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ABSTRACT 

Let zr,z2 , . . . , z, be complex numbers, and write 

Sj = Z{ + . . . + Zi 

for their power sums. Let 

where the minimum is taken under the condition that 

In this paper we prove that 

limsupR, < 1. 
n-‘X 

1. INTRODUCTION 

The investigation of the above sequence R, is a classical problem of the power 
sum theory of TurQn (for this theory see [TJ, and also [MI). The minimum R, 
exists by Weierstrass’ theorem, and one can easily see that the condition can be 
replaced by z1 = 1. 

The 1942 conjecture bf Turin that R, > c for some c > 0 independent of n 
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was proved by F.V. Atkinson (see [A]) in 1961, showing that R, > i. We proved 
that R, > 1 (see [Bl]), and in the recent paper [B2] we proved that R, > q for 
every n, where q is an absolute constant larger than 4. 

Concernjng upper bounds, it is trivial that R, < 1. Komlos, Sarkdzy and 
Szemeredi ([K-S&]) proved that 

1 
R,<l-- 

250n 

for n > no, and 

R <l_!!%!f 
n 

3 n 

for infinitely many n. Recently, in [B3], we improved this result to 

(1) 
loglogn 

R,<l-(l-E)P 
logn 

for large n. In this paper we prove the following theorem, which can be viewed 
as an upper bound analogue of Atkinson’s theorem from 1961. This theorem 
solves Problem 15 of the book [T] of Turan. 

Theorem. We have 

limsupR, < 1. 
n--too 

We prove this theorem in Section 2. Our aim in that section is just to prove this 
theorem quickly, so we use very crude estimates there. Then, in Section 3, we 
sketch the precise computation, and show what is the exact numerical result 
(depending on our basic parameter o) obtainable by the present construction 
(see formulas (22) and (23)). The dependence on Q turns out to be somewhat 
complicated. Using a convenient choice of a, we show in Section 3 that R, < 2 
for large n, hereby obtaining also the ‘numerical analogue’ of Atkinson’s result. 
However, this explicit value is far from being optimal, even for the present 
proof: computer work of Gergely Harcos shows that a nearly optimal choice of 
cx in formulas (22) and (23) gives R, < 0.694 for large n (see Addendum at the 
end of Section 3). This value is very interesting in view of the paper [C-G], 
where the authors conjecture (based on numerical work) that R, has a limit 
about 0.7. 

What concerns the proof, we used in [B3] (proving (1)) the formulas 

S/+blS/-I+.. .+b,-IS1=1+bl+...+bl_1_Ibl (1=1,2 ..‘, n-l); 

S,+blS,-1+.. .+&-i&=1 +bi +...+&-I, 

where zi = 1,22,. . . , z, are complex numbers, and 

(Z-zz)(Z-zz3)...(Z-2,) =.Y1+biZ”-2+...+b,-r. 

These formulas follow easily by the Newton-Girard formulas for this poly- 
nomial (and these formulas were the basic tools in [Bl] and are also important 
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in [BZ]), and conversely, it is clear that if zr = l,zz, . . . , z,, are given, 

brrbz,. b .‘, n-l are the coefficients of the above polynomial, and some complex 
numbers SI satisfy these formulas, then for the system zr = 1, ~2, . . . , z, we have 
the numbers St, S2, . . . , S, as first n power sums. 

Now, in [B3] we put 

lbr 
l+b~+...+b~_~ =@ 

(1 Il<n-I) 

with some complex parameter Q (note that these quotients occurred in our 
proof in [Bl]). This gives SI = 1 - a! for 1 5 1 < n - 1. The novelty of the pre- 
sent proof is to take SZ = 1 - cr only for I 2 !, and then choosing optimally the 
larger power sums. 

2. PROOF OF THE THEOREM 

Let 2T 5 n 5 2T + 1 (i.e. T = [;I>, and define the numbers SI in the following 
way. Let a be a complex number (to be chosen later), set 

(2) S,=l-a (1 5 1 I T), 

and 

(3) SI = (1 _cY)fW[ (T+l llln), 

with some complex numbers WI. The numbers bl are defined inductively by 
bo = 1, and 

(4) Sz+blSf_1+... +br_IS1=l+bl+...+br-,-Ib, (1 5 I< n). 

