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Abstract
We effectively solve the class number one problem for a
certain family 𝐐(

√
𝐷) (𝐷 ∈  ) of real quadratic fields,

where  is an infinite subset of the set of odd posi-
tive fundamental discriminants. The set  contains the
Yokoi discriminants 𝑛2 + 4, so our result is a general-
ization of the solution of Yokoi’s Conjecture. But this
familymay contain also infinitelymany fields with com-
paratively larger fundamental units than the fields in
the Yokoi family (it may be as large as log2 𝐷 instead of
log𝐷). The proof is also a generalization of the proof of
Yokoi’s Conjecture.

MSC 2020
11R11 (primary), 11R29 (secondary)

1 INTRODUCTION

For integers 𝑏 ⩾ 0, 𝑐 > 0, 𝑛 ⩾ 2, write

𝐷 = 𝐷𝑛,𝑏,𝑐 ∶=
(
𝑏(1 + 𝑏𝑐)𝑛 + 𝑐

)2
+ 4(1 + 𝑏𝑐)𝑛,

and assume that𝐷 is squarefree. Let𝐾 = 𝐾𝑛,𝑏,𝑐 = 𝐐(
√
𝐷𝑛,𝑏,𝑐). These discriminants appear already

in [5]. The fundamental unit 𝜖𝐷 of these fields can be computed explicitly and it is≪ log2 𝐷 (see
below). Then, using Dirichlet’s class number formula

ℎ(𝐷) log 𝜖𝐷 = 𝐷1∕2𝐿(1, 𝜒𝐷),
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(where ℎ(𝐷) denotes the class number of 𝐾, 𝜒𝐷(𝑛) = ( 𝑛
𝐷
) is a Jacobi symbol, 𝐿(𝑠, 𝜒𝐷) is the

corresponding Dirichlet 𝐿-function) and Siegel’s theorem (see [3])

𝐿(1, 𝜒𝐷) ≫𝜖 |𝐷|−𝜖
(which is an ineffective estimate), we see that there are only finitely many fields in this family
having class number 1.
But the effective (and unconditional) determination of every field of class number one in this

family is not known. Partial results were proved in [7] and in [8] (the problem was solved there
for some fixed values of the pair (b,c), in particular, for the so-called Shanks sequence 𝑏 = 𝑐 = 1),
and also in [1] (for 𝑏 = 0; this case was Yokoi’s Conjecture). Assuming the Riemann Hypohesis,
every field of class number one in this family was determined in [6], Theorem 5.2.
In the present paper, we solve the problem under the condition that 𝑏 is divisible by a certain

fixed positive integer 𝑁0.

Theorem 1.1. Let 𝑏 ⩾ 0, 𝑐 > 0, 𝑛 ⩾ 2 be integers, assume that 𝐷𝑛,𝑏,𝑐 is squarefree and the field
𝐾𝑛,𝑏,𝑐 = 𝐐(

√
𝐷𝑛,𝑏,𝑐) has class number one. Suppose that𝑁0 divides 𝑏, where𝑁0 denotes the product

of 52, 7, 41, 61, and 1861. Then 𝑏 = 0, and 𝑐 ∈ {1, 3, 5, 7, 13, 17}.

It is possible that similar statements may be proved with other specific values of 𝑁0. How-
ever, we cannot show it with 𝑁0 = 1, that is, the class number one problem for the entire family
remains open.
The 𝑏 = 0 case of the above theorem is exactly the statement of Yokoi’s Conjecture (proved

in [1]). The present theorem is proved by the method of [1]. During the proof, an important tool
is a formula proved in [2] for the special value at 0 of a certain zetafunction belonging to a real
quadratic field, which is a generalization of a similar formula of [1] proved for the Yokoi family.
By Satz 1 of [4], we know that for the fundamental unit 𝜖𝐷 of 𝐾, we have

𝜖𝐷 =
𝑏(1 + 𝑏𝑐)𝑛 + 𝑐 +

√
𝐷

2

(
𝑏2(1 + 𝑏𝑐)𝑛 + 2 + 𝑏𝑐 + 𝑏

√
𝐷

2(1 + 𝑏𝑐)

)𝑛

.

One can then see easily that if 0 < 𝑏𝑐 = 𝑂(1), then

log2 𝐷 ≪ log 𝜖𝐷 ≪ log2 𝐷

(as it is noted on page 158 of [4]). One also sees that if we assume only that 𝑏𝑐 is not too large in
terms of 𝑛, precisely we assume 𝑏𝑐 > 0 and log(1 + 𝑏𝑐) = 𝑛𝑜(1), then we have

log 𝜖𝐷 ≫ log2−𝑜(1) 𝐷.

