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We prove some partial results concerning the following problem: Assume that F
is a finite field, ai is a complex number for each i # F such that a0=0, a1=1, |ai |=1
for all i # F "[0], and � i # F ai+j a� i=&1 for all i # F "[0]. Does it follow that the
function i � ai is a multiplicative character of F? We prove (in the case |F |=p,
p is a prime) on the one hand that there is only a finite number of complex solu-
tions; on the other hand we solve completely a mod p version of the problem. The
proofs are mainly elementary, except for applying a theorem of Chevalley from
algebraic geometry. � 1999 Academic Press

1. INTRODUCTION

The problem mentioned in the abstract was posed by Harvey Cohn. This
is Problem 39 in the book of Montgomery ([M, p. 202]; note that there
is a misprint there). It is easy to see that characters satisfy these conditions
indeed.

Consider the following modified problem.
Assume that F is a finite field, ai is a complex number for each i # F such

that a0=0, a1=1, ai{0 for all i # F"[0], and for every j # F"[0] we have

:
i # F"[0]

ai+j

ai
=&1.

Does it follow that the function i � ai is a multiplicative character of F?

These modified conditions are equivalent with the old ones if |ai |=1 for
all i # F"[0]. So if the new conditions imply that i � ai is a character, then
the answer to the question of Cohn is affirmative. However, it may happen
that there are numbers ai satisfying the new conditions, but |ai |{1 for
some i=F"[0,1].
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In this paper we consider this modified problem, but only in the case
when F=Fp for some prime p, where Fp is the field with |Fp |=p. (This is
because our key lemma, Lemma 2 (similarly to Lemma 1) does not work
in the prime power case.) We cannot find all the solutions, but we prove
that the modified problem has only finitely many solutions (this implies of
course that Cohn's problem also has only finitely many solutions). On the
other hand, in characteristic p (instead of the complex, i.e., characteristic 0
case) we solve completely the modified problem, and the solutions in this
case are indeed the ``characters,'' i.e., the multiplicative functions on Fp with
values in Fp .

More precisely, we prove the following two theorems.

Theorem 1. Let p be a prime, let Fp be the field with |Fp |=p . There is
only a finite number of p-tulpes (ai : i # Fp ) of complex numbers such that
a0=0, a1=1, ai{0 for i{0, and

:
i # Fp"[0]

a i+j

ai
=&1

for every j # Fp"[0].

Theorem 2. Let p be a prime, let Fp be the field with |Fp |=p, and
F$Fp any field of characteristic p. Assume that there is given an ai # F for
every i # Fp such that a0=0, a1=1, a i{0 for i{0, and

:
i # Fp"[0]

a i+j

ai
=1

for every j # Fp"[0]. Then ai=iA for every i # Fp with some 1�A�p&2.

We mention the following easy consequence of Theorem 2.

Corollary. Assume that the complex numbers (ai : i # F p) satisfy the
conditions of Theorem 1, and ai=\1 for every i{0. Then we have ai=(i�p)
(Legendre symbol) for every i # Fp .

To prove this reduce the integers ai mod p, then Theorem 2 gives ai #
(i�p) (mod p ), and this implies the Corollary.

In Section 2 we prove some lemmas needed for both theorems. Then first
we prove Theorem 2 (because its proof is shorter) and finally we prove
Theorem 1. The proof of Theorem 2 is completely elementary, while the
proof of Theorem 1 uses some algebraic geometry. Note that the proof of
Theorem 1 in Section 4 gives the additional information that if (ai : i # Fp)
is a solution then every ai (i{0) is an algebraic number relatively prime
to p.
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2. SOME LEMMAS

Let p be a prime, Fp the field with |Fp |=p, and F$Fp an arbitrary field.
Let V be the set of the F-valued functions on Fp , this is a p-dimensional
vector space over F . A basis of V is given by the functions fA (here A=
(0, 1,..., p&1) with the definition

fA (i)=iA for every i # Fp .