We will choose S1, S2, . . . , S,, in such a way that b, = 0 will hold. 
Weset& = l,and 

(5) z/3l=cy(l+P1+...+pz-t) (1 I I I n). 

Then 

(6) (l-a)(l+pl+...+~~-~)=l+~,+...+~~_,-l~* (lIZ<n). 

One has 

(7) br = PI (0 I 1 I T) 

by induction, using (2), (4) and (6). We set 

(8) bl = PI + dr (T+l llln). 

Taking the difference of (4) and (6) we obtain by (2), (3), (7) and (8) that 

(9) wr+P1wz-I+... +/3-T-IWT+I =(Y(~T+I+~T+~+...+~~-I)-I~[ 

for T + 1 I I I n (we used that I- T - 1 5 T). These equations can be ex- 
pressed in matrix notation as 
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(10) 

where 

I= @,X,l=T+l> A = {ak,&=T+,, B= {@k,d;,,d-+I, 

and &,] is the Kronecker symbol (which means that Z is the unit matrix), fur. 
thermore 

0, if k 5 1 
ak,I = a -, 

I 
if k > 1, 

and 

Since A is a nilpotent matrix, we have 

(I - A)-’ = z + a + A2 + . . . 

(this is of course a finite sum), hence 

(12) (1 -A)-’ = {ak,&=T+l 

with 

0, ifk<i 

(13) 
ifk=l 

ak,l = 
1, 

Car c 
1 -, if k > 1. 

r>l k=n,>n2>...>n,+,=l 
n2m...nr+ I 

Of course the sum over r here is also finite. 
By (10) and (12) we obtain 

(14) - nd,, = 5 w[Pl 
l=T+l 

with the notation 

(15) 
m=T+l 

Lemma 1. Zfq > 0, and 

4% + (1 -a> i: PI I 4,=$+1 IPrl, 
I+T+l 

then we can choose ST+ 1, ST+z, . . . , S,, such that 

502 



IST+lI I 4, IsT+zI 5 4,. . * 7 PA 5 Q 

and b, = 0. 

Proof. By (&I), b, = 0 is equivalent to -nd,, = n&, so by (3) and (14) it is enough 
tochoose&-+r,ST+2,...,$suchthat 

@,+(1--o) 5 PI’ 5 SIP/. 
Z=T+l I=T-tl 

The lemma follows by elementary geometry. 
We remark here that the ‘main term’ of PI will come from m = n in (15), and 

a,, ,&,, I = Pn _ I by (11) and (13), so we introduce the notation 

(16) PI=&,-r+El. 

The following statement is straightforward. 

Corollary of Lemma 1. IfI 1 - LYI < 1 
and 

then the condition of Lemma 1 is satisfied. 

Lemma 2. We have 

SO, ifI1 -al < 1, and 

then the condition of Lemma 1 is satisfied. 

Proof. Observe that if T + 1 < m < n and t 2 1, then 



and (i) follows by (ll), (13), (15) and (16), since n - T 2 T + 1. 

For the proof of (ii) we remark that (by induction, using (5)) one has 

(17) 1 +p1 + . . .++ (l+F) 

for I 2 0, and so (using again (5)) 

Since 11 +:I I e laljr, (ii) follows, because 

The last assertion is then clear, in view of the Corollary of Lemma 1. 0 

Lemma 3. If 

(1 -o(yI < 1, Ial <;, 

and 

furthermore 

then the condition of Lemma 1 is satisfied with q = l/2. 

Proof. Since by (17) (for 1 and 1 - 1) we have 

for I > 1, we obtain (because Re a! > 0 by 11 - QI < 1) 

[/?I[ >1”“1 ‘jjl 1 +Re(Y 
I r=l ( > r 

and then by induction 

for 12 1. Hence 
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if 

(20) & (1 +Y) > 2. 