In contrast, in the Yokoi family 𝐷 = 𝑛2 + 4 with squarefree 𝐷, we have

log 𝜖𝐷 ≪ log𝐷.

Hence we see that the method of [1] can be applied for a family with comparatively larger
fundamental units than the fields in the Yokoi family.
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In § 2, our main goal is to prove Lemma 2.8, which shows that under the conditions of Theo-
rem 1.1 𝐷𝑛,𝑏,𝑐 must be a square modulo at least one element of a fixed finite set of primes (this
corresponds to the Theorem of [1]). The proof (just as in [1]) ultimately depends on some com-
puter work. But the computations needed here are exactly the same which was carried out in [1],
so here we can simply refer to them. Section 2 is the most important part of the proof. It would be
possible to finish the proof from this point by using the theory of reduced ideals, as in [8]. But we
prefer to give a direct proof in § 3, similarly aswe proved Fact B in [1], using here somewell-known
results from diophantine approximation.

2 THEMAIN REASONING

Let 𝑅 be the ring of algebraic integers of 𝐾, denote by 𝐼(𝐾) the set of nonzero ideals of 𝑅 and
by 𝑃(𝐾) the set of nonzero principal ideals of 𝑅. Let 𝑁(𝑎) be the norm of an ideal 𝑎 ∈ 𝐼(𝐾). For
ℜ𝑠 > 1 and a character 𝜒, define

𝜁𝑃(𝐾)(𝑠, 𝜒) = 𝜁𝑃(𝐾𝑛,𝑏,𝑐)(𝑠, 𝜒) =
∑

𝑎∈𝑃(𝐾)

𝜒(𝑁(𝑎))

𝑁(𝑎)𝑠
.

Our first main goal is to prove Lemma 2.4. The statement of that lemma will be the important
property of 𝜁𝑃(𝐾)(0, 𝜒) needed in our class number problem.

Lemma 2.1. Let

𝐷 = 𝐷𝑛,𝑏,𝑐 ∶=
(
𝑏(1 + 𝑏𝑐)𝑛 + 𝑐

)2
+ 4(1 + 𝑏𝑐)𝑛

with integers 𝑏 ⩾ 0, 𝑐 > 0, 𝑛 ⩾ 2, and let𝐷 be squarefree. Let𝜒 be an odd primitive charactermodulo
𝑞 > 1with (𝑞, 2𝐷) = 1, and assume that the order of𝜒 is greater than 2. Assume 𝑞|𝑏. Then 𝜁𝑃(𝐾)(𝑠, 𝜒)
extends meromorphically in 𝑠 to the whole complex plane and 𝜁𝑃(𝐾)(0, 𝜒) equals the sum of

2

𝑞2

∑
1⩽𝑢,𝑣⩽𝑞−1

𝑢𝑣𝜒
(
𝑢2 + 𝑐𝑢𝑣 − 𝑣2

)
and

𝜏(𝜒)2𝐿
(
2, 𝜒

2
)

𝜋2
𝜒(−𝐷)

(
𝐷

𝑞

)(
𝑏(1 + 𝑏𝑐)𝑛 + 𝑐 + 2

(1 + 𝑏𝑐)𝑛 − 1

𝑐

)
,

where (𝐷
𝑞
) is the Jacobi symbol, 𝜏(𝜒) =

∑𝑞−1
𝑎=1

𝜒(𝑎)𝑒2𝜋𝑖𝑎∕𝑞 is the Gauss sum, and if 𝜓 is a character,
then 𝐿(𝑠, 𝜓) denotes the corresponding Dirichlet 𝐿 -function.

Proof. First let 𝑏 = 0. Then the result is proved on [2, p. 1825] (see page 1809 there for the definition
of 𝛽𝜒).
Now assume 𝑏 > 0. Let

𝜔𝐷 =
1 +

√
𝐷

2
. (2.1)



1224 BIRÓ

Then the regular continued fraction expansion

𝜔𝐷 =
[
𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑙

]
,

where 𝑙 is the least period of the expansion, can be explicitly described as follows, see [4, Satz 1
and p. 161]. We have 𝑙 = 2𝑛 + 1,

𝑎0 =
1

2

(
𝑏(1 + 𝑏𝑐)𝑛 + 𝑐 + 1

)
, (2.2)

for 0 ⩽ 𝑖 ⩽ 𝑛 − 1, we have

𝑎2𝑖+1 = 𝑏(1 + 𝑏𝑐)𝑖, (2.3)

