict

deconcatenation (leave out the 1⊠ ... and ...⊠ 1).
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Figure 10:

7.4 Universal properties

The goal is to recast A∞ algebras and relations as a map M : TA→ TA. Warmup:

Theorem 7.16. For every k-linear map f from A to some B a unital associative algebra there is a unique
map of unital algebras F : TA→ B, such that F ◦ i = f where i is the inclusion of A into TA. F is defined
as the sum of f⊗i

Proof. For uniqueness unitality of F forces the definition on k ⊂ TA. Commutativity of the diagram forces
the definition of F on A ⊂ TA. Lastly since it is a homomorphism, it forces the definition of F on A⊗2, since
F (v ⊗ w) = F (v)⊗ F (w), and proceed inductively.
For existence define F by the formula and check the properties.

Theorem 7.17. Coalgebra structure of TA, we only prove for bar algebras. The map F is defined as a sum

Figure 11:

of trees with some inputs combined by f for allpossible trees with n inputs and m outputs, π is the natural
projection of TB, f is k-linear, F is a counital morphism of coalgebras.

Proof. Uniqueness: counitality forces the definition F0 = πk ◦ F .
Commutativity forces the definition of F1 = πB ◦ F = f .
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Using ∆ ◦F = (F ⊠F ) ◦∆ we show that Fn = πB⊗n ◦F is inductively determined. Consider (TB⊠TB)n :=

(k ⊠Bn)⊕ (B ⊠Bn−1)⊕ ...⊕ (Bn ⊠ k) Bn ⊂ TB maps into this under ∆. The projections of the factors of
this sum precomposed by ∆ are isomorphisms. Now Fn = πB⊗n ◦F is determined by pri,n−i ◦πB⊗n ◦F , which
is determined by ∆ ◦Fn = (F ⊠F ) ◦∆. Taking the output component in B⊠Bn−1 we get pr1,n−1 ◦∆ ◦Fn =

(F1 ⊠ Fn−1) ◦∆, the right hand side is already defined for n ≥ 2 and we are done since pr1−n−1 ◦∆ is an
isomorphism. Thus we are done with uniqueness
For existence we define F as given and check the relations. πbF = f is clear. The other thing is that it is a
morphism of coalgebras, i.e. ∆ ◦F = ∆(

∑
...) and the deconcatenation adds a box tensor product somwhere

in between the trees, so we get the sum of all forests boxed with the sum of all forests, which is precisely
(F ⊠ F◦)∆.

8 Eight lecture

Definition 8.1. A derivation on a unital associative algebra B is a map D : B → B that satisfies

• D ◦ η ≡ 0

• D ◦ ∇ = ∇(id⊗D +D ⊗ id)

Definition 8.2. Coderivation on a counital coassociative coalgebra C is a map M : C → C such that the
dual relations hold:

• ϵ ◦M ≡ 0

• ∆ ◦M = (id⊗M +M ⊗ id) ◦∆

Theorem 8.3. Given a k-linear map A → TA, then there is a unique extension of it to a map TA → TA

as a unital derivation.

Proof. Excercise.

Theorem 8.4. Dually, for any k-linear map TA→ A there is a unique counital coderivation TA→ TA that
projects to A as the map.

Proof. Excercise.

Remark 8.5. There are universal properties for (co)derivations on
←−
TA, where you drop the (co)unitality

assumptions.

Definition 8.6. A derivation D is augmented if ϵ ◦D ≡ 0.
A coderivation M is coaugmented if M ◦ η ≡ 0.

Definition 8.7. Let A be a k-bimodule. An A∞ structure on A is a counital coaugmented coderivation
M : TA→ TA that is a differential (i.e. M ◦M ≡ 0).

Remark 8.8. By the equivalence of categories, we could ask for just a coderivation on TA.

Remark 8.9. Dropping the coaugmented condition from M we get another useful definition: curved A∞

structures.
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Proposition 8.10. The following are equivalent

• An A∞ struxture M : TA→ TA

• An A∞ algebra (A, {µi}) satisfying the Ri

Moreover if you package the µi as the unique map µ : TA→ A (setting µ0 = 0) then π ◦M = µ.