(We put i 0=1 for every i # Fp , i.e., f0 is identically 1.) This is a basis
indeed, since a not identically 0 polynomial over F of degree at most p&1
can not have p distinct roots. Let the linear transformation T on V be given
by

(Tf )(i)=f (i+1) for f # V, i # Fp .

Define the subspaces VB of V for B=0, 1, ..., p by

VB=( fA : 0�A<B ).

So V0=[0], Vp=V, V0<V1< } } } <Vp , and the dimension of VB is B.

Lemma 1. If 1< B�p, f # VB"VB&1 , then Tf&f # VB&1"VB&2 .

Proof. This is clear, since

f (i)=cB&1 iB+1+ :
0�A<B&1

cA iA

for i # Fp with c0 , c1 , ..., cB&1 # F, cB&1{0. Then we have

( Tf&f )(i)=f (i+1)&f (i)=cB&1 (B&1) iB&2+ } } } ,

and 0< B&1<p.

Lemma 2. If W is a T-invariant subspace of V, then W=VB for some
0�B�p.

Proof. Let 0�B�p be the least integer such that W�VB . If B=0,
then W=V0 and we are done. If B>0, then W & (VB"VB&1){<. Since
W is T-invariant, we can apply repeatedly Lemma 1 getting g0 , g1 , ..., gB&1

# W such that gB&1 # VB"VB&1 , gB&2 # VB&1 "VB&2 , ..., g0 # V1 "V0 , and
these vectors generate VB , so W=VB .

We introduce an ``inner product'' on V. Let

( f, g)= :
i # Fp

f (i) g(i).
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This is a bilinear form on V_V with values in F. If W is a subspace of V,
set

W= =[ f # V : ( f, g)=0 for g # W].

Lemma 3. If 0�B�p, then V=
B =Vp&B .

Proof. Clearly V=
B is T-invariant and then it follows from Lemma 2 and

the easily proved fact that if the dimension of W�V is B, then W= is a
( p&B)-dimensional subspace.

3. PROOF OF THEOREM 2

With the notations of Section 2 our Theorem 2 reads as follows (taking
f (i) =ai).

Lemma 4. Let f # V be such that f (0)=0, f (1){1, and f (i ){0 for
i # Fp"[0]. Let g # V be defined by g(0)=0 and g(i)=1� f (i) for i # Fp"[0].
Assume that for every j # Fp we have

:
i # Fp

f (i+j) g (i)=&1.

Then f=fA with some 1�A�p&2.

Remark. Observe that the condition for j=0 is automatically satisfied,
for p&1=&1 in the field F.

Proof. Let 0�B�p be the least integer such that f # VB . Since f{0, so
B�1, and

f=cB&1 fB&1+ :
0�A<B&1

cA fA

with some cB&1{0, c0 , ..., cB&1 # F. We have B>1, because f (0)=0.
Let h=(1�cB&1) fp&B . Then, since ( fB&1 , fp&B)=&1, by Lemma 1 and
Lemma 3 ( T jf , h)=&1 for every j�0. This means that g&h # V=

B =Vp&B ,
hence

g=
1

cB&1

fp&B+ :
0�A<p&B

dA fA
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with dA # F for 0�A<p&B. We can see that B<p, as g(0)=0. So
1<B<p. Let Pf , Pg # F[x] with

Pf (x)=cB&1 xB&1+ :
0�A<B&1

cAxA,

and

Pg (x)=
1

cB&1

x p&B+ :
0�A<p&B

dAxA.

Then Pf (i)=f (i), Pg (i)=g(i ) for every i # Fp . Hence (PfPg )(i)=f (i) g (i)
=i p&1 for every i # Fp , and on the other hand deg(Pf Pg )=p&1. This
means that the polynomials Pf (x) Pg (x) and x p&1 are of degree at most
p&1, and they take the same value at p distinct elements (at the elements
of Fp ). So Pf (x) Pg (x)=x p&1, i.e., Pf (x) divides x p&1, and we obtain

f (i)=cB&1 iB&1

for every i # Fp . Since f (1)=1, we must have cB&1=1, and then f=fA with
A=B&1, where 1�A�p&2, because 1<B<p.