𝑎2𝑖+2 = 𝑏(1 + 𝑏𝑐)𝑛−1−𝑖, (2.4)

finally

𝑎2𝑛+1 = 𝑏(1 + 𝑏𝑐)𝑛 + 𝑐. (2.5)

Let

𝛼 ∶= 𝜔𝐷 − 𝑎0. (2.6)

As in [2], for 1 ⩽ 𝑗 ⩽ 2𝑛 + 1 define the relatively prime positive integers 𝑝𝑗 and 𝑞𝑗 by

𝑝𝑗

𝑞𝑗
=
[
0, 𝑎1, 𝑎2, … , 𝑎𝑗

]
,

and write

𝛼𝑗 ∶= 𝑝𝑗 − 𝑞𝑗𝛼.

Define also 𝛼0 = −𝛼. For 1 ⩽ 𝑗 ⩽ 2𝑛 + 1, introduce the quadratic forms

𝑄𝑗(𝑥, 𝑦) =
(
𝛼𝑗−1𝑥 + 𝛼𝑗𝑦

)(
𝛼𝑗−1𝑥 + 𝛼𝑗𝑦

)
,

where 𝛽 denotes the algebraic conjugate of 𝛽 ∈ 𝐾. Since every 𝛼𝑗 (0 ⩽ 𝑗 ⩽ 2𝑛 + 1) is an algebraic
integer, so for every 1 ⩽ 𝑗 ⩽ 2𝑛 + 1, we have

𝑄𝑗(𝑥, 𝑦) = 𝐴𝑗𝑥
2 + 𝐵𝑗𝑥𝑦 + 𝐶𝑗𝑦

2 (2.7)

with rational integer coefficients 𝐴𝑗 , 𝐵𝑗 , 𝐶𝑗 . For these coefficients, we clearly have the following
formulae:

𝐴𝑗 = 𝛼𝑗−1𝛼𝑗−1 = 𝑝2
𝑗−1 − 𝑝𝑗−1𝑞𝑗−1

(
𝛼 + 𝛼

)
+ 𝑞2𝑗−1𝛼𝛼

for 2 ⩽ 𝑗 ⩽ 2𝑛 + 1,

𝐴1 = 𝛼𝛼,

𝐵𝑗 = 𝛼𝑗−1𝛼𝑗 + 𝛼𝑗𝛼𝑗−1 = 2𝑝𝑗−1𝑝𝑗 + 2𝑞𝑗−1𝑞𝑗𝛼𝛼 −
(
𝑝𝑗−1𝑞𝑗 + 𝑝𝑗𝑞𝑗−1

)(
𝛼 + 𝛼

)



CLASS NUMBER ONE PROBLEM FOR A FAMILY OF REAL QUADRATIC FIELDS 1225

for 2 ⩽ 𝑗 ⩽ 2𝑛 + 1,

𝐵1 = −𝛼𝛼1 − 𝛼1𝛼 = 2𝑞1𝛼𝛼 − 𝑝1
(
𝛼 + 𝛼

)
,

𝐶𝑗 = 𝛼𝑗𝛼𝑗 = 𝑝2
𝑗 − 𝑝𝑗𝑞𝑗

(
𝛼 + 𝛼

)
+ 𝑞2𝑗𝛼𝛼

for 1 ⩽ 𝑗 ⩽ 2𝑛 + 1.
It is easy to check by direct computation that

𝑝1 = 1, 𝑞1 = 𝑏,

𝑝2 = 𝑏(1 + 𝑏𝑐)𝑛−1, 𝑞2 = 1 + 𝑏2(1 + 𝑏𝑐)𝑛−1.

On the other hand, we have well-known recursions (see, e.g., Lemma 3A of [9])

𝑝𝑗 = 𝑎𝑗𝑝𝑗−1 + 𝑝𝑗−2, 𝑞𝑗 = 𝑎𝑗𝑞𝑗−1 + 𝑞𝑗−2

for 3 ⩽ 𝑗 ⩽ 2𝑛 + 1. Since by the condition 𝑞|𝑏 and by formulas (2.3) and (2.4) we have 𝑞|𝑎𝑗 for
1 ⩽ 𝑗 ⩽ 2𝑛, so we get that

𝑝1 ≡ 𝑝3 ≡ 𝑝5 ≡ … ≡ 𝑝2𝑛−1 ≡ 1 (mod 𝑞),

𝑝2 ≡ 𝑝4 ≡ 𝑝6 ≡ … ≡ 𝑝2𝑛 ≡ 0 (mod 𝑞),

𝑞1 ≡ 𝑞3 ≡ 𝑞5 ≡ … ≡ 𝑞2𝑛−1 ≡ 0 (mod 𝑞),

𝑞2 ≡ 𝑞4 ≡ 𝑞6 ≡ … ≡ 𝑞2𝑛 ≡ 1 (mod 𝑞).