Proof. By the universal property mu = π ◦M guarantees that µ and M determine each other. Moreover
µ0 = 0 iff M is coaugmented.
Consider M ◦M and 0, these are coderivations. By the universal property these two maps are the same iff
the corresponding µ’s are the same.
M ◦M =

∑
forests with two nodes, and the two nodes are on the same connected component, the other

summands cancel each other.
Thus π ◦M ◦M is the part of the sums with 1 output component and we get the A∞ relations.

Homework 8.11. Find the curved A∞ relations.

Remark 8.12. In the literature you may find M : T (A[1]) → T (A[1]), in case A is Z graded, this fixes the
grading since µi has degree 2− i.

8.1 Morphisms

Definition 8.13. An A∞ morphism between A∞ algebras A,B is a counital morphism of coaugmented
coalgebras F : TA→ TB that is a chain map, i.e. MB ◦ F = F ◦MA.

Definition 8.14. Let F,G : C1 → C2 be counital morphisms of coalgebras. An (F,G)-coderivation is
M̃ : C1 → C2 satisfying

• ϵ ◦ M̃ ≡ 0

• ∆ ◦ M̃ = (F ⊗ M̃ + M̃ ⊗G) ◦∆

Theorem 8.15. Let F,G : TA→ TB be counital morphisms of coalgebras. For every k-linear map TA→ B

there is a unique F,G coderivation TA→ TB, lifting this map.

Proof. Exercise. We only check that M̃ is an (F,G) coderivation. The first condition is trivial. M is just the
sum over forests with µ̄ somewhere, and F to the left, G to the right, the comultiplication adds a box-tensor
product symbol somewhere into this sum. If this symbol is before µ̃, then we get F ⊠ M̃ , if its after then we
get M̃ ⊠G, as claimed.

Now we unpack the definition of morphisms. By the universal property of coalgebra morphisms F is deter-
mined by π ◦ F =: f , which can be packaged into maps fi : A⊗i → B, F is coaugmented iff f0 = 0.
F ◦MA and MB ◦ F are (F, F ) coderivations. This means, that they are equal iff the projections are equal.
Equating these two sums and taking homogeneous parts one gets∑

i∈[0,n−1],j∈[1,n−i]

fn−j+1(id⊗ µA
j ⊗ id) =

∑
i1+...+ij=n

µB
j (fi1 ⊗ fi2 ⊗ ...⊗ fij ) (1)

Look at the first few. R1 tells us that f1 is a chain map from (A,µA
1 )→ (B,µB

1 ). Thus it descends to a map
on homology. Secondly for R2 we get f1µ2 + f2(µ1 ⊗ id) + f2(id ⊗ µ1) = f1µ2 + µ2(f1 ⊗ f1) thus f̄1 is an
algebra homomorphism.
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Definition 8.16. A morphism of A∞ algebras fi : Ai → B is an A∞-quasi-isomorphism if f1 is a quasi-
isomorphism in the classical sense, i.e. f̄1 : H∗(A)→ H∗(B) is an isomorphism.

If A,Bare k-bimodules, then HomK(A,B) is also a bimodule, moreover if they are chain complexes, then
the homspace is a chain complex as well with the differential df = dBf + fdA.

Remark 8.17. Chain maps A→ B are cycles in this chain complex.
Two maps are homologous in HomK(A,B) iff there exists a homotopy between them.

In particular µ1|Ai : An → Ai. For F ∈ Hom(Ai, B) we get df = µ1f + fµ1|Ai .
Consider {TA→ TB : k-linear counital coaugmented}, which is in bijection with HomK(

←−
TA,
←−
TB).

Definition 8.18. Given MA : TA → TB,MB : TB → TB which are A∞ structures, and F,G : TA → TB

A∞ morphisms, an A∞ homotopy H is a counital coaugmented (F,G) coderivation such that F − G =

MB ◦H +H ◦MA.