4. PROOF OF THEOREM 1

The proof consists of two parts. In the first part we prove (see Lemma 5)
that if a solution consists of algebraic numbers (of course after proving
Theorem 1 we will know that this is true for every solution), then it consists
of numbers relatively prime to p. This result is not surprising, because we
expect that the solutions are characters, hence they consist of roots of
unity. Lemma 5 is the only arithmetic information we need: in the second
part of the proof we derive Theorem 1 from Lemma 5 using some general
algebraic geometry.

Lemma 5. Let K be an algebraic number field, let R be the ring of
integers in K, and P a prime ideal of R such that P & Z=pZ. Let ai , bi # K
for i # Fp such that a0=0, a1=1, and aib i=1 for i # Fp "[0]. Assume that
for every j # Fp"[0] we have

:
i # Fp

ai+jbi=&1.
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Then vP(ai)=0 for every i # Fp"[0]. (Here for elements : # K"[0] we
denote by vP(:) the exponent of : with respect to P, i.e., vP (:) is the integer
such that

:R=PvP (:)Q1Q&1
2 ,

where Q1 and Q2 are ideals of R prime to P. We put vP (0)=�.)

Remark. In our application we will have b0=0, but we do not need it
here.

Proof. Assume that the function i � vP (ai ) is not constant on Fp"[0].
(Otherwise we are done, because vP (a1)=vP (1)=0.) Let

m1=min
i # Fp

vP (ai ), m2=min
i # FP

vP (bi ),

and

H1=[i # FP : vP (a i )=m1], H2=[i # FP : vP (bi )=m2].

By our assumptions m1�0, m2�0, m1+m2<0, since vP (a1)=vP (b1)=
vP (1)=0, vP (ai )+vP (bi )=0 for i # FP"[0], and i � vP (ai ) is not constant
on Fp"[0].

We have H1 & H2=<, since 0 � H1 (because a0=0, a1=1), and if i{0,
i # H1 & H2 , then by ai bi=1 we would have m1+m2=0, which is a
contradiction.

It is clear that for i1 i2 # Fp one has

vP (a i1
bi2

)�m1+m2 ,

and equality holds if and only if i1 # H1 , i2 # H2 . On the other hand, for
any j # Fp the relation

vP \ :
i # Fp

ai+jbi+=0

holds, because for j{0 the inner sum is &1, for j=0 it is p&1.
Now let ? # P"P2. We obtain from the above facts for every fixed j # Fp

that

&P \ :
i+j # H1 , i # H2

ai+j

?m1

bi

?m2+>0

(using also m1+m2<0).
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Let F=R�P, this is an extension field of Fp . The natural homomorphism
q: R � F uniquely extends to a homomorpism q: R� � F, where

R� =[: # K : &P (:)�0].

Define the functions f : Fp � F and g: Fp � F in the following way. For
i # Fp we set f (i)=q (a i�?m1 ), g (i)=q (bi�?m2 ). We obtain from the above
considerations that

:
i # Fp

f (i+j) g(i)=0

for every j # Fp , and obviously the support of f is H1 , the support of g
is H2 , and H1{<, H2{<. This constradicts Lemma 6 below, so the
present lemma will be proved if we prove Lemma 6.

Lemma 6. Let f : Fp � F and g: Fp � F be given functions, and H1 , H2�
Fp such that H1 & H2=<, and f (i)=0 for i # Fp"H1 , g (i)=0 for i # FP"H2 .
Assume further that for all j # Fp we have

:
i # Fp

f (i+j) g(i)=0.

Then at least one of the functions f and g is identically 0.