By (2.5), we have

𝑎2𝑛+1 ≡ 𝑐 (mod 𝑞),

hence by the above relations, we get

𝑝2𝑛+1 ≡ 1 (mod 𝑞), 𝑞2𝑛+1 ≡ 𝑐 (mod 𝑞).

By formulas (2.1), (2.2) and (2.6), we see that

𝛼 =

√
𝐷

2
−

1

2

(
𝑏(1 + 𝑏𝑐)𝑛 + 𝑐

)
,

so

−𝛼 − 𝛼 = 𝑏(1 + 𝑏𝑐)𝑛 + 𝑐 ≡ 𝑐 (mod 𝑞),

𝛼𝛼 =

(
𝑏(1 + 𝑏𝑐)𝑛 + 𝑐

)2
− 𝐷

4
= −(1 + 𝑏𝑐)𝑛 ≡ −1 (mod 𝑞).

Then, using our expressions above for 𝐴𝑗, 𝐵𝑗 , 𝐶𝑗 and our congruences for 𝑝𝑗 and 𝑞𝑗 we get
examining a few cases that

𝐴𝑗 ≡ (−1)𝑗 (mod 𝑞),

𝐶𝑗 ≡ (−1)𝑗−1 (mod 𝑞)
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for 1 ⩽ 𝑗 ⩽ 2𝑛 + 1,

𝐵𝑗 ≡ 𝑐 (mod 𝑞)

for 1 ⩽ 𝑗 ⩽ 2𝑛,

𝐵2𝑛+1 ≡ −𝑐 (mod 𝑞).

Now, applying Theorem 1 of [2] (taking into account (2.7) above and the well-know fact that
1,

1+
√
𝐷

2
is an integral basis of 𝐾), we get that 𝜁𝑃(𝐾)(0, 𝜒)∕2 equals the sum of

1

𝑞2

2𝑛+1∑
𝑗=1

∑
1⩽𝑢,𝑣⩽𝑞−1

𝑢𝑣𝜒
(
(−1)𝑗

(
𝐴𝑗𝑢

2 + 𝐵𝑗𝑢𝑣 + 𝐶𝑗𝑣
2
))

(2.8)

and

𝜏(𝜒)2𝐿
(
2, 𝜒

2
)

2𝜋2
𝜒(−𝐷)

(
𝐷

𝑞

) 2𝑛+1∑
𝑗=1

𝑎𝑗𝜒
(
(−1)𝑗𝐴𝑗

)
. (2.9)

Inserting the expressions above for the residuesmodulo 𝑞 of𝐴𝑗 ,𝐵𝑗 and𝐶𝑗 , we get that (2.8) equals

1

𝑞2

2𝑛∑
𝑗=1

∑
1⩽𝑢,𝑣⩽𝑞−1

𝑢𝑣𝜒
(
𝑢2 + (−1)𝑗𝑐𝑢𝑣 − 𝑣2

)
+

1

𝑞2

∑
1⩽𝑢,𝑣⩽𝑞−1

𝑢𝑣𝜒
(
𝑢2 + 𝑐𝑢𝑣 − 𝑣2

)
, (2.10)

and (2.9) equals

𝜏(𝜒)2𝐿
(
2, 𝜒

2
)

2𝜋2
𝜒(−𝐷)

(
𝐷

𝑞

) 2𝑛+1∑
𝑗=1

𝑎𝑗. (2.11)

Now, ∑
1⩽𝑢,𝑣⩽𝑞−1

𝑢𝑣𝜒
(
𝑢2 + 𝑐𝑢𝑣 − 𝑣2

)
+

∑
1⩽𝑢,𝑣⩽𝑞−1

𝑢𝑣𝜒
(
𝑢2 − 𝑐𝑢𝑣 − 𝑣2

)
(2.12)

equals (by interchanging the role of 𝑢 and 𝑣 in the second sum)∑
1⩽𝑢,𝑣⩽𝑞−1

𝑢𝑣𝜒
(
𝑢2 + 𝑐𝑢𝑣 − 𝑣2

)
+

∑
1⩽𝑢,𝑣⩽𝑞−1

𝑢𝑣𝜒
(
𝑣2 − 𝑐𝑢𝑣 − 𝑢2

)
,

and since 𝜒 is odd, we get that (2.12) equals 0, and hence (2.10), and so also (2.8) equals

1

𝑞2

∑
1⩽𝑢,𝑣⩽𝑞−1

𝑢𝑣𝜒
(
𝑢2 + 𝑐𝑢𝑣 − 𝑣2

)
.