Homework 8.19. Unpack this definition, i.e. find the maps hi and the A∞ structure relations.

Homework 8.20. The first relation (with only 1 input) is that f1 − g1 = µ1h1 + h1µ1, ergo A∞ homotopic
A∞ morphisms induce homotopic morphisms in their associated chain complexes.

Theorem 8.21 (Levéfre-Hasegawa). A∞ homotopy is an equivalence relation.
An A∞ quasi isomorphism always has an A∞ homotopy inverse.

9 Ninth lecture

9.1 Chord diagrams

Consider a part of a Heegaard diagram i.e. a compact 2-manifold with boundary, with the β curves and some
parts of the α curves, represented as arcs. We associate a differential algebra to this, which has two objectives.
Firt in constructing the generator of ĈF (H) we want to remember which α curves are already occupied by
some intersections on the other part of the diagram we don’t see, we do this by associating idempotents.
Second we need to remember how the partial domains meet at the boundary, we do this by recording strands.

Definition 9.1. A chord diagram Z consists of:

• a compact oriented 1-manifold P

• a finite subset B ⊂ P

• a fixed point free involution ϕ : B → B, called a matching

The constractible compoents of P are called linear backbones, the other ones are circular backbones.

Example 9.2.

Remark 9.3. From a chord diagram we can constuct an oriented surface with partitioned boundary F (Z)

by thickening up P , and attaching 1-handles according to the matching. The partition is coming from the
thickening. One end of P × I is R−, the image of the other end after attachment of the handles is called R+,
and if P has non-closed components, they give rise to the "suture" part of the boundary.
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Figure 12: The standard punctured torus chord diagram

Figure 13: Motivated by Ozsváth-Szabó’s bordered HFK

9.2 Pre-strands algebra

s = {s1, ..., sk} ⊂ Zs a collection of smooth functions si : I → P , where the set {si(0)} and {si(1)} consists
of k distinct points in B ⊂ P , moreover each si has constant non-negative constant length.

Figure 14: An example and a non-example of a strand.

Example 9.4.

Definition 9.5 (Multiplication). Let Ã(Z, k) be the free Z2 vector space generated by the k−strands on Z.
Given s,t k-strands we define

• if s(1) ̸= t(0), then st = 0 (they are non-concatenable)

• if the concatenation contains a bigon after smoothing (and without rescaling!), we say st = 0

• otherwise st is the properly rescaled concatenation of the two strands

Example 9.6.

Definition 9.7 (Differential). If s is a k-strand we degine ∂s as the sum of all k-strands obtained by smoothing
a crossing without creating a bigon and properly rescaled. This extends to a linear map ∂Ã(Z, k)→ Ã(Z, k).
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Figure 15: An example 4-strand on the HFK algebra

Figure 16:

Figure 17: The boundary of a 3-strand

Example 9.8.

Lemma 9.9. ∂2 = 0
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Proof. If we ignore the bigon condition then we count each element in ∂2 twice, depending on the order in
which we do the two resolutions. What we need to check, is that if t contains a bigon, then ∂t = 0.
If t contains 1 bigon, then the two resolution at the vertices of it cancel out, if t contains at least 2 bigons,
then any resolution contains bigons.

Theorem 9.10. Ã(Z, k), ·, ∂ is a differential algebra.

Homework 9.11. Check this, and find the unit.

9.3 Strands algebras

Definition 9.12. Let s be a k-strand on Z and let I denote the set of indicies s.t. si is constant. For ι ⊂ I

we define sι another k-strand such that

1. if i ̸∈ ι we let sιi = si

2. if i ∈ ι then sιi is the constant strand based at ϕ(si(0))

The equaliser E(s) of s is defined as
∑

ι⊂I s
ι if s(n) ∩ ϕ(s(n)) = ∅ for n = 0, 1 and 0 otherwise.

Figure 18: Equalisers

Example 9.13.
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Dashed constant lines at matched means replacing the strand with the equaliser of one where we replace one
(and only one) of the dashed lines with a solid strand.