Proof. Let 0�B�p be the least integer such that f # VB . We can
assume that B�1, since B=0 means that f is identically 0. Since we have
(T j f, g)=0 or every j�0 by our conditions, so g # V =

B =Vp&B . We can
assume that B�p&1, since B=p means that g is identically 0.

So there are polynomials Pf , Pg # F[x] with deg Pf�B&1, deg Pg�
( p&B)&1, and

Pf (i)=f (i), Pg (i)=g(i)

for every i # Fp . But f (i) g (i)=0 for every i # Fp , since H1 & H2=<. So the
degree of the polynomial Pf Pg is at most p&2, but it has p distinct roots,
which means that Pf Pg=0 # F[x]. This implies that Pf=0 or Pg=0,
which proves the lemma.

We will use the following result from algebraic geometry.

Lemma 7. Let Pi (x1 , x2 , ..., xn ), Qj (x1 , x2 , ..., xn) # C[x1 , x2 , ..., xn] be
given n-variable complex polynomials (1�i�r, 1�j�s), and let X be the
subset of Cn where the polynomials P i vanish but the Qj do not, i.e.,

X=[(a1 , a2 , ..., an) # Cn : Pi (a1 , a2 , ..., an)=0, Qj (a1 , a2 , ..., an){0].
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Let 1�k�n be fixed and denote by pk the projection of C n on the kth coor-
dinate axis, so pk((a1 , a2 , ..., an))=ak . Then either pk (X ) or C"pk (X ) is
finite.

Proof. This is a special case of a theorem of Chevalley, a form of which
states that the image of a constructible subset by a morphism of affine
algebraic varieties is again constructible. A constructible subset is a finite
union of locally closed subsets, where locally closed means the intersection
of an open and a closed subset (with respect to the Zariski topology). Now,
our X is locally closed in the affine n-space, projection is a morphism, and
a locally closed subset of the affine line is either finite or its complement is
finite, so our statement follows. For a proof of the theorem of Chevalley
see, e.g., [H, Sect. 4.4].

We also need an easy consequence of this.

Lemma 8. The notations are the same as in Lemma 7, but this time we
assume that the coefficients of the polynomials Pi and Qj are algebraic numbers.
Assume that X is nonempty. Then X has a point with all of its coordinates
algebraic.

Proof. We prove it by induction on n. If |X |<�, then obviously every
coordinate of every point of X is algebraic, so we may assume that
|X |=�. Then there is a 1�k�n such that | pk (X )|=�, by symmetry we
can put k=n, and by Lemma 7 we have that |C"pn (X )|<�. So there is
an algebraic : with : # pn (X ). This proves the statement for n=1, and for
n>1 the set Y of (n&1)-tuples (a1 , a2 , ..., an&1) with (a1 , a2 , ..., an&1 , :) #
X is nonempty, and then applying the inductive hypothesis for this Y the
lemma is proved.

Proof of Theorem 1. It follows from Lemma 5 that if the ai are algebraic
numbers and (ai : i # Fp ) satisfies the conditions of Theorem 1, then for
each i{0, 1 one has ai � pZ, where Z is the set of rational integers (taking
b0=0, bi=1�ai for i # Fp"[0], and letting P be any prime ideal above p of
K=Q(a2 , a3 , ..., ap&1)). We prove that if we would have infinitely many
solutions, then we could find a solution such that each ai is algebraic and
ai # pZ for some i{0, 1, and this will prove the theorem.

Let X be the set of p-tuples (ai : i # Fp ) satisfying the conditions listed in
the assertion of the theorem. If |X |=�, then we can find an i0{0, 1 such
that | pi0

(X )|=�. Then, by Lemma 7, C"p i0
(X ) is finite, so we can find an

integer n0 # Z such that pn0 # pi0
(X). Let X0 be the set of points in X with

ai0
=pn0 . Then X0 is nonempty, so applying Lemma 8 the proof is finished.
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