Using (2.3), (2.4), (2.5) in (2.11) and summing the geometric series, we obtain the lemma. □
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Lemma 2.2. Under the assumptions of Lemma 2.1, we have that

𝜏(𝜒)2𝐿
(
2, 𝜒

2
)

𝜋2
𝜒(−𝐷)

(
𝐷

𝑞

)
=

∑
0⩽𝑢,𝑣⩽𝑞−1

(
𝑣2

𝑞2
−

𝑣

𝑞

)
𝜒
(
𝑢2 + 𝑐𝑢𝑣 − 𝑣2

)
. (2.13)

Proof. Note first that because of the condition 𝑞|𝑏, we have
𝐷 = 𝐷𝑛,𝑏,𝑐 ≡ 𝑐2 + 4 (mod 𝑞).

Hence Proposition 6.1 of [2] implies (writing 𝑙 = 2 there) that the left-hand side of (2.13) equals

∑
0⩽𝑢,𝑣⩽𝑞−1

𝐵2

(
𝑣

𝑞

)
𝜒
(
𝑢2 + 𝑐𝑢𝑣 − 𝑣2

)
,

where 𝐵2(𝑥) = 𝑥2 − 𝑥 + 1

6
is the second Bernoulli polynomial. Hence it is enough to show that

𝑆 ∶=
∑

0⩽𝑢,𝑣⩽𝑞−1

𝜒
(
𝑢2 + 𝑐𝑢𝑣 − 𝑣2

)
= 0.

But by the substitution (𝑢, 𝑣) → (−𝑣, 𝑢), we see that

𝑆 =
∑

0⩽𝑢,𝑣⩽𝑞−1

𝜒
(
𝑣2 − 𝑐𝑢𝑣 − 𝑢2

)
= −𝑆,

since 𝜒 is odd. The lemma is proved. □

Lemma 2.3. Let 𝑐 be an integer, let 𝜒 be an odd primitive character modulo 𝑞 > 1 with (𝑞, 2(𝑐2 +

4)) = 1, and assume that the order of 𝜒 is greater than 2. Then

2

𝑞2

∑
1⩽𝑢,𝑣⩽𝑞−1

𝑢𝑣𝜒
(
𝑢2 + 𝑐𝑢𝑣 − 𝑣2

)
+ 𝑐

∑
0⩽𝑢,𝑣⩽𝑞−1

(
𝑣2

𝑞2
−

𝑣

𝑞

)
𝜒
(
𝑢2 + 𝑐𝑢𝑣 − 𝑣2

)
(2.14)

equals

1

𝑞
𝐴𝜒(𝑐),

where for any integer 𝑎, we write (⌈𝑡⌉ is the least integer not smaller than 𝑡)

𝐴𝜒(𝑎) =
∑

0⩽𝐶,𝐷⩽𝑞−1

𝜒(𝐷2 − 𝐶2 − 𝑎𝐶𝐷)⌈(𝑎𝐶 − 𝐷)∕𝑞⌉(𝐶 − 𝑞).

Proof. Introduce the notation 𝐴 = 𝐴(𝐶,𝐷) = ⌈(𝑐𝐶 − 𝐷)∕𝑞⌉, and recall from [1, p. 95], the
transformation

𝑇((𝐶, 𝐷)) = (�̂�, �̂�)

with

�̂� = 𝐷 − 𝑐𝐶 − 𝑞[(𝐷 − 𝑐𝐶)∕𝑞], �̂� = 𝐶
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(where we use lower integer part) and the relation

𝑞𝐴 = 𝑐𝐶 − 𝐷 + �̂�.

Then it is easy to check that

1

𝑞
𝐴(𝐶 − 𝑞) =

1

𝑞2

(
(𝐶 − 𝑞)(𝑐𝐶 − 𝐷) + �̂��̂� − 𝑞�̂�

)
. (2.15)

As it is noted in [1, p. 95],𝑇 is a permutation of the set of the pairs (𝐶, 𝐷)with 0 ⩽ 𝐶,𝐷 ⩽ 𝑞 − 1, any
orbit of 𝑇 (where 𝜒 is not 0) has an even number of elements, and the value of 𝜒(𝐷2 − 𝐶2 − 𝑐𝐶𝐷)

changes to its negative at each step by 𝑇. Then (2.15) and the definition of 𝐴𝜒(𝑐) imply that