Definition 9.14. The strands algebra A(Z, k) is the subspace of Ã(Z, k) spanned by the Equalisers of all
elements.

Lemma 9.15. A(Z, k) is closed under multiplication and differential.

Proof. Multiplication. In E(s)E(t) if there are problems with concatenation, we get zero. If (
∑
sι)(

∑
tι

′
) ̸= 0,

then there is ι, ι′ such that they are concatenable and we replace s,t with sι, tι
′
, since their equalisers are the

same, so we can assume s, t concatenable. Expanding the product we have
∑

ι⊂I∩I′ sιtι. A term of this sum
contains a bigon iff st contains a bigon, since bigons cannot involve a constant strand, so the sum is equal to∑

(st)ι = E(st).
Similarly one can check what happens with resolution of crossing for the differential.

Remark 9.16. A(Z, k) is not a subalgebra of Ã(Z, k) because the unit is not an equaliser, but instead it has
its own unit, different from the one in the free strands algebra.

Example 9.17 (The torus algebra). A(Z, 0) = Z2 generated by the empty strand. A(Z, 1) is generated by 8
elemens: and the nonzero products of the ρi. The differential is zero, since there are no crossings.

Remark 9.18. A(Z, 1) is isomorphic to the path algebra of Figure 9.18

A(Z, 2) is generated by one idempotent ι, and σi, σ+, σ||, τ−, τ+, τ×.
In this algebra the differential is not zero, H∗(A(Z, 2)) = Z2 = A(Z, 0).

10 Tenth Lecture

10.1 Idempotents

Suppose Z = (P,B, ϕ) is a chord diagram, let X ⊂ B/(b ∼ ϕ(b)).

Definition 10.1. IX := E(ConstS) where S ⊂ B is any lift of X.

Homework 10.2. {IX : X ⊂ B/ϕ, |X| = k} are orthogonal idempotents in A(Z, k)
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Figure 19:

Homework 10.3. All idempotents of A(Z, k)form an abelian subring I(Z, k) ⊂ A(Z, k). In fact {IX} is a
basis of this subring, as a Z2 vector space.

Definition 10.4. An idempotent ι ∈ A is minimal if it cannot be decomposed as a sum of orthogonal
idempotents.

Example 10.5. I0,1 + I0 is not minimal, but each term of this sum is minimal.

Homework 10.6. Suppose that A is an algebra where:

• the idempotents form an abelian subring I

• {IX} is a basis of orthogonal idempotents.

Then {IX} is the set of minimal idempotents.
In particular the set {IX} is determined by the algebra structure.
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Definition 10.7. The unit of the strands algebra is the sum 1 =
∑

|X|=k IX .

Homework 10.8. Verify that this is a unit.

Theorem 10.9. A(Z, k), ∂, ·, 1 is a unital differential algebra.

Remark 10.10. As a vector space we have a splitting A(Z, k) =
⊕

X,Y IXA(Z, k)IY . Moreover the differental
respects the splitting. The multiplication sends IXAIY , IYAIZ to IXAIZ , and vanishes otherwise.
In particular ∂IX = 0.

Example 10.11. The torus algebra A(Z, 1). As seen in the previous lecture there are two idempotents ι0, ι1,
and the other three generators ρ1, ρ2, ρ3. The splitting is ι0Aι0 = Z2 < ι0, ρ12 >, ι0Aι1 = Z2 < ρ1, ρ123, ρ3 >.

Homework 10.12. Find the other two terms of the decomposition.

10.2 DG category interpretation

We can form a category CA(Z,k) as follows:

• ObC = {IX} the set of minimal idempotents

• Hom(IX , IY ) = IXAIY

• idIX = IX

• composition is multiplication in the algebra

In this way we get a category where the morphism spaces are differential Z2 vector spaces. We call such a
category a differential category.