On the other hand, for complex x with 1x1 < l/2 one has 

x2 
I log(l + 4 - XI 5 2(l’! Ix,) I 1x_1*, 

so for 1x1 < l/2 we have 1 + x = exe@), where Ih( 5 /xl*. Consequently, as- 
suming loI < i, we have 

The lemma is proved, using Lemma 2, (19) and (20) with 1= n - T - 1, (17) 
and (21). 0 

Conclusion of the proof of the Theorem. Using Lemma 1, Lemma 3 and for- 
mula (4), we see that if the conditions of Lemma 3 are satisfied, then we can 
choose complex numbers Si , S2, . . . , S, and bi ,b2, . . . , b,_ 1 in such a way that 

St = s2 = . . . = ST = 1 - a! 

and 

IST+ll+T+2l~; 7.“) lSnl5$ 

furthermore, 

St+b,St_,+... +br-1st =l+bi+.. .+&-.I -1br (1 sZ<n-I), 

and 

Sn+blSn-I+... +b,_,$ = l+bt +...+b,_l. 

Let Z2,Z3,. ..,~,betherootsofthepolynomialZ”~~+b~Z”~*+...+b,_~. 
Then (as we already remarked in the Introduction) for the system 
zi = 1,22 , . . . , zn we have the numbers Si, S2, . . . , S, as first n power sums. 

Observe that if we first choose & = 5, say (so we first fix 1 argdj; of course 
Re a! > 0 by this choice), and then fix Q in such a way that Ial is a small enough 
positive number, then for this fixed (Y the conditions of Lemma 3 (including 
11 - (~1 < 1) are satisfied, if n is large enough (since T = [f]). This proves our 
Theorem, because 11 - al < 1 (and of course f < 1). 
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3. MORE PRECISE COMPUTATIONS 

In this section we assume that 11 - LY[ < 1, and we consider (1 to be a fixed 
number, so the o- and O-symbols may depend on cr. 

It is easy to see that instead of the upper bound derived in the proof of 
Lemma 2, one has in fact the relation 

a t&m = jg &jj (log~)r-l+o(;), 

so 

an,, = 

for T + 1 < m < n. Then, using that 

for T + 1 I I < m 5 n by (18), we get (considering separately the cases m = I, 
1~ m < n and m = n in the sum (15) defining Pl, and approximating the sum 
over 1 < m < n by an integral) for T + 1 5 1 < n that 

“=“(q)“+/ (~)(~(~)a)dm_+o(~) n/% n-l 

+ o((~-n~::a-2). 
so, after explicit computation of the integral, 

for T + 1 < I < n. On the other hand, P, = 1, and \n@J + 00 as n ---) 00 by (18) 
whence P,,/n& = o(1). Then, if q is also a fixed number, the condition of 
Lemma 1 is satisfied for large enough n, if 

(24 1+(1-a)J! (I-I)“-17 
i/2 

<qJ! (l-I)neO-r~. 
r/2 

This means that if (22) is true, then 

(23) limsupR, I max(j1 - a\,q). 
n-m 

Now, . 
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for ReA > 0. We apply this formula for both sides of (22) (with A = (Y and 
A = Rea, respectively), then we choose q = 11 - 01 and estimate trivially, ob- 
taining that if we have 

(24) 11 -*](&-$) > 2Rea, 

then 

(25) limsupR, < 11 - cy]. 
“-+CQ 

We now choose Q = y. Then 

On the other hand, 11 - crl > 4/5, and 

1 1 ,243 ---= -, 
Rea (~1 2 

Using fi < 1.42, we thus have that the left-hand side of (24) is greater than 
1.16, and it is easy to check that (1.16)5 > 2, hence (24) is true. So (25) holds, 
and in view of (26) this means that R, < 5/6 for large enough n. 

Addendum. G. Harcos ([HI) made computer work based on formulas (22) and 
(23), and he found that the value 

a = 0.56754 + 0.542371’ 

gives 

lim sup R, -c 0.69368. 
“--to0 

He also observed that our basic identity (14) (and even a more compact form of 
it) can be derived also from the inverse Newton-Girard formulas (these for- 
mulas express the coefficients of an n-degree polynomial with the first n power 
sums of its roots). 

I am grateful to him for these remarks. 
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