1

𝑞
𝐴𝜒(𝑐) =

1

𝑞2

∑
0⩽𝐶,𝐷⩽𝑞−1

𝜒(𝐷2 − 𝐶2 − 𝑐𝐶𝐷)((𝐶 − 𝑞)(𝑐𝐶 − 𝐷) − 𝐶𝐷 + 𝑞𝐶),

and so (writing 𝐷 in place of 𝑢, 𝑞 − 𝐶 in place of 𝑣 in (2.14)) the difference of (2.14) and 1

𝑞
𝐴𝜒(𝑐)

equals

−
2

𝑞

𝑞−1∑
𝐷=1

𝜒
(
𝐷2

)
𝐷 +

1

𝑞

∑
0⩽𝐶,𝐷⩽𝑞−1

𝜒(𝐷2 − 𝐶2 − 𝑐𝐶𝐷)𝐷 −
1

𝑞

∑
0⩽𝐶,𝐷⩽𝑞−1

𝜒(𝐷2 − 𝐶2 − 𝑐𝐶𝐷)𝐶. (2.16)

It is enough to show that this is zero. Note first that

2

𝑞−1∑
𝐷=1

𝜒
(
𝐷2

)
𝐷 =

𝑞−1∑
𝐷=1

𝜒
(
𝐷2

)
𝐷 +

𝑞−1∑
𝐷=1

𝜒
(
𝐷2

)
(𝑞 − 𝐷) = 𝑞

𝑞−1∑
𝐷=1

𝜒
(
𝐷2

)
= 0,

since the order of 𝜒 is greater than 2. Using again that the order of 𝜒 is greater than 2, we see that
(2.16) equals

1

𝑞

𝑞∑
𝐷=0

𝐷
∑

𝐶 mod q
𝜒(𝐷2 − 𝐶2 − 𝑐𝐶𝐷) −

1

𝑞

𝑞∑
𝐶=0

𝐶
∑

𝐷 mod q
𝜒(𝐷2 − 𝐶2 − 𝑐𝐶𝐷). (2.17)

Writing 𝑞 − 𝐷 in place of 𝐷 and −𝐶 in place of 𝐶 in the first sum, and similarly, 𝑞 − 𝐶 in place
of 𝐶 and −𝐷 in place of 𝐷 in the second sum, and averaging the old and new expressions, we get
that (2.17) equals

1

2

𝑞∑
𝐷=0

∑
𝐶 mod 𝑞

𝜒(𝐷2 − 𝐶2 − 𝑐𝐶𝐷) −
1

2

𝑞∑
𝐶=0

∑
𝐷 mod 𝑞

𝜒(𝐷2 − 𝐶2 − 𝑐𝐶𝐷).

The 𝐷 ≠ 0 part of the first sum and the 𝐶 ≠ 0 part of the second sum cancels out, while the𝐷 = 0

part of the first sum and the 𝐶 = 0 part of the second sum is zero since the order of 𝜒 is greater
than 2. The lemma is proved. □

Lemma 2.4. Under the assumptions of Lemma 2.1, we have that

𝑞𝜁𝑃(𝐾𝑛,𝑏,𝑐)(0, 𝜒) − 𝐴𝜒(𝑐)

equals 𝑏

𝑞
times an algebraic integer, where 𝐴𝜒(𝑐) is defined Lemma 2.3.
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Proof. This follows at once from Lemmas 2.1–2.3 above.
If 𝜒 is a character modulo 𝑞, denote by 𝜒 the field generated over 𝐐 by the values 𝜒(𝑎) (1 ⩽

𝑎 ⩽ 𝑞), and write

𝑚𝜒 =

𝑞∑
𝑎=1

𝑎𝜒(𝑎).

We start to apply the class number one condition from now on. The following lemma can be
proved by the reasoning in [1, pp. 87–88]. □

Lemma 2.5. For some integers 𝑏 ⩾ 0, 𝑐 > 0, 𝑛 ⩾ 2 assume that 𝐷𝑛,𝑏,𝑐 is squarefree and 𝐾𝑛,𝑏,𝑐 =

𝐐(
√
𝐷𝑛,𝑏,𝑐) has class number one. Then, if 𝑞 is an integer with 𝑞 > 2, (𝑞, 2𝐷𝑛,𝑏,𝑐) = 1, and 𝜒 is a

primitive character modulo 𝑞 with 𝜒(−1) = −1, then we have that𝑚𝜒 ≠ 0, and

𝑞𝜁𝑃(𝐾𝑛,𝑏,𝑐)(0, 𝜒)𝑚
−1
𝜒

is an algebraic integer.