Remark 10.13. We can also define A∞ categories in a similar manner, but those objects will not be categories,
because composition is not associative, and there are no units. Instead we get higher composition maps

Hom(xj−1, xj)⊗ ...⊗Hom(x0, x1)→ Hom(x0, xj).

10.3 A∞ modules

Let A be an A∞ algebra over k (counital coassociative coaugmented coderivation MA such that M2
A = 0).

Let∗ µ = π ◦MA and the µi are the various summands of µ.

Proposition 10.14 (Universal Property for Modules). Suppose X,Y are right k-modules. For any k-linear
map f there is a unique lift F such that (id⊠∆) ◦ F = (F ⊠ id) ◦ (id⊠∆). In fact F is f with some extra
vertical lines added.

Proof. Uniqueness part is simple from commutativity of the diagram. The projection forces the image of F
onto Y ⊠k, and the extra condition states that each projection determines the others. F i→j : X⊠Ai → Y ⊠Aj ,
then {F i→0} determines F i→j .
For existence we try the formula, and see that it is correct.

∗π : TA → A
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Figure 20: The universal property of modules

Definition 10.15. A right A∞ module over A is a k-module X with a k-linear map MX : X⊠TA→ X⊠TA

such that:

1. (id⊠∆) ◦MX = (MX ⊠ id) ◦ (id⊠∆) (MX commutes with the comultiplication)

2. M̃X :=MX + idX ⊠MA is a differential.

Let us unpack what this means. By the universal property of modules MX is determined by a collection
of maps mi : X ⊠ Ai → X for i ≥ 0. Both M̃X ◦ M̃X satisfy the commutativity condition with the co-
multiplication, so they agree iff theire projections on X ⊠ k = X agree. The (1 + n) input relation (Rn)

is

n∑
0

mn−i(mi(x⊗a1⊗...⊗au)⊗ai+1⊗...⊗an)+
n,n−i∑
i,s

mn−i+1(x⊗a1⊗...⊗as⊗µi(as+1⊗...⊗as+i)⊗as+i+1⊗...⊗an) = 0

Example 10.16. First few relations. R0 tells us that m0 is a differential on X.
R1 is the Leibniz rule for the algebra action. In particular m1 descends to a map on homology.
R2 measures the non-associativity of the algebra action. The difference is a boundary, and so the action is
associative on homology.

Example 10.17. Let A be the torus algebra A(Z, 1), k will be the ring of idempotents < ι0, ι1 > and
X := Z2 < x > with a k-action given as: xι0 = 0, xι1 = x. The only nonzero module maps are m1(x, ι1) =

x, mn+2(x, ρ3, ρ2,3, ρ2,3, ..., ρ2,3, ρ2) = x. We claim that this is an A∞ module. We need to check the
relations Ri. We only need to check strings such that you get "allowable" strings when you do ∆ or
µ2. It can be of the form (ρ3, ρ2, 3, ρ2,3, ..., ρ2, ρ3, ρ2, 3, ρ2,3, ..., ρ2). The only nonzero contribution comes
from when we do ∆ in the middle, to get x, or when we do µ2 in the "middle" ρ2, ρ3 to get another
ρ23, so we get x + x = 0 and the relation is satisfied. The other strings that need to be checked are
(ι1, ι1), (ρ3, ρ2,3, ρ2,3, ..., ρ2,3, ι0, ρ2,3, ..., ρ2,3, ρ2), (ι1, ρ3, ρ2,3, ..., ρ2,3, ρ2), (ρ3, ρ2,3, ..., ρ2,3, ρ2, ι1).

This example comes from a bordered Heegaard diagram. The conditions m1(x, ι0) = 0,m1(x, ι1) = x can
only give a generator of CF if x gets paired with a curve on "the right" of the diagram occupyng the curve
α1. The higher map m2(x, ρ2, ρ3) corresponds to a domain bounded by the part of α1 and the blue curve.
m3(x, ρ3, ρ2,3, ρ2) = x corresponds to the same domain taken with multiplicity two.
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Figure 21: The only nontrivial map in the torus algebra

Figure 22:
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