Lemma 2.6. Weuse the notations and assumptions of Lemma 2.5. Assume also that there is a prime
ideal 𝐼 of 𝜒 and a rational prime 𝑟 such that 𝑟 ∈ 𝐼,𝑚𝜒 ∈ 𝐼. Suppose that 𝑞 divides 𝑏, and 𝑟 divides
𝑏

𝑞
. Then 𝐴𝜒(𝑐) ∈ 𝐼.

Proof. By Lemmas 2.1 and 2.2, we see that 𝜁𝑃(𝐾𝑛,𝑏,𝑐)
(0, 𝜒) ∈ 𝜒 . By Lemma 2.5 above and by the

condition𝑚𝜒 ∈ 𝐼, we then get 𝑞𝜁𝑃(𝐾𝑛,𝑏,𝑐)
(0, 𝜒) ∈ 𝐼. Then by Lemma 2.4 above, using the conditions

𝑟 ∈ 𝐼, 𝑞 divides 𝑏, and 𝑟 divides 𝑏

𝑞
, we obtain the lemma.

In [1, Section 4], three characters 𝜒1, 𝜒2, 𝜒3 and four prime ideals 𝐼1,1, 𝐼1,2, 𝐼2 and 𝐼3 are defined
(we denote here by 𝐼1,1 the ideal given in Example 1 of [1], by 𝐼1,2 the ideal given in [1, Example 2],
by 𝐼2 the ideal given in [1, Example 3], finally by 𝐼3 the ideal given in [1, Example 4]). We do not
need here the precise definitions, only the following properties, which are clear from [1]:

𝜒1 is a character modulo 175, 𝜒2 and 𝜒3 are characters modulo 61,

𝐼1,1 is a prime ideal of 𝜒1
, 𝑚𝜒1

∈ 𝐼1,1, 𝐼1,1 lies above the rational prime 61,

𝐼1,2 is a prime ideal of 𝜒1
, 𝑚𝜒1

∈ 𝐼1,2, 𝐼1,2 lies above the rational prime 1861,

𝐼2 is a prime ideal of 𝜒2
, 𝑚𝜒2

∈ 𝐼2, 𝐼2 lies above the rational prime 1861,

𝐼3 is a prime ideal of 𝜒3
, 𝑚𝜒3

∈ 𝐼3, 𝐼3 lies above the rational prime 41.

The following lemma is proved in [1]. It is not stated explicitly there, but following the reasoning
in [1, Sections 4, 5 and 6], we see that it is actually proved there. □

Lemma 2.7. Assume that 𝑐 is an integer and

𝐴𝜒1
(𝑐) ∈ 𝐼1,1, 𝐴𝜒1

(𝑐) ∈ 𝐼1,2, 𝐴𝜒2
(𝑐) ∈ 𝐼2, 𝐴𝜒3

(𝑐) ∈ 𝐼3.

Then 𝑑 = 𝑐2 + 4 is a square for at least one of the following moduli: 𝑞 = 5, 7, 41, 61, 1861 (that is,
(𝑑∕𝑞) = 0 or 1 for at least one of the listed values of 𝑞).
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Lemma 2.8. For some integers 𝑏 ⩾ 0, 𝑐 > 0, 𝑛 ⩾ 2, assume that 𝐷𝑛,𝑏,𝑐 is squarefree and 𝐾𝑛,𝑏,𝑐 =

𝐐(
√
𝐷𝑛,𝑏,𝑐) has class number one. Suppose that the product of 41, 61, 175 and 1861 divides 𝑏. Then

𝐷𝑛,𝑏,𝑐 is a square for at least one of the following moduli: 𝑞 = 5, 7, 41, 61, 1861.

Proof. It follows easily by combining Lemmas 2.6 and 2.7 that 𝑐2 + 4 is a square for at least one
such 𝑞. Since every possible 𝑞 divides 𝑏, hence 𝐷𝑛,𝑏,𝑐 is also a square modulo 𝑞. The lemma is
proved. □

3 THE END OF THE PROOF

As it is noted in the Introduction, the 𝑏 = 0 case is proved in [1]. So we may assume 𝑏 > 0.
Let 𝑞 ∈ {5, 7, 41, 61, 1861} be fixed such that𝐷𝑛,𝑏,𝑐 is a squaremodulo 𝑞, we know by Lemma 2.8

that there is such a 𝑞. It is well known that the ideal (𝑞) is then a product of two prime ideals in
𝑅; both prime ideals must have norm 𝑞. Since the class number of 𝐾𝑛,𝑏,𝑐 is 1, it follows that there
is a 𝛽 ∈ 𝑅 such that |𝛽𝛽| = 𝑞. We will show that this is impossible.
Since 1, 1+

√
𝐷

2
is an integral basis, so we have

𝛽 = 𝐴 − 𝐵
1 +

√
𝐷

2

with rational integers 𝐴 and 𝐵. We have |𝛽𝛽| = 𝑞 with a prime 𝑞, so 𝐵 is nonzero, and (𝐴, 𝐵) = 1.
The expression |𝛽𝛽| is invariant under the transformations (𝐴, 𝐵) → (−𝐴,−𝐵) and (𝐴, 𝐵) → (𝐵 −

𝐴, 𝐵), so we may assume that 𝐵 > 0 and 𝐴 ⩾
𝐵

2
. We have

𝐵

||||||𝐴 − 𝐵
1 +

√
𝐷

2

|||||| =
𝐵𝑞||||𝐴 − 𝐵

2
+ 𝐵

√
𝐷

2

||||
⩽

2𝑞√
𝐷

<
1

2
. (3.1)

The last inequality easily follows from 𝑏 ⩾ 𝑁0. Hence the fraction
𝐴

𝐵
approximates 1+

√
𝐷

2
so well

that by Theorem 5C of [9] 𝐴

𝐵
must be a convergent of 1+

√
𝐷

2
, that is, we must have

𝐴

𝐵
=
[
𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑗

]
with some 𝑗 ⩾ 0, where

1 +
√
𝐷

2
= [𝑎0, 𝑎1, 𝑎2, …]

is the continued fraction expansion of 1+
√
𝐷

2
. By the third displayed formula in [9, p. 17], we then

have

1

𝑎𝑗+1 + 2
⩽ 𝐵

||||||𝐴 − 𝐵
1 +

√
𝐷

2

|||||| ⩽
1

𝑎𝑗+1
. (3.2)
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Returning to (3.1), we first get

||||||𝐴 − 𝐵
1 +

√
𝐷

2

|||||| ⩽
2𝑞

𝐵
√
𝐷
,

hence ||||||𝐴 −
𝐵

2
+ 𝐵

√
𝐷

2

|||||| ⩽ 𝐵
√
𝐷 +

2𝑞

𝐵
√
𝐷
,

so, again by (3.1), we get

𝐵𝑞

𝐵
√
𝐷 +

2𝑞

𝐵
√
𝐷

⩽ 𝐵

||||||𝐴 − 𝐵
1 +

√
𝐷

2

|||||| ⩽
2𝑞√
𝐷
. (3.3)

So there must be an integer 𝑗 ⩾ 0 such that the inequalities (3.3) and (3.2) simultaneously hold.
By the description of the continued fraction expansion of 𝜔𝐷 (see (2.1) for this notation) during
the proof of Lemma 2.1, we see that we may assume 0 ⩽ 𝑗 ⩽ 2𝑛.
If 0 ⩽ 𝑗 < 2𝑛, then by (2.3) and (2.4), we see that

1 ⩽ 𝑎𝑗+1 ⩽ 𝑏(1 + 𝑏𝑐)𝑛−1,

hence

1

𝑎𝑗+1 + 2
⩾

1

3𝑏(1 + 𝑏𝑐)𝑛−1
.

By (3.3) and (3.2), we then must have

1

3𝑏(1 + 𝑏𝑐)𝑛−1
⩽

2𝑞√
𝐷
,

so √
𝐷 ⩽ 6𝑏𝑞(1 + 𝑏𝑐)𝑛−1.

But
√
𝐷 ⩾ 𝑏(1 + 𝑏𝑐)𝑛, so we would get

1 + 𝑏𝑐 ⩽ 6𝑞,

but this is a contradiction by the conditions 𝑏 ⩾ 𝑁0, 𝑞 ⩽ 1861.
We are left with the case 𝑗 = 2𝑛. Then by (2.5), (3.3) and (3.2), we have

𝐵𝑞

𝐵
√
𝐷 +

2𝑞

𝐵
√
𝐷

⩽
1

𝑏(1 + 𝑏𝑐)𝑛 + 𝑐
,

hence

𝑏(1 + 𝑏𝑐)𝑛 + 𝑐 ⩽

√
𝐷

𝑞
+

2

𝐵2
√
𝐷
.
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But trivially √
𝐷 ⩽ 𝑏(1 + 𝑏𝑐)𝑛 + 𝑐 + 1.

Since 𝑞 ⩾ 5, we get

4
𝑏(1 + 𝑏𝑐)𝑛 + 𝑐 + 1

5
⩽ 1 +

2

𝐵2
√
𝐷
.

The right-hand side is clearly smaller than 3, so this is a contradiction. Theorem 1.1 is proved